首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A synthetic peptide-based proteinase inhibitor was constructed by modeling the regions responsible for inhibition in barley chymotrypsin inhibitor 2 (CI-2). The 18-residue peptide was designed by molecular modeling, based on the crystal structure of CI-2. The amino acid sequences that interact with the proteinase were preserved, as well as residues that maintain the structure of the inhibitory loop. A disulfide bridge was introduced to force the peptide to adopt a cyclic structure. Kinetic studies on binding of the cyclic peptide to subtilisin BPN', subtilisin Carlsberg, chymotrypsin, and pancreatic elastase show that the cyclic peptide retains both the inhibition properties, the kinetic mechanism, and the specificity of the original protein inhibitor. Formation of a cyclic structure was found to be essential, and activity was abolished by reduction of the disulfide. As with CI-2, tightest binding is found to subtilisin BPN', where the Ki value for the cyclic peptide was 28 x 10(-12) M, compared with 29 x 10(-12)M for CI-2 under identical conditions. This remarkable result shows that it is possible to use a short synthetic peptide to model the molecular recognition properties of the intact protein, in this case obtaining full functionality with just 18 residues instead of 83 for CI-2.  相似文献   

2.
Crystal structure of thermitase at 1.4 A resolution   总被引:4,自引:0,他引:4  
The crystal structure of thermitase, a subtilisin-type serine proteinase from Thermoactinomyces vulgaris, was determined by X-ray diffraction at 1.4 A resolution. The structure was solved by a combination of molecular and isomorphous replacement. The starting model was that of subtilisin BPN' from the Protein Data Bank, determined at 2.5 A resolution. The high-resolution refinement was based on data collected using synchrotron radiation with a Fuji image plate as detector. The model of thermitase refined to a conventional R factor of 14.9% and contains 1997 protein atoms, 182 water molecules and two Ca ions. The tertiary structure of thermitase is similar to that of the other subtilisins although there are some significant differences in detail. Comparison with subtilisin BPN' revealed two major structural differences. The N-terminal region in thermitase, which is absent in subtilisin BPN', forms a number of contacts with the tight Ca2+ binding site and indeed provides the very tight binding of the Ca ion. In thermitase the loop of residues 60 to 65 forms an additional (10) beta-strand of the central beta-sheet and the second Ca2+ binding site that has no equivalent in the subtilisin BPN' structure. The observed differences in the Ca2+ binding and the increased number of ionic and aromatic interactions in thermitase are likely sources of the enhanced stability of thermitase.  相似文献   

3.
Pleurotus ostreatus proteinase A inhibitor 1 (POIA1), which is composed of 76 residues without disulfide bridges, is a unique inhibitor in that it exhibits sequence similarity to the propeptides of subtilisins. In order to elucidate the inhibitory mechanism of POIA1, we constructed an expression system for a synthetic POIA1 gene. The wild-type POIA1 was found to inhibit subtilisin BPN' with an inhibitor constant (K(i)) of 3.2 x 10(-9) M, but exhibited a time-dependent decrease of inhibitory activity as a consequence of degradation by the protease, showing that the wild-type POIA1 was a temporary inhibitor when subtilisin BPN' was used as a target protease. Since POIA1 shows sequence similarity to the propeptide of subtilisin, which is known to inhibit the protease via its C-terminal region, the C-terminal six residues of POIA1 were replaced with those of the propeptide of subtilisin BPN'. The mutated POIA1 inhibited subtilisin BPN' with a K(i) value of 2.8 x 10(-11) M and did not exhibit time-dependent decrease of inhibitory activity, showing about 100-fold increases in binding affinity for, and resistance to, the protease. These results clearly indicate that the C-terminal region of POIA1 plays an important role in determining the inhibitory activity toward the protease, and that the increase in binding ability to the protease is closely related to resistance to proteolytic degradation. Therefore, the inhibitory properties of POIA1 can be altered by mutation of its C-terminal region.  相似文献   

