首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oriented-sample NMR (OS-NMR) has emerged as a powerful tool for the structure determination of membrane proteins in their physiological environments. However, the traditional spectroscopic assignment method in OS NMR that uses the ??shotgun?? approach, though effective, is quite labor- and time-consuming as it is based on the preparation of multiple selectively labeled samples. Here we demonstrate that, by using a combination of the spin exchange under mismatched Hartmann-Hahn conditions and a recent sensitivity-enhancement REP-CP sequence, spectroscopic assignment of solid-state NMR spectra of Pf1 coat protein reconstituted in magnetically aligned bicelles can be significantly improved. This method yields a two-dimensional spin-exchanged version of the SAMPI4 spectrum correlating the 15N chemical shift and 15N?C1H dipolar couplings, as well as spin-correlations between the (i, i?±?1) amide sites. Combining the spin-exchanged SAMPI4 spectrum with the original SAMPI4 experiment makes it possible to establish sequential assignments, and this technique is generally applicable to other uniaxially aligned membrane proteins. Inclusion of an 15N?C15N correlation spectrum into the assignment process helps establish correlations between the peaks in crowded or ambiguous spectral regions of the spin-exchanged SAMPI4 experiment. Notably, unlike the traditional method, only a uniformly labeled protein sample is required for spectroscopic assignment with perhaps only a few selectively labeled ??seed?? spectra. Simulations for the magnetization transfer between the dilute spins under mismatched Hartmann Hahn conditions for various B 1 fields have also been performed. The results adequately describe the optimal conditions for establishing the cross peaks, thus eliminating the need for lengthy experimental optimizations.  相似文献   

2.
One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly (13C/15N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.  相似文献   

3.
Oriented sample solid-state NMR spectroscopy can be used to determine the three-dimensional structures of membrane proteins in magnetically or mechanically aligned lipid bilayers. The bottleneck for applying this technique to larger and more challenging proteins is making resonance assignments, which is conventionally accomplished through the preparation of multiple selectively isotopically labeled samples and performing an analysis of residues in regular secondary structure based on Polarity Index Slant Angle (PISA) Wheels and Dipolar Waves. Here we report the complete resonance assignment of the full-length mercury transporter, MerF, an 81-residue protein, which is challenging because of overlapping PISA Wheel patterns from its two trans-membrane helices, by using a combination of solid-state NMR techniques that improve the spectral resolution and provide correlations between residues and resonances. These techniques include experiments that take advantage of the improved resolution of the MSHOT4-Pi4/Pi pulse sequence; the transfer of resonance assignments through frequency alignment of heteronuclear dipolar couplings, or through dipolar coupling correlated isotropic chemical shift analysis; 15N/15N dilute spin exchange experiments; and the use of the proton-evolved local field experiment with isotropic shift analysis to assign the irregular terminal and loop regions of the protein, which is the major “blind spot” of the PISA Wheel/Dipolar Wave method.  相似文献   

4.
This study reports the sequence specific chemical shifts assignments for 76 residues of the 94 residues containing monomeric unit of the photosynthetic light-harvesting 2 transmembrane protein complex from Rhodopseudomonas acidophila strain 10050, using Magic Angle Spinning (MAS) NMR in combination with extensive and selective biosynthetic isotope labeling methods. The sequence specific chemical shifts assignment is an essential step for structure determination by MAS NMR. Assignments have been performed on the basis of 2-dimensional proton-driven spin diffusion 13C–13C correlation experiments with mixing times of 20 and 500 ms and band selective 13C–15N correlation spectroscopy on a series of site-specific biosynthetically labeled samples. The decreased line width and the reduced number of correlation signals of the selectively labeled samples with respect to the uniformly labeled samples enable to resolve the narrowly distributed correlation signals of the backbone carbons and nitrogens involved in the long -helical transmembrane segments. Inter-space correlations between nearby residues and between residues and the labeled BChl a cofactors, provided by the 13C–13C correlation experiments using a 500 ms spin diffusion period, are used to arrive at sequence specific chemical shift assignments for many residues in the protein complex. In this way it is demonstrated that MAS NMR methods combined with site-specific biosynthetic isotope labeling can be used for sequence specific assignment of the NMR response of transmembrane proteins.  相似文献   

5.
Xiao  Hang  Zhang  Zhengfeng  Zhao  Yongxiang  Yang  Jun 《Journal of biomolecular NMR》2021,75(4-5):193-202

Spectral editing is crucial to simplify the crowded solid-state NMR spectra of proteins. New techniques are introduced to edit 13C-13C correlations of uniformly labeled proteins under moderate magic-angle spinning (MAS), based on our recent frequency-selective homonuclear recoupling sequences [Zhang et al., J. Phys. Chem. Lett. 2020, 11, 8077–8083]. The signals of alanine, serine, or threonine residues are selected out by selective 13Cα-13Cβ double-quantum filtering (DQF). The 13Cα-13Cβ correlations of alanine residues are selectively established with efficiency up to?~?1.8 times that by dipolar-assisted rotational resonance (DARR). The techniques are shown in 2D/3D NCCX experiments and applied to the uniformly 13C, 15N labeled Aquaporin Z (AqpZ) membrane protein, demonstrating their potential to simplify spectral analyses in biological solid-state NMR.

