首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Higher order assemblies of molluscan hemocyanins   总被引:2,自引:0,他引:2  
1. The hemocyanins of the Fissurellidae, Naticidae and Melongenidae families of marine gastropods as well as some other molluscs including some members of the Opistobranchia and Bivalvia groups have hemocyanins which exist in solution as tri-decameric and mixed, multi-decameric aggregates characterized by sedimentation coefficients close to 100 S, 130 S, 150 S, 170 S and 200 S to 230 S. 2. The particle masses of the molluscan hemocyanins appear to be integral multiples close to 4.4 x 10(6) daltons. Thus, particle mass values of 4.47 x 10(6), 8.67 x 10(6) and 13.40 x 10(6) daltons were obtained for representative decameric, di-decameric, and tri-decameric components of Stenoplax conspicua, Fasciolaria tulipa and Euspira (Lunatia) heros hemocyanins. For Busycon contrarium, a gastropod with a mixed multidecameric hemocyanin, scanning transmission electron microscopic (STEM) measurements gave particle masses ranging from 8.89 x 10(6) and 13.20 x 10(6) for the di- and tri-decameric components to 38.87 x 10(6) and 43.40 x 10(6) daltons for highest nano- and deca-decameric aggregates. 3. The electron microscopic images of both uranyl acetate-stained and unstained specimens of hemocyanin aggregates indicate a non-random mode of assembly of the multi-decameric particles. This is most apparent from the electron micrographs of the moon snail hemocyanins. The tri-decameric and tetra-decameric particles seem to be assembled from a single di-decameric unit of the Mellema and Klug arrangement, with the collar ends facing outward, to which decameric units have been added from one or both ends, in a unidirectional tail-to-head to tail-to-collar manner. Consequently, all the aggregates including the higher, Melongenidae polymers have the appearance of closed cylinders terminating with the collar ends. 4. The radial distribution of the end-on views of the hemocyanin of the moon-snail Calinatioina oldroydii, show that the radial mass drops to zero at the center of the cylindrical particles consisting of one, two, or three decamers. This suggests that no caps are present at the ends of the hemocyanin particles which would inhibit or terminate their linear assembly. 5. The light-scattering behavior of B. contrarium and Marisa cornarietis hemocyanins examined as a function of increasing reagent concentration using the hydrophobic urea and Hofmeister salt series of reagents, show distinct aggregation and increase in molecular weights at low concentrations of reagent. Together with the stabilizing influence of Mg2+ and Ca2+ ions, this suggests polar and ionic stabilization of the inter-decameric contacts between the central di-decamers and the added decameric units of the higher aggregates of molluscan hemocyanins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
1. The hemocyanins of the Melongenidae family of marine gastropods: Melongena corona, Busycon canaliculatum, B. carica, B. contrarium, and B. spiratum exist in solution as multi-decameric aggregates characterized by sedimentation coefficients of approximately 105 S, 130 S, 150 S, 170 S, and higher values, corresponding to di-, tri-, tetra-, penta-, and larger multi-decameric particles. 2. The hemocyanins of B. contrarium and B. carica seem to form the largest decameric aggregates with the tri- to penta-decamers respresenting the major constitutents. Scanning transmission electron microscopy (STEM), both of unstained, freeze-dried and negatively-stained specimens, shows the presence of discrete aggregates consisting of up to ten decameric units. 3. The particle masses as determined by STEM mass measurements for individual molecules gave integral multiples of from 4.2 x 10(6) to 4.4 x 10(6) daltons ranging from about 8.2 x 10(6) daltons for the typical di-decamer of B. canaliculatum hemocyanin to as high as about 39 x 10(6) and 43 x 10(6) for the nano-and deca-decamers of B. contrarium hemocyanin. 4. The appearance of the higher multi-decamers in both negatively-stained and freeze-dried specimens suggest that they are formed by the addition of decameric units to a single di-decameric unit "tail-wise" in both directions. The higher aggregates formed seem to terminate with a closed head or collar at both ends of the assembly.  相似文献   