4.
Incorporation of a stabilizing Ca(2+)-binding loop into subtilisin BPN'.   总被引:3,自引:0,他引:3  
S Braxton  J A Wells 《Biochemistry》1992,31(34):7796-7801
A rational approach was taken to improve the stability of subtilisin BPN' to autoproteolysis. Two sites of autoproteolysis were identified by isolation of early autolysis products and amino-terminal sequence analysis. These studies showed that subtilisin rapidly cleaves Ala48-Ser49 and Ser163-Thr164 peptide bonds at elevated temperatures. These two sites appear in regions of high mobility as estimated from crystallographic B-factors and are in extended surface loops. To improve the resistance to thermal-induced autolysis, we replaced sequences around these two sites with sequences derived from a thermophilic homologue of subtilisin, thermitase. Thermitase contains a Ca(2+)-binding site in the region surrounding Ser49. When the Ca(2+)-binding segment of thermitase corresponding to residues 45-63 of subtilisin BPN' was installed into subtilisin BPN', the chimeric protein gained the ability to bind another Ca2+ with moderate affinity (Kd approximately 100 microM). This enzyme had the same kcat as wild-type, had a KM value 8-fold larger than wild-type, and was slightly less stable to thermal inactivation in EDTA. However, in 10 mM CaCl2, the mutant subtilisin BPN' was 10-fold more stable to irreversible inactivation at 60 degrees C than wild-type subtilisin BPN' as measured by residual activity against the substrate sAAPF-pna. Next, mutations and deletions derived from thermitase were introduced near the second autolysis loop in subtilisin BPN' (residues 158-165). However, all of these mutants were less stable than wild-type subtilisin. Thus, some (but not all) mutations derived from a thermophilic homologue near sites of autolysis can be stabilizing to a mesophilic protease.  相似文献   

5.
Kojima S  Iwahara A  Yanai H 《FEBS letters》2005,579(20):4430-4436
Pleurotus ostrearus proteinase A inhibitor 1 (POIA1), which was discovered as a protease inhibitor, is unique in that it shows sequence homology to the propeptide of subtilisin, which functions as an intramolecular of a cognate protease. In this study, we demonstrate that POIA1 can function as an intramolecular chaperone of subtilisin by in vitro and in vivo experiments. The specific cleavage between POIA1 and the mature region of subtilisin BPN' occurred in a refolding process of a chimera protein, and Bacillus cells transformed with a chimera gene formed a halo on a skim milk plate. The mutational analyses of POIA1 in the chimera protein suggested that the tertiary structure of POIA1 is required for such a function, and that an increase in its ability to bind to subtilisin BPN' makes POIA1 a more effective intramolecular chaperone.  相似文献   

6.
A new alkaline elastase of an alkalophilic bacillus   总被引:3,自引:0,他引:3  
A new alkaline elastase was purified from the culture broth of an alkalophilic Bacillus sp. Ya-B. This was a serine proteinase. Molecular weight was 25,000. The optimum pH for elastin and casein was 11.75. The enzyme had very high specific activity, 12,400 units/mg protein for casein, and 2,440 units/mg protein for elastin at the optimum pH. It showed marked preference for elastin. The relative activity of elastin/casein of this enzyme was 17 and 6 times higher than those of subtilisin BPN' and subtilisin Carlsberg, respectively. This enzyme also had higher keratin and collagen hydrolyzing activity in comparison with subtilisin.  相似文献   

7.
A novel proteinaceous inhibitor for the metalloproteinase of Streptomyces caespitosus has been isolated from the culture supernatant of Streptomyces sp. I-355. It was named ScNPI (Streptomyces caespitosus neutral proteinase inhibitor). ScNPI exhibited strong inhibitory activity toward ScNP with a K(i) value of 1.6 nm. In addition, ScNPI was capable of inhibiting subtilisin BPN' (K(i) = 1.4 nm) (EC ). The scnpi gene consists of two regions, a signal peptide (28 amino acid residues) and a mature region (113 amino acid residues, M(r) = 11,857). The deduced amino acid sequence of scnpi showed high similarity to those of Streptomyces subtilisin inhibitor (SSI) and its homologues. The reactive site of ScNPI for inhibition of subtilisin BPN' was identified to be Met(71)-Tyr(72) bond by specific cleavage. To identify the reactive site for ScNP, Tyr(33) and Tyr(72), which are not conserved among other SSI family inhibitors but are preferable amino acid residues for ScNP, were replaced separately by Ala. The Y33A mutant retained inhibitory activity toward subtilisin BPN' but did not show any inhibitory activity toward ScNP. Moreover, a dimer of ternary complexes among ScNPI, ScNP, and subtilisin BPN' was formed to give the 2:2:2 stoichiometry. These results strongly indicate that ScNPI is a double-headed inhibitor that has individual reactive sites for ScNP and subtilisin BPN'.  相似文献   