  相似文献   

6.
Obtaining NMR assignments for slowly tumbling molecules such as detergent-solubilized membrane proteins is often compromised by low sensitivity as well as spectral overlap. Both problems can be addressed by amino-acid specific isotope labeling in conjunction with 15N–1H correlation experiments. In this work an extended combinatorial selective in vitro labeling scheme is proposed that seeks to reduce the number of samples required for assignment. Including three different species of amino acids in each sample, 15N, 1-13C, and fully 13C/15N labeled, permits identification of more amino acid types and sequential pairs than would be possible with previously published combinatorial methods. The new protocol involves recording of up to five 2D triple-resonance experiments to distinguish the various isotopomeric dipeptide species. The pattern of backbone NH cross peaks in this series of spectra adds a new dimension to the combinatorial grid, which otherwise mostly relies on comparison of [15N, 1H]–HSQC and possibly 2D HN(CO) spectra of samples with different labeled amino acid compositions. Application to two α-helical membrane proteins shows that using no more than three samples information can be accumulated such that backbone assignments can be completed solely based on 3D HNCA/HN(CO)CA experiments. Alternatively, in the case of severe signal overlap in certain regions of the standard suite of triple-resonance spectra acquired on uniformly labeled protein, or missing signals due to a lack of efficiency of 3D experiments, the remaining gaps can be filled.  相似文献   

7.
A pulse sequence that yields three-dimensional 1H chemical shift / 1H-15N heteronuclear dipolar coupling / 15N chemical shift solid-state NMR spectra is demonstrated on a uniformly 15N labeled membrane protein in magnetically aligned phospholipid bilayers. Based on SAMPI4, the pulse sequence yields high resolution in all three dimensions at a 1H resonance frequency of 900 MHz with the relatively low rf field strength (33 kHz) available for a lossy aqueous sample with a commercial spectrometer and probe. The 1H chemical shift frequency dimension is shown to select among amide resonances, which will be useful in studies of larger polytopic membrane proteins where the resonances overlap in two-dimensional spectra. Moreover, the 1H chemical shift, which can be measured from these spectra, provides an additional orientationally dependent frequency as input for structure calculations. Both Alexander A. Nevzorov and Sang Ho Park contributed equally to this work.  相似文献   

8.
Several techniques for spectral editing of 2D 13C?C13C correlation NMR of proteins are introduced. They greatly reduce the spectral overlap for five common amino acid types, thus simplifying spectral assignment and conformational analysis. The carboxyl (COO) signals of glutamate and aspartate are selected by suppressing the overlapping amide N?CCO peaks through 13C?C15N dipolar dephasing. The sidechain methine (CH) signals of valine, lecuine, and isoleucine are separated from the overlapping methylene (CH2) signals of long-chain amino acids using a multiple-quantum dipolar transfer technique. Both the COO and CH selection methods take advantage of improved dipolar dephasing by asymmetric rotational-echo double resonance (REDOR), where every other ??-pulse is shifted from the center of a rotor period tr by about 0.15 tr. This asymmetry produces a deeper minimum in the REDOR dephasing curve and enables complete suppression of the undesired signals of immobile segments. Residual signals of mobile sidechains are positively identified by dynamics editing using recoupled 13C?C1H dipolar dephasing. In all three experiments, the signals of carbons within a three-bond distance from the selected carbons are detected in the second spectral dimension via 13C spin exchange. The efficiencies of these spectral editing techniques range from 60?% for the COO and dynamic selection experiments to 25?% for the CH selection experiment, and are demonstrated on well-characterized model proteins GB1 and ubiquitin.  相似文献   

9.
YbeA is a 3-methylpseudoridine methyltransferase from Escherichia coli that forms a stable homodimer in solution. It is one of the deeply trefoil 31 knotted proteins, of which the knot encompasses the C-terminal helix that threads through a long loop. Recent studies on the knotted protein folding pathways using YbeA have suggested that the protein knot remains present under chemically denaturing conditions. Here, we report 1H, 13C and 15N chemical shift assignments for urea-denatured YbeA, which will serve as the basis for further structural characterisations using solution state NMR spectroscopy with paramagnetic spin labeled and partial alignment media.  相似文献   