3.
1. The hemocyanins of the Muricidae and Fasciolariidae families of marine gastropods: Chicoreus florifer dilectus, Muricanthus fulvescens, Urosalpinx cinerea, Fasciolaria lilium hunteria, and Pleuroploca gigantea were investigated by sedimentation velocity, scanning transmission electron microscopy, light-scattering, and other physical techniques. 2. The hemocyanins of these species are characterized by sedimentation coefficients close to 100 S and molecular weights of 8.2 x 10(6)-9.0 x 10(6). 3. The hemocyanins have di-decameric structures, with tail-to-tail arrangement of the decameric halves of the cylindrical particles. Only the hemocyanin of U. cinerea was found to contain about 30% higher, tri-, and tetra-decameric particles, with one or two decameric units added in a tail-to-head manner to a central di-decameric particle of the Mellema and Klug tail-to-tail arrangement. 4. The influence of pH, and the urea and Hofmeister salt series of reagents on the subunit structure and denaturation of P. gigantea hemocyanin were also investigated.  相似文献   

4.
1. The hemocyanin of the chiton, Stenoplax conspicua, has a molecular weight determined by light-scattering of 4.2 X 10(6) daltons, (dt) and a sedimentation coefficient of 60 S. 2. The fully dissociated subunits in 6.0 and 8.0 M urea, and at pH 8.9-10 in the absence of divalent ions, have molecular weights of 4.15-4.30 x 10(5) and 4.17-4.75 x 10(5) dt, which is close to one-tenth of the molecular weight of the parent hemocyanin assembly. 3. The pH dependence of the molecular weights from pH 4.5 to 11 exhibit bell-shaped transition profiles, best accounted for by a three-species, decamer to dimer to monomer scheme of subunit dissociation, with one acidic and one basic ionizing group per dimer and 5-8 acidic and basic groups per monomer. 4. In the absence of stabilizing divalent ions S. conspicua hemocyanin is relatively unstable. At pH 7.4 in the presence of 0.01 M EDTA, it is predominantly in the dimeric state, characterized by a sedimentation constant of 18 S. It is also more readily dissociated to monomers at high pHs (8-9 and above) than are the C. stelleri and A. granulata hemocyanins. 5. Urea and GdmCl are effective dissociating agents of S. conspicua hemocyanin. The urea dissociation profile obtained at pH 8.5, 0.01 M Mg2+, 0.01 M Ca2+, and analyzed by means of the decamer-dimer-monomer scheme of subunit dissociation gave estimates of about 30 amino acid groups (Napp) at the dimer contacts within the hemocyanin decamers and about 120 groups per monomer within each dimer, suggesting hydrophobic stabilization of hemocyanin assembly.  相似文献   

5.
1. The hemocyanin of the freshwater snail, Marisa cornuarietis exists predominantly as a di-decamer with the approximate mol. wt of 8.5 x 10(6) and a sedimentation coefficient of 100 S. Sedimentation and scanning transmission electron microscopy experiments indicate that about 15-20% of the hemocyanin forms tri-decameric and possibly higher aggregates with mol. wts of 12.5 x 10(6) and 130 S. 2. The fully dissociated subunits in 8.0 M urea and 6.0 M GdmCl have mol. wts of 4.1 to 4.7 x 10(5) which is close to one-twentieth of the major di-decameric component of the native hemocyanin. 3. Subunit dissociation by the urea series and the Hofmeister salt series of reagents suggests hydrophobic stabilization of the decamers or half-molecules of the parent hemocyanin. As with the other molluscan hemocyanins the order of effectiveness of the ureas as dissociating agents shows increased efficacy with increasing hydrophobicity or chain-length of the urea substituents. 4. Denaturation of the hemocyanin subunits by the ureas and Hofmeister salt series, investigated by circular dichroism measurements, essentially follow the same trend in effectiveness as observed by changes in subunit dissociation followed by light-scattering mol. wt measurements. 5. The observed denaturation transitions are shifted to much higher ranges of reagent concentration than the concentrations required for the dissociation of the hemocyanin subunits.  相似文献   