8.
The crystal structure of the complex of a bacterial alkaline serine proteinase, subtilisin BPN', with its proteinaceous inhibitor SSI (Streptomyces subtilisin inhibitor) was solved at 2.6 A resolution. Compared with other similar complexes involving serine proteinases of the trypsin family, the present structure is unique in several respects. (1) In addition to the usual antiparallel beta-sheet involving the P1, P2 and P3 residues of the inhibitor, the P4, P5 and P6 residues form an antiparallel beta-sheet with a previously unnoticed chain segment (residues 102 through 104, which was named the S4-6 site) of subtilisin BPN'. (2) The S4-6 site does not exist in serine proteinases of the trypsin family, whether of mammalian or microbial origin. (3) Global induced-fit movement seems to occur on SSI: a channel-like structure in SSI where hydrophobic side-chains are sandwiched between two lobes becomes about 2 A wider upon complexing with subtilisin. (4) The complex is most probably a Michaelis complex, as in most of the other complexes. (5) The main role of the "secondary contact region" of SSI seems to be to support the reactive site loop ("primary contact region"). Steric homology of the two contact regions between the inhibitors of the SSI family and the pancreatic secretory trypsin inhibitor-ovomucoid inhibitor family is so high that it seems to indicate divergent evolutionary processes and to support the general notion as to the relationship of prokaryotic and eukaryotic genes put forward by Doolittle (1978).  相似文献   

9.
The following amino acid sequence of the small cyanogen bromide peptide (mol. wt. 5399) of thermitase from Thermoactinomyces vulgaris has been determined: Ala-Thr-Pro-His-Val-Ala-Gly-Val-Ala-Gly-Leu-Leu-Ala-Ser-Gln-Gly-Arg-Ser-Ala-Ser -Asn-Ile-Arg-Ala-Ala-Ile-Glu-Asn-Thr-Ala-Asp-Lys-Ile-Ser-Gly-Thr-Gly-Thr-Tyr-Trp-Ala-Lys-Gly-Arg-Val-Asn-Ala-Tyr-Lys-Ala-Val-Gln-Tyr. The results obtained support the classification of the enzyme as a serine proteinase of the subtilisin type as proposed in a previous paper (1). This partial sequence extending from the serine residue involved in the active site to the C-terminal amino acid of the enzyme shows a 40% homology with the corresponding part of the subtilisin BPN' or subtilisin Carlsberg molecule but a 56% homology as regards conservative amino acid replacements. The secondary structure of this polypeptide fragment, predicted from the data obtained by the method of Chou & Fasman (2) agrees fairly well, within the limit or error of the method, with the structure of the corresponding part of the subtilisin BPN' molecule. Therefore, as expected, no dramatic changes in the spatial structure appear to account for the higher thermostability of thermitase, at least in this area of the polypeptide chain.  相似文献   

10.
Yeast proteinase B inhibitor 2 (YIB2), which is composed of 74 amino acid residues, is an unusual serine protease inhibitor, since it lacks disulfide bonds. To identify its reactive site for proteases, we constructed an expression system for a synthetic YIB2 gene and then attempted to change the inhibitory properties of YIB2 by amino acid replacements. The purified wild-type YIB2 inhibited the activity of subtilisin BPN', a protein homologous to yeast proteinase B, although its binding ability was not strong, and a time-dependent decrease in its inhibitory activity was observed, demonstrating that wild-type YIB2 behaves as a temporary inhibitor when subtilisin BPN' is the target protease. Since YIB2 exhibits sequence homology to the propeptide of subtilisin, which inhibits a cognate protease using its C-terminal region, we replaced the six C-termi nal residues of YIB2 with those of the propeptide of subtilisin BPN' to make the mutant YIB2m1. This mutant exhibited markedly increased inhibitory activity toward subtilisin BPN' without a time-dependent decrease in its inhibitory activity. Replacement of only the C-terminal Asn of YIB2 by Tyr, or deletion of the C-terminal Tyr of YIB2m1, inhibited subtilisin, but the ability of these mutants to bind subtilisin and their resistance to proteolytic attack were weaker than those of YIB2m1, indicating that the C-terminal residue contributes to the interaction with the protease to a greater extent than the preceding five residues and that the resistance of YIB2 to proteolyic attack is closely related to its ability to bind a protease. These results demonstrate that YIB2 is a unique protease inhibitor that involves its C-terminal region in the interaction with the protease.  相似文献   