10.
The integral polytopic membrane protein TSPO is the target for numerous endogenous and synthetic ligands. However, the affinity of many ligands is influenced by a common polymorphism in TSPO, in which an alanine at position 147 is replaced by threonine, thereby complicating the use of several radioligands for clinical diagnosis. In contrast, the best-characterized TSPO ligand (R)-PK11195 binds with similar affinity to both variants of mitochondrial TSPO (wild-type and A147T variant). Here we report the 1H, 13C, 15N backbone and side-chain resonance assignment of the A147T polymorph of TSPO from Mus Musculus in complex with (R)-PK11195 in DPC detergent micelles. More than 90 % of all resonances were sequence-specifically assigned, demonstrating the ability to obtain high-quality spectral data for both the backbone and the side-chains of medically relevant integral membrane proteins.  相似文献   

11.
Magic-angle spinning solid-state NMR (MAS SSNMR) represents a fast developing experimental technique with great potential to provide structural and dynamics information for proteins not amenable to other methods. However, few automated analysis tools are currently available for MAS SSNMR. We present a methodology for automating protein resonance assignments of MAS SSNMR spectral data and its application to experimental peak lists of the β1 immunoglobulin binding domain of protein G (GB1) derived from a uniformly 13C- and 15N-labeled sample. This application to the 56 amino acid GB1 produced an overall 84.1% assignment of the N, CO, CA, and CB resonances with no errors using peak lists from NCACX 3D, CANcoCA 3D, and CANCOCX 4D experiments. This proof of concept demonstrates the tractability of this problem.  相似文献   

12.
Magic-angle-spinning solid-state 13C NMR spectroscopy is useful for structural analysis of non-crystalline proteins. However, the signal assignments and structural analysis are often hampered by the signal overlaps primarily due to minor structural heterogeneities, especially for uniformly-13C,15N labeled samples. To overcome this problem, we present a method for assigning 13C chemical shifts and secondary structures from unresolved two-dimensional 13C–13C MAS NMR spectra by spectral fitting, named reconstruction of spectra using protein local structures (RESPLS). The spectral fitting was conducted using databases of protein fragmented structures related to 13Cα, 13Cβ, and 13C′ chemical shifts and cross-peak intensities. The experimental 13C–13C inter- and intra-residue correlation spectra of uniformly isotope-labeled ubiquitin in the lyophilized state had a few broad peaks. The fitting analysis for these spectra provided sequence-specific Cα, Cβ, and C′ chemical shifts with an accuracy of about 1.5 ppm, which enabled the assignment of the secondary structures with an accuracy of 79 %. The structural heterogeneity of the lyophilized ubiquitin is revealed from the results. Test of RESPLS analysis for simulated spectra of five different types of proteins indicated that the method allowed the secondary structure determination with accuracy of about 80 % for the 50–200 residue proteins. These results demonstrate that the RESPLS approach expands the applicability of the NMR to non-crystalline proteins exhibiting unresolved 13C NMR spectra, such as lyophilized proteins, amyloids, membrane proteins and proteins in living cells.  相似文献   

13.
Solid‐state NMR‐based structure determination of membrane proteins and large protein complexes faces the challenge of limited spectral resolution when the proteins are uniformly 13C‐labeled. A strategy to meet this challenge is chemical ligation combined with site‐specific or segmental labeling. While chemical ligation has been adopted in NMR studies of water‐soluble proteins, it has not been demonstrated for membrane proteins. Here we show chemical ligation of the influenza M2 protein, which contains a transmembrane (TM) domain and two extra‐membrane domains. The cytoplasmic domain, which contains an amphipathic helix (AH) and a cytoplasmic tail, is important for regulating virus assembly, virus budding, and the proton channel activity. A recent study of uniformly 13C‐labeled full‐length M2 by spectral simulation suggested that the cytoplasmic tail is unstructured. To further test this hypothesis, we conducted native chemical ligation of the TM segment and part of the cytoplasmic domain. Solid‐phase peptide synthesis of the two segments allowed several residues to be labeled in each segment. The post‐AH cytoplasmic residues exhibit random‐coil chemical shifts, low bond order parameters, and a surface‐bound location, thus indicating that this domain is a dynamic random coil on the membrane surface. Interestingly, the protein spectra are similar between a model membrane and a virus‐mimetic membrane, indicating that the structure and dynamics of the post‐AH segment is insensitive to the lipid composition. This chemical ligation approach is generally applicable to medium‐sized membrane proteins to provide site‐specific structural constraints, which complement the information obtained from uniformly 13C, 15N‐labeled proteins.  相似文献   