6.
1. The hemocyanin of the bivalve, Yoldia limatula (Say) was found by light-scattering to have a mol. wt of 8.0 +/- 0.6 x 10(6). Mass measurements by scanning transmission electron microscopy (STEM) gave a particle mass of 8.25 +/- 0.42 x 10(6) for the native particle and 4.09 +/- 0.20 x 10(6) for the half-molecule. 2. The hemocyanin subunits fully dissociated in 8.0 M urea and 6.0 M GdmCl at pH 8.0, and at pH 11.0, 0.01 M EDTA have mol. wts of 4.38 x 10(5), 4.22 x 10(5) and 4.71 x 10(5), close to one-twentieth of the parent molecular weight of Y. limatula hemocyanin and most gastropod hemocyanins. 3. Analyses of the urea dissociation transitions studied at pH 8.0, 1 x 10(-2) M Mg2+, 1 x 10(-2) M Ca2+ and pH 8.0, 3 x 10(-3) M Ca2+ suggest few hydrophobic amino acid groups, of the order of 10 to 15 at the contact areas of each half-molecule or decamer. 4. The further dissociation of the decamers to dimers and the dimers to monomers indicates the presence of a larger number of amino acid groups of ca 35-40/dimer and 100-120/monomer. 5. This suggests hydrophobic stabilization of the dimer to dimer and monomer to monomer contacts within the decamers, as observed with other molluscan hemocyanins.  相似文献   

7.
1. The hemocyanin of the Californian whelk, Kelletia kelleti, investigated at pH and ionic conditions close to physiological, has a molecular weight close to 9.0 x 10(6) and a sedimentation constant of 114S, characteristic of the di-decameric structure of molluscan hemocyanins. Light-scattering measurements at pH 8.0, 0.05 M Mg2+, 0.01 M Ca2+ gave a molecular weight of 9.0 +/- 0.6 x 10(6), and scanning transmission electron microscopy produced nearly the same particle mass of 9.22 +/- 0.50 x 10(6) daltons (Da). 2. Light-scattering measurements on the fully dissociated monomers in the presence of 8.0 M urea and at pHs 10.6 and 11.0 gave molecular weights of 4.50 x 10(5)-4.91 x 10(5), that are close to one-twentieth of the mass of the parent di-decameric hemocyanin assembly. 3. Changes in pH produced a bell-shaped molecular weight profile, with molecular weights close to 9.0 x 10(6) in the pH region of about 5.5-8.0, and progressive dissociation to 4.5 x 10(5) Da monomers in the region below pH 4.0 and above pH 9.0 or 10, depending on the absence or presence of stabilizing Mg2+ ions (0.01 M). 4. In the absence of divalent ions some aggregation of hemocyanin was found at pHs close to 5.0, with observed molecular weights above 10 x 10(6) (investigated at a hemocyanin concentration of 0.10 g/l). The early studies of Condie and Langer (Science 144, 1138-1140, 1964) had shown that Kelletia kelleti hemocynanin aggregates at acidic pHs close to the isoelectric point, forming linear polymers of the hemocyanin di-decamers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
1. The haemocyanin of the left-handed whelk Busycon contrarium (Conrad) exists largely as six or more multi-decameric aggregates characterized by sedimentation coefficients of approximately 105S, 132S, 155S, 170S, 185S and about 200-220S. 2. These aggregates represent di- to hepta- or octa-decameric assemblies of the basic haemocyanin decamer having a mol. wt of 4.3 x 10(6)-4.5 x 10(6). 3. The fully dissociated subunits in 8.0 M urea (pH 8.5) and at pH 11.1, 0.01 M EDTA have mol. wts of 4.78 x 10(5) and 4.62 x 10(5), close to one-tenth of the mol. wt of the basic decameric unit of most gastropod haemocyanins. 4. The pH dependence of the mol. wts (Mw), studied by light-scattering at the constant protein concentration of 0.010%, exhibit bell-shaped pH transition profiles with mol. wt values of about 16 x 10(6) in the presence of 0.01 M Mg2+, in the pH region from about pH 4.5-8.0; in the absence of stabilizing divalent ions the observed mol. wt is about 10 x 10(6) at pH 4.5-7.0. Below pH 4.5 and above 7.0-8.0 there is a sharp drop in mol. wt to about 4 x 10(5)-4.5 x 10(5). 5. The transition profiles observed with both the urea and salt series of probes investigated at concentration = 0.010% are found to produce aggregation at low reagent concentrations with mol. wt changes from about 9 x 10(6)-12 x 10(6)-14 x 10(6), followed by a decrease in mol. wt below 4.3 x 10(6)-4.5 x 10(6) of the haemocyanin decamers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The stabilizing effects of Ca2+ and Mg2+ ions on the decameric structure of hemocyanins from two representative chitons, Stenoplax conspicua and Mopalia muscosa were investigated by light-scattering molecular weight measurements, ultracentrifugation, absorbance, and circular dichroism methods. The dissociation profiles at any given pH resulting from the decrease in divalent ion concentration, investigated at a fixed protein concentration of 0.1 g.liter-1, could be fitted by a decamer-to-dimer-to monomer scheme of subunit dissociation. The initial decline in the light-scattering molecular weight curves required one or two apparent binding sites per hemocyanin dimer formed as intermediate dissociation product, with apparent dissociation constants (kD,2) for Ca2+ ions of 0.7 to 7 X 10(-4) M, not very different from the value of 2.5 X 10(-4) M obtained by Makino by equilibrium dialysis for the hemocyanin of the opistobranch, Dolabella auricularia. The binding of Mg2+ ion to S. conspicua and M. muscosa hemocyanins appears to be both weaker than the binding of Ca2+ and more pH dependent, with kD,2 values ranging from the 3 X 10(-4) to 4 X 10(-2) M at pH 8.5 to 9.5. The dissociation the decameric hemocyanin species (sedimentation coefficient ca. 60 S) is also observed in the ultracentrifugation with the initial appearance of 18-20 S dimers, followed by a shift in equilibrium to monomeric species of lower sedimentation rates of 11-12 S as the divalent ion concentration is reduced below 1 X 10(-4) M Ca2+ and Mg2+. The dissociation of dimers to monomers in the second step of the reaction is characterized by one or two binding sites per subunit and a somewhat stronger affinity for divalent ions, indicated by apparent dissociation constants (kD,1) of 0.7 X 10(-4) to 3 X 10(-3) M. Circular dichroism and absorbance measurements at 222 and 346 nm suggest no significant changes in the conformation of the hemocyanin subunits produced by the different stages of subunit dissociation.  相似文献   