11.
The refined crystal structure of subtilisin Carlsberg at 2.5 A resolution   总被引:4,自引:0,他引:4  
We report here the X-ray crystal structure of native subtilisin Carlsberg, solved at 2.5 A resolution by molecular replacement and refined by restrained least squares to a crystallographic residual (Formula see text): of 0.206. we compare this structure to the crystal structure of subtilisin BPN'. We find that, despite 82 amino acid substitutions and one deletion in subtilisin Carlsberg relative to subtilisin BPN', the structures of these enzymes are remarkably similar. We calculate an r.m.s. difference between equivalent alpha-carbon positions in subtilisin Carlsberg and subtilisin BPN' of only 0.55 A. This confirms previous reports of extensive structural homology between these two subtilisins based on X-ray crystal structures of the complex of eglin-c with subtilisin Carlsberg [McPhalen, C.A., Schnebli, H.P. and James, M.N.G. (1985) FEBS Lett., 188, 55; Bode, W., Papamokos, E. and Musil, D. (1987) Eur. J. Biochem., 166, 673-692]. In addition, we find that the native active sites of subtilisins Carlsberg and BPN' are virtually identical. While conservative substitutions at residues 217 and 156 may have subtle effects on the environments of substrate-binding sites S1' and S1 respectively, we find no obvious structural correlate for reports that subtilisins Carlsberg and BPN' differ in their recognition of model substrates. In particular, we find no evidence that the hydrophobic binding pocket S1 in subtilisin Carlsberg is 'deeper', 'narrower' or 'less polar' than the corresponding binding site in subtilisin BPN'.  相似文献   

12.
The crystal structure of subtilisin BPN' complexed with a proteinaceous inhibitor SSI (Streptomyces subtilisin inhibitor) was refined at 1.8 A resolution to an R-factor of 0.177 with a root-mean-square deviation from ideal bond lengths of 0.014 A. The work finally established that the SSI-subtilisin complex is a Michaelis complex with a distance between the O gamma of active Ser221 and the carbonyl carbon of the scissile peptide bond being an intermediate value between a covalent bond and a van der Waals' contact, 2.7 A. This feature, as well as the geometry of the catalytic triad and the oxyanion hole, is coincident with that found in other highly refined crystal structures of the complex of subtilisin Novo, subtilisin Carlsberg, bovine trypsin or Streptomyces griseus protease B with their proteinaceous inhibitors. The enzyme-inhibitor beta-sheet interaction is composed of two separate parts: that between the P1-P3 residues of SSI and the 125-127 chain segment (the "S1-3 site") of subtilisin and that between the P4-P6 residues of SSI and th 102-104 chain segment (the "S4-6 site") of subtilisin. The latter beta-interaction is unique to subtilisin. In contrast, the beta-sheet interaction previously found in the complex of subtilisin Novo and chymotrypsin inhibitor 2 or in the complex of subtilisin Carlsberg and Eglin C is distinct from the present complex in that the two types of beta-interactions are not separate. As for the flexibility of the molecules comprising the present complex, the following observations were made by comparing the B-factors for free and complexed SSI and comparing those for free and complexed subtilisin BPN'. The rigidification of the component molecules upon complex formation occurs in a very localized region: in SSI, the "primary" and "secondary" contact regions and the flanking region; in subtilisin BPN', the S1-3 and S4-6 sites and the flanking region.  相似文献   

13.
The specificity of alkaline mesentericopeptidase (a proteinase closely related to subtilisin BPN') for the C-terminal moiety of the peptide substrate (Pi' specificity) has been studied in both hydrolysis and aminolysis reactions. N-Anthraniloylated peptide p-nitroanilides as fluorogenic substrates and amino acid or peptide derivatives as nucleophiles were used in the enzymic peptide hydrolysis and synthesis. Both hydrolysis and aminolysis kinetic data suggest a stringent specificity of mesentericopeptidase and related subtilisins to glycine as P1' residue and predilection for bulky hydrophobic P2' residues. A synergism in the action of S1' and S2'subsites has been observed. It appears that glycine flanked on both sides by hydrophobic bulky amino acid residues is the minimal amino acid sequence for an effective subtilisin catalysis.  相似文献   