14.
The comprehensive structure determination of isotopically labeled proteins by solid-state NMR requires sequence-specific assignment of 13C and 15 N spectra. We describe several 2D and 3D MAS correlation techniques for resonance assignment and apply them, at 7.0 Tesla, to 13C and 15N labeled ubiquitin to examine the extent of resonance assignments in the solid state. Both interresidue and intraresidue assignments of the 13C and 15N resonances are addressed. The interresidue assignment was carried out by an N(CO)CA technique, which yields Ni-Ci–1 connectivities in protein backbones via two steps of dipolar-mediated coherence transfer. The intraresidue connectivities were obtained from a new 3D NCACB technique, which utilizes the well resolved C chemical shift to distinguish the different amino acids. Additional amino acid type assignment was provided by a 13C spin diffusion experiment, which exhibits 13C spin pairs as off-diagonal intensities in the 2D spectrum. To better resolve carbons with similar chemical shifts, we also performed a dipolar-mediated INADEQUATE experiment. By cross-referencing these spectra and exploiting the selective and extensive 13 C labeling approach, we assigned 25% of the amino acids in ubiquitin sequence-specifically and 47% of the residues to the amino acid types. The sensitivity and resolution of these experiments are evaluated, especially in the context of the selective and extensive 13C labeling approach.  相似文献   

15.
Complete 13C and 15N assignments of the B3 IgG-binding domain of protein G (GB3) in the microcrystalline solid phase, obtained using 2D and 3D MAS NMR, are presented. The chemical shifts are used to predict the protein backbone conformation and compared with solution-state shifts. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273–6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i – 1) and 15NH(i) result only for pairs of sequentially adjacent amino acids of which the first is labeled with 13C and the second with 15N. In this way, unambiguous sequence-specific assignments can be obtained for unique pairs of amino acids that occur exactly once in the sequence of the protein. To be practical, it is crucial to limit the number of differently labeled protein samples that have to be prepared while obtaining an optimal extent of labeled unique amino acid pairs. Our computer algorithm UPLABEL for optimal unique pair labeling, implemented in the program CYANA and in a standalone program, and also available through a web portal, uses combinatorial optimization to find for a given amino acid sequence labeling patterns that maximize the number of unique pair assignments with a minimal number of differently labeled protein samples. Various auxiliary conditions, including labeled amino acid availability and price, previously known partial assignments, and sequence regions of particular interest can be taken into account when determining optimal amino acid type-specific labeling patterns. The method is illustrated for the assignment of the human G-protein coupled receptor bradykinin B2 (B2R) and applied as a starting point for the backbone assignment of the membrane protein proteorhodopsin.  相似文献   

17.
Anabaena Sensory Rhodopsin (ASR) is a unique microbial rhodopsin that displays photocromism, interacts with soluble transducer, and may be involved in gene regulation. Here we report nearly complete spectroscopic 13C and 15N assignments of ASR reconstituted in lipids, obtained using two- and three-dimensional magic angle spinning solid state NMR spectroscopy on alternately 13C labeled samples. The obtained chemical shifts are used to characterize the protein backbone conformation. They suggest that lipid-reconstituted ASR has a fold generally similar to that seen in earlier X-ray studies, but with a number of important differences. SSNMR detects double conformations for a number of residues on the cytoplasmic side.  相似文献   

18.
Three solution NMR experiments on a uniformly 15N labeled membrane protein in micelles provide sufficient information to describe the structure, topology, and dynamics of its helices, as well as additional information that characterizes the principal features of residues in terminal and inter-helical loop regions. The backbone amide resonances are assigned with an HMQC-NOESY experiment and the backbone dynamics are characterized by a 1H-15N heteronuclear NOE experiment, which clearly distinguishes between the structured helical residues and the more mobile residues in the terminal and interhelical loop regions of the protein. The structure and topology of the helices are described by Dipolar waves and PISA wheels derived from experimental measurements of residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs). The results show that the membrane-bound form of Pf1 coat protein has a 20-residue trans-membrane hydrophobic helix with an orientation that differs by about 90° from that of an 8-residue amphipathic helix. This combination of three-experiments that yields Dipolar waves and PISA wheels has the potential to contribute to high-throughput structural characterizations of membrane proteins.  相似文献   

19.
LolA is an essential periplasmic protein in Gram-negative bacteria and plays a role in transporting lipoproteins through periplasmic space from the inner to the outer membrane. We established backbone resonance assignments of 2H/13C/15N labeled LolA from Escherichia coli.  相似文献   

20.
Raf-1 kinase inhibitor protein (RKIP) plays a pivotal role in modulating multiple signaling networks. Here we report backbone and side chain resonance assignments of uniformly 15N, 13C labeled human RKIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号