10.
The structural properties of the hemocyanin isolated from the Mediterranean mud shrimp, Upogebia pusilla (Decapoda: Thalassinidea), were investigated. Our intent was to make use of the U. pusilla case to perform a structural comparison between crustacean and chelicerate 4x6-meric hemocyanins. The thalassinidean hemocyanin appears similar in size but different in structural organization compared to the chelicerate 4x6-mer. Ultracentrifuge analyses on the purified protein revealed a sedimentation coefficient of 39S, typical of 4x6 hemocyanins. Electron micrographs are in agreement with a model in which four 2x6-meric building blocks are arranged in a tetrahedron-like quaternary structure and not in the quasi-square-planar orientation characteristic of the chelicerate protein. Size-exclusion chromatography-fast protein chromatography analysis showed elevated instability of the protein in absence of divalent ions or at pH values higher than 8.0. This analysis also shows that the dissociation of the U. pusilla 4x6-meric hemocyanin into hexamers occurs without any intermediate 2x6-meric state, in contrast with the dissociation profile of the chelicerate protein exhibiting several dissociation intermediates. The oxygen-binding properties of U. pusilla hemocyanin were studied to disclose possible effects by the typical allosteric effectors that modulate the functional properties of crustacean hemocyanin. A marked Bohr and lactate effect, but no significant influence of urate, on the oxygen affinity of U. pusilla hemocyanin were found.  相似文献   