14.
Trypsin inhibitory activity from the hemolymph of the tobacco hornworm (Manduca sexta) was purified by affinity chromatography on immobilized trypsin and resolved into two fractions with molecular weights of 14,000 (M. sexta hemolymph trypsin inhibitor (HLTI) A) and 8,000 (HLTI B) by molecular sieve chromatography on Sephadex G-75. Electrophoresis of these inhibitors under reducing conditions on polyacrylamide gels gave molecular weight estimates of 8,300 for HLTI A and 9,100 for HLTI B, suggesting that HLTI A is a dimer and HLTI B is a monomer. Isoelectrofocusing on polyacrylamide gels focused HLTI A as a single band with pI 5.7, whereas HLTI B was resolved into two components with pI values of 5.3 and 7.1. Both inhibitors were stable at 100 degrees C and pH 1.0 for at least 30 min. HLTIs A and B inhibited serine proteases such as trypsin, chymotrypsin, and plasmin, but did not inhibit elastase, papain, pepsin, subtilisin BPN', and thermolysin. In fact, subtilisin BPN' completely inactivated both inhibitors. Both inhibitors formed low-dissociation complexes with trypsin in a 1:1 molar ratio. The inhibition constant for trypsin inhibition by HLTI A was estimated to be 1.45 x 10(-8) M. The HLTI A-chymotrypsin complex did not inhibit trypsin; similarly, the HLTI A-trypsin complex did not inhibit chymotrypsin, indicating that HLTI A has a common binding site for both trypsin and chymotrypsin. The amino-terminal amino acid sequences of HLTIs A and B revealed that both these inhibitors are homologous to bovine pancreatic trypsin inhibitor (Kunitz).  相似文献   

15.
A number of serine proteinases are secreted into the culture medium when Tritirachium album Limber is supplied with protein as the only nitrogen source. From this population of proteinases, we have isolated two novel proteolytic enzymes, designated as proteinase R and T. We have compared the thermal stability of these two proteinases with that of subtilisin BPN' and proteinase K. Both of these proteinases were thermally stable in the absence of detergents in buffers of low (4.0) and high (10.0) pH. The thermal stability of proteinase T was not affected by the presence of 1.0% SDS either at pH 8.0 or 10.0 in contrast to proteinase R which became heat labile. At low pH, the presence of SDS was detrimental to the stability of all the proteinases.  相似文献   

16.
It has been shown that the P1 site (the center of the reactive site) of protease inhibitors corresponds to the specificity of the cognate protease, and consequently specificity of Streptomyces subtilisin inhibitor (SSI) can be altered by substitution of a single amino acid at the P1 site. In this paper, to investigate whether similar correlation between inhibitory activity of mutated SSI and substrate preference of protease is observed for subtilisin BPN', which has broad substrate specificity, a complete set of mutants of SSI at the reaction site P1 (position 73) was constructed by cassette and site-directed mutagenesis and their inhibitory activities toward subtilisin BPN' were measured. Mutated SSIs which have a polar (Ser, Thr, Gln, Asn), basic (Lys, Arg), or aromatic amino acid (Tyr, Phe, Trp, His), or Ala or Leu, at the P1 site showed almost the same strong inhibitory activity toward subtilisin as the wild type (Met) SSI. However, the inhibitory activity of SSI variants with an acidic (Glu, Asp), or a beta-branched aliphatic amino acid (Val, Ile), or Gly or Pro, at P1 was decreased. The values of the inhibitor constant (Ki) of mutated SSIs toward subtilisin BPN' were consistent with the substrate preference of subtilisin BPN'. A linear correlation was observed between log(1/Ki) of mutated SSIs and log(1/Km) of synthetic substrates. These results demonstrate that the inhibitory activities of P1 site mutants of SSI are linearly related to the substrate preference of subtilisin BPN', and indicate that the binding mode of the inhibitors with the protease may be similar to that of substrates, as in the case of trypsin and chymotrypsin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Bacillus sp. strain DJ-4, which produces extracellular proteases, was screened from Doen-Jang, a traditional Korean fermented food. A fibrinolytic enzyme (subtilisin DJ-4) was purified using commercial chromatographic techniques. The relative molecular mass of the isolated protein was 29 kDa by SDS-PAGE and fibrin zymography assay. The enzyme was characterized as a serine protease by an inhibitor assay on the fibrin zymography gel and by an amidolytic assay using a chromogenic substrate. The enzyme was inhibited by PMSF, but not by EDTA or leupeptin. The first 14 amino acids of the N-terminal sequence were identical to that of subtilisin BPN', but the activity of subtilisin DJ-4 was 2.2 and 4.3 times higher than those of subtilisin BPN' and subtilisin Carlsberg, respectively.  相似文献   