11.
Recent aspects of the subunit organization and dissociation of hemocyanins   总被引:2,自引:0,他引:2  
1. The hemocyanins of the arthropod phylum are built of multiples of hexamers consisting of 1,2,4,6 and 8 of such basic assemblies. Their molecular weights range from about 0.45 x 10(6) to 3.9 x 10(6) daltons. The basic hexameric unit consists of bean-shaped monomers organized in the form of two layers of trimers placed on top of one another. The subunits are heterogeneous, in most cases consisting of four or more electrophoretically different polypeptide chains. 2. Molluscan hemocyanins have an entirely different structure and pattern of assembly from the arthropodan hemocyanins. The basic assembly of the molluscan hemocyanins are decamers organized in the form of right-handed cylinders approximately 300 A in diameter and 140-190 A in height. Different species have one, two and sometimes more than two such assemblies forming correspondingly longer cylindrical particles with molecular weights ranging from about 3.3 x 10(6) to 13 x 10(6) daltons. Cephalopod and chiton hemocyanins consist of single decameric particles, while gastropods have hemocyanins organized of di-decamers or higher assemblies. The subunits of these hemocyanins are elongated protein chains with seven or eight folded globular domains, each housing a binuclear copper center capable of binding and delivering oxygen. 3. The dissociation behavior of the arthropod hemocyanin hexamers and di-hexamers with the hydrophobic urea series of reagents suggest polar and ionic interactions as the main sources of stabilization of the hexamers and the hexamer to hexamer contacts within the di-hexamers. 4. Dissociation studies with the same urea probes with the molluscan hemocyanins, however, suggest a different pattern of stabilization. The stabilization of the decamer to decamer contacts within the gastropod di-decamers appear to be predominantly polar and ionic with relatively few hydrophobic interaction sites. The dimer contacts within the decamers and the monomer to monomer contacts within the dimers observed in the octopus and chiton hemocyanins appear to be predominantly hydrophobic in nature. 5. The urea and the pH dissociation profiles of the single decameric assemblies of some of the octopus and chiton hemocyanins investigated by light-scattering molecular weight methods, have been fitted using either a two-species, decamer to dimer and decamer to monomer scheme of subunit dissociation or a three-species, decamer to dimer to monomer scheme of dissociation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The subunit structure and dissociation of the hemocyanins of two marine snails, Lunatia heros and Littorina littorea, were investigated by light-scattering molecular weight methods. The hemocyanins of both species of snails are readily dissociated to fragments of one-tenth and one-twentieth of the parent proteins of close to 9 X 10(6) daltons by either increasing the pH or using dissociating reagents of the hydrophobic urea series or some of the Hofmeister salts. The lower members of the latter group of reagents, NaCl, and to some extent also NaBr were found to have only marginal effects on the observed molecular weight transitions, suggesting that the two hemocyanins investigated possess beta-type subunits, which are known to be resistant to NaCl dissociation. The molecular weight profiles obtained with the various dissociating reagents were single inverted sigmoidal-shaped curves for both Lunatia and Littorina hemocyanins, suggesting overlapping transitions. The ultracentrifugation patterns and the species-distribution plots based on the urea dissociation data of Littorina hemocyanin suggest the presence of whole, half, and one-tenth molecular weight species in the dissociation transition region. Fitting of the urea dissociation data of Littorina hemocyanin obtained at both pH 5.7 and pH 8.0, assuming a sequential two-step dissociation scheme used in our previous studies [Herskovits, T. T., & Russell, M. W. (1984) Biochemistry 23, 2812-2819], was found to be consistent with a model of a few hydrophobic binding sites at the contact areas of the half-molecules and a much larger apparent number of binding sites (Napp) at the side to side contacts of the one-tenth molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The subunit structure and solution conformation of the hemocyanin of the chiton Acanthopleura granulata were investigated by light-scattering, ultracentrifugation, viscosity, absorbance, and circular dichroism methods. The molecular weight, determined by light scattering at pH 7.4 in the presence of 0.05 M Mg2+ and 0.01 M Ca2+, was (4.2 +/- 0.3) X 10(6), while those of dissociated subunits in the presence of 8.0 M urea (at pH 7.4) and at pH 10.7 were found to be 4.57 X 10(5) and 4.58 X 10(5), respectively. Circular dichroism and absorbance measurements at 222 and 346 nm indicate only minor changes in the conformation of the folded domains of the hemocyanin subunits in these dissociating solvents. As with the hemocyanins of the snails Busycon canaliculatum, Lunatia heros, and Littorina littorea, exposure to 4.0-6.0 M guanidinium chloride (GdmCl) is found to produce unfolding of the domains, resulting in much more pronounced spectral changes and a further drop in molecular weight. A Mw of 3.2 X 10(5) was obtained with Acanthopleura hemocyanin in 6.0 M GdmCl, suggesting hidden breaks in the polypeptide chains analogous to those observed with the gastropodan hemocyanins. Both urea and pH dissociation showed gradual declines in the molecular weights, consistent with a decamer-dimer-monomer scheme of subunit dissociation. The bell-shaped molecular weight profiles obtained in the pH region from 5 to 11 can be accounted for by assuming two proton-linked groups per dimer, characterized by apparent pK values of 5.5 and 9.5, and the further involvement of five to eight acidic and five to eight basic groups per monomer, having apparent pK values of 5.0 and 10.2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Hemocyanins are copper-containing, respiratory proteins that occur in the hemolymph of many arthropod species. Here we report for the first time the presence of hemocyanins in the diplopod Myriapoda, demonstrating that these proteins are more widespread among the Arthropoda than previously thought. The hemocyanin of Spirostreptus sp. (Diplopoda: Spirostreptidae) is composed of two immunologically distinct subunits in the 75-kDa range that are most likely arranged in a 36-mer (6 x 6) native molecule. It has a high oxygen affinity (P(50) = 4.7 torr) but low cooperativity (h = 1.3 +/- 0.2). Spirostreptus hemocyanin is structurally similar to the single known hemocyanin from the myriapod taxon, Scutigera coleoptrata (Chilopoda), indicating a rather conservative architecture of the myriapod hemocyanins. Western blotting demonstrates shared epitopes of Spirostreptus hemocyanin with both chelicerate and crustacean hemocyanins, confirming its identity as an arthropod hemocyanin.  相似文献   

15.
Hemocyanins are oligomeric metalloproteins containing binuclear copper centers that reversibly combine with oxygen molecules. The structural stability and functional properties of these proteins are modified by divalent cations. Equilibrium dialysis was used to study the reversible interaction of Callinectes sapidus and Limulus polyphemus hemocyanins with the divalent cations calcium, cadmium, zinc, copper, and mercury. The number of binding sites and association constants for each cation were obtained from an analysis of the binding data by a nonlinear least-squares minimization procedure. Spectral analysis showed Limulus hemocyanin to possess two mercury-reactive sulfhydryl groups per subunit (Kassoc = 2.02 X 10(45) M-1). Callinectes hemocyanin contains only one such group (Kassoc = 2.29 X 10(34) M-1). Cadmium and zinc are shown to substitute for calcium ions. Oxygen binding studies with Limulus hemocyanin showed that all five divalent metal ions increase its oxygen affinity. Calcium ions increase cooperativity of oxygen binding, while heavy-metal ions have an opposite effect. Binding of two mercuric ions per Limulus hemocyanin subunit irreversibly fixes the 48 subunit aggregate in a high-affinity noncooperative conformational state. These results offer a striking contrast to the functional consequences of heavy-metal ion interactions with Callinectes hemocyanin [Brouwer, M., Bonaventura, C., & Bonaventura, J. (1982) Biochemistry 21, 2529-2538]. The functional alterations associated with metal ion interactions are discussed within the context of an extension of the two-state model for allosteric transitions of Monod et al. [Monod, J., Wyman, J., & Changeux, J.P. (1965) J. Mol. Biol. 12, 88-118]. Incubation of Limulus oxy- or deoxyhemocyanin with mercuric chloride results in the conversion of 60% of the binuclear copper sites to stable half-apo sites. The remaining active sites are stable with respect to mercury-induced copper displacement when oxygen is bridging both coppers. In the absence of oxygen these sites will eventually lose both copper atoms. Under the same conditions 50% of the binuclear copper sites of Callinectes deoxyhemocyanin are converted to half-apo sites. In this case oxygen completely protects against copper displacement [Brouwer, M., Bonaventura, C., & Bonaventura, J. (1982) Biochemistry 21, 2529-2538]. The binuclear copper center of Busycon carica is not affected at all, demonstrating profound differences between the active sites of hemocyanins of a chelicerate arthropod (Limulus), a crustacean arthropod (Callinectes), and a gastropod mollusc (Busycon).  相似文献   

16.
1. The hemocyanin from the marine snail, Fasciolaria tulipa has a molecular weight of 8.6 +/- 0.6 x 10(6) determined by light-scattering and a sedimentation constant of (105.9 +/- 1.1)S. 2. The dissociated subunits at pH 11 and in 8.0 M urea (pH 7.4) had molecular weights of 4.4 x 10(5) and 4.7 x 10(5), close to one-twentieth of the parent didecameric assembly. 3. The pH dependence of the molecular weight profile exhibited bell-shaped transitions in both the presence and absence of Ca2+ and Mg2+ ions. In the physiological pH range of about 7.5-8.2 in divalent ion-containing buffers neither the molecular weight behavior nor the sedimentation patterns suggest any significant dissociation. 4. Both the urea and the Hofmeister salt series were found to dissociate the didecameric hemocyanin assembly. The ureas exhibit increasing effectiveness as dissociating agents with the higher alkyl substituted members of the series, suggesting hydrophobic stabilization of the subunit assembly. 5. Denaturation of the hemocyanin subunits by the urea series follows the same trend in effectiveness as the dissociation reaction; the reagent concentrations required to cause unfolding of the globular domains of the hemocyanin chains were, however, much higher than those needed for dissociation.  相似文献   