18.
The structural gene for a subtilisin J from Bacillus stearothermophilus NCIMB10278 was cloned in Bacillus subtilis using pZ124 as a vector, and its nucleotide sequence was determined. The nucleotide sequence revealed only one large open reading frame, composed of 1,143 base pairs and 381 amino acid residues. A Shine-Dalgarno sequence was found 8 bp upstream from the translation start site (GTG). The deduced amino acid sequence revealed an N-terminal signal peptide and pro-peptide of 106 residues followed by the mature protein comprised of 275 residues. The productivity of subtilisin in the culture broth of the Bacillus subtilis was about 46-fold higher than that of the Bacillus stearothermophilus. The amino acid sequence of the extracellular alkaline protease subtilisin J is highly homologous to that of subtilisin E and it shows 69% identity with subtilisin Carlsberg, 89% with subtilisin BPN' and 70% with subtilisin DY. Some properties of the subtilisin J that had been purified from the Bacillus subtilis were examined. The subtilisin J has alkaline pH characteristics and a molecular weight of 27,500. It retains about 50% of its activity even after treatment at 60 degrees C for 30 min in the presence of 2 mM calcium chloride.  相似文献   

19.
A weak Ca2+ binding site in the bacterial serine protease subtilisin BPN' (EC 3.4.21.14) was chosen as a model to explore the feasibility of stabilizing a protein by increasing the binding affinity at a metal ion binding site. The existence of this weak Ca2+ binding site was first discovered through a study of the rate of thermal inactivation of wild-type subtilisin BPN' at 65 degrees C as a function of the free [Ca2+]. Increasing the [Ca2+] in the range 0.10-100 mM caused a 100-fold decrease in the rate of thermal inactivation. The data were found to closely fit a theoretical titration curve for a single Ca2+ specific binding site with an apparent log Ka = 1.49. A series of refined X-ray crystal structures (R less than or equal to 0.15, 1.7 A) of subtilisin in the presence of 0.0, 25.0, and 40.0 mM CaCl2 has allowed a detailed structural characterization of this Ca2+ binding site. Negatively charged side chains were introduced in the vicinity of the bound Ca2+ by changing Pro 172 and Gly 131 to Asp residues through site-directed and random mutagenesis techniques, respectively. These changes were found to increase the affinity of the Ca2+ binding site by 3.4- and 2-fold, respectively, when compared with the wild-type protein (ionic strength = 0.10). X-ray studies of these new variants of subtilisin revealed the carboxylate side chains to be 6.8 and 13.2 A, respectively, from the bound Ca2+. These distances and the degree of enhanced binding are consistent with simple electrostatic theory.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Peptide substrates of the general structure acetyl-Alan (n = 2-5), acetyl-Pro-Ala-Pro-Phe-Alan-NH2 (n = 0-3), and acetyl-Pro-Ala-Pro-Phe-AA-NH2 (AA = various amino acids) were synthesized and used to investigate the enzyme-substrate interactions of the microbial serine proteases thermitase, subtilisin BPN', and proteinase K on the C-terminal side of the scissile bond. The elongation of the substrate peptide chain up to the second amino acid on the C-terminal side (P'2) enhances the hydrolysis rate of thermitase and subtilisin BPN', whereas for proteinase K an additional interaction with the third amino acid (P'3) is possible. The enzyme subsite S'1 specificity of the proteases investigated is very similar. With respect to kcat/Km values small amino acid residues such as Ala and Gly are favored in this position. Bulky residues such as Phe and Leu were hydrolyzed to a lower extent. Proline in P'1 abolishes the hydrolysis of the substrates. Enzyme-substrate interactions on the C-terminal side of the scissile bond appear to affect kcat more than Km for all three enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号