17.
Molecular weights of all hemocyanin aggregates which can be homogeneously isolated have been measured by sedimentation equilibrium. The larger aggregates, which are the ones present under physiological conditions, are, to a very close approximation, integral multiples of a 4.4 x 10(6)-dalton, 60 S species. Dissociation of the 60 S species at high pH gives heterogeneous samples in which the smallest species has a molecular weight of 300,000. The smallest subunit which can be produced in denaturing solvents also has a molecular weight of 300,000.  相似文献   

18.
Subunit association and heterogeneity of Limulus polyphemus hemocyanin   总被引:1,自引:0,他引:1  
The molecular weights of the 6S, 24S, 36S, and 60S components of Limulus polyphemus hemocyanin were determined by high speed sedimentation equilibrium to be 69 400, 856 000, 1 690 000, and 3 160 000. The behavior of this hemocyanin appears to be similar to that of other arthropod hemocyanins where the first aggregation step is the formation of a hexamer of the 6S monomer. Here the larger aggregated states (24S, 36S, and 60S) are successive dimers of an unobserved hexamer (16S). The 24S-36S-60S association was found to be heterogeneous, suggesting that 24S components of different composition may be present.  相似文献   

19.
Hemocyanins are large oligomeric copper-containing proteins that serve for the transport of oxygen in many arthropod species. While studied in detail in the Chelicerata and Crustacea, hemocyanins had long been considered unnecessary in the Myriapoda. Here we report the complete molecular structure of the hemocyanin from the common house centipede Scutigera coleoptrata (Myriapoda: Chilopoda), as deduced from 2D-gel electrophoresis, MALDI-TOF mass spectrometry, protein and cDNA sequencing, and homology modeling. This is the first myriapod hemocyanin to be fully sequenced, and allows the investigation of hemocyanin structure-function relationship and evolution. S. coleoptrata hemocyanin is a 6 x 6-mer composed of four distinct subunit types that occur in an approximate 2 : 2 : 1 : 1 ratio and are 49.5-55.5% identical. The cDNA of a fifth, highly diverged, putative hemocyanin was identified that is not included in the native 6 x 6-mer hemocyanin. Phylogenetic analyses show that myriapod hemocyanins are monophyletic, but at least three distinct subunit types evolved before the separation of the Chilopoda and Diplopoda more than 420 million years ago. In contrast to the situation in the Crustacea and Chelicerata, the substitution rates among the myriapod hemocyanin subunits are highly variable. Phylogenetic analyses do not support a common clade of Myriapoda and Hexapoda, whereas there is evidence in favor of monophyletic Mandibulata.  相似文献   

20.
The masses of individual particles of the hemocyanins of six members of two molluscan classes, Polyplacophora and Gastropods, have been determined by scanning transmission electron microscopy (STEM) of unstained specimens dried from the frozen state. The decameric hemocyanins of two chitons, Mopalia muscosa and Stenoplax conapicua, had masses of 4.20 ± 0.18 and 4.47 ± 0.56 MDa, respectively; the didecameric hemocyanins of two gastropods, Fasciolaria tulipa and Pleuroploca gigantea, had masses of 8.67 ± 0.44 and 8.96 ± 0.39 MDa, respectively; and the tridecameric hemocyanin of Lunatia heros had a mass of 13.50 ± 0.44 MDa. The STEM values were in close agreement with those obtained by light scattering measurements of the same samples in solution. For Busycon centrarium, a gastropod with a multidecameric hemocyanin, nine size classes from didecamers to decadecamers with masses that corresponded to multiples of a basic decamer (4.4 MDa) were detected. The appearance of unstained specimens of the cylindrical particles differs from negatively stained specimens. Viewed end-on the cylinders show no internal structure, but in well-preserved specimens cavities are apparent in the side views of the cylinders that resemble those seen in negatively stained specimens. Although they lack the characteristic “tiered” appearance, the number of decameric units can be counted and their arrangement within the particle seen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号