首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The WW module of the peptidyl-prolyl cis/trans isomerase Pin1 targets specifically phosphorylated proteins involved in the cell cycle through the recognition of phospho-Thr(Ser)-Pro motifs. When the microtubule-associated Tau protein becomes hyperphosphorylated, it equally becomes a substrate for Pin1, with two recognition sites described around the phosphorylated Thr212 and Thr231. The Pin1 WW domain binds both sites with moderate affinity, but only the Thr212-Pro213 bond is isomerized by the catalytic domain of Pin1. We show here that, in a peptide carrying a single recognition site, the WW module increases significantly the enzymatic isomerase activity of Pin1. However, with addition of a second recognition motif, the affinity of both the WW and catalytic domain for the substrate increases, but the isomerization efficacy decreases. We therefore conclude that the WW domain can act as a negative regulator of enzymatic activity when multiple phosphorylation is present, thereby suggesting a subtle mechanism of its functional regulation.  相似文献   

2.
Phosphoserine-binding modules help determine the specificity of signal transduction events. One such module, the group IV WW domain, plays an essential role in targeting the phosphorylation-specific prolyl isomerase Pin1 to its substrates. These modules require Ser/Thr phosphorylation of their ligands for binding activity. However, phosphorylation of these modules and its functional significance have not been described, nor is it known whether the function of Pin1 is regulated. Here we show that Pin1 WW domain is phosphorylated on Ser(16) both in vitro and in vivo. Further, this phosphorylation regulates the ability of the WW domain to mediate Pin1 substrate interaction and cellular localization. Moreover, both Pin1 and WW domain mutants refractory to Ser(16) phosphorylation act as dominant-negative mutants to induce mitotic block and apoptosis and increase multinucleated cells with 8 N DNA content. Thus, phosphorylation is a new mechanism critical for regulating WW domain phosphoserine binding activity and Pin1 function.  相似文献   

3.
The interaction between the neuronal Tau protein and the Pin1 prolyl cis/trans-isomerase is dependent on the phosphorylation state of the former. The interaction site was mapped to the unique phospho-Thr231-Pro232 motif, despite the presence of many other Thr/Ser-Pro phosphorylation sites in Tau and structural evidence that the interaction site does not significantly extend beyond those very two residues. We demonstrate here by NMR and fluorescence mapping that the Alzheimer's disease specific epitope centered around the phospho-Thr212-Pro213 motif is also an interaction site, and that the sole phospho-Thr-Pro motif is already sufficient for interaction. Because a detectable fraction of the Pro213 amide bond in the peptide centered around the phospho-Thr212-Pro213 motif is in the cis conformation, catalysis of the isomerization by the catalytic domain of Pin1 could be investigated via NMR spectroscopy.  相似文献   

4.
Pin1 is a prolyl isomerase that recognizes phosphorylated Ser/Thr-Pro sites, and phosphatase inhibitor-2 (I-2) is phosphorylated during mitosis at a PSpTP site that is expected to be a Pin1 substrate. However, we previously discovered I-2, but not phospho-I-2, bound to Pin1 as an allosteric modifier of Pin1 substrate specificity [Li, M., et al. (2008) Biochemistry 47, 292]. Here, we use binding assays and NMR spectroscopy to map the interactions on Pin1 and I-2 to elucidate the organization of this complex. Despite having sequences that are ~50% identical, human, Xenopus, and Drosophila I-2 proteins all exhibited identical, saturable binding to GST-Pin1 with K(0.5) values of 0.3 μM. The (1)H-(15)N heteronuclear single-quantum coherence spectra for both the WW domain and isomerase domain of Pin1 showed distinctive shifts upon addition of I-2. Conversely, as shown by NMR spectroscopy, specific regions of I-2 were affected by addition of Pin1. A single-residue I68A substitution in I-2 weakened binding to Pin1 by half and essentially eliminated binding to the isolated WW domain. On the other hand, truncation of I-2 to residue 152 had a minimal effect on binding to the WW domain but eliminated binding to the isomerase domain. Size exclusion chromatography revealed that wild-type I-2 and Pin1 formed a large (>300 kDa) complex and I-2(I68A) formed a complex of half the size that we propose are a heterotetramer and a heterodimer, respectively. Pin1 and I-2 are conserved among eukaryotes from yeast to humans, and we propose they make up an ancient partnership that provides a means for regulating Pin1 specificity and function.  相似文献   

5.
6.
Inhibitor-2 (I-2) is the most ancient protein that selectively recognizes type-1 protein phosphatase and is phosphorylated by CDK1-cyclinB during mitosis at Thr72 in a conserved PXTP site. Pin1 is a peptide prolyl cis/trans isomerase conserved among eukaryotes that specifically reacts with proteins phosphorylated at Ser/Thr-Pro sites. We tested phospho-T72-I-2 as a substrate for Pin1 and discovered that unphosphorylated I-2 bound Pin1 with micromolar affinity and phosphorylation of the PXTP site or truncation of I-2 reduced binding 10-fold. Ectopic Pin1 coprecipitated endogenous I-2 and ectopic I-2 coprecipitated endogenous Pin1, but only in the absence of detergents, which may account for the interaction not being detected previously. Endogenous I-2 and Pin1 colocalized in HeLa cells and showed nuclear-cytoplasmic redistribution in response to cell density, suggestive of their association in living cells. Recombinant Pin1 binding to different phosphoproteins in mitotic cell extracts was modulated by I-2, and binding to individual mitotic phosphoproteins was increased, decreased or unaffected by I-2, showing that I-2 allosterically modifies Pin1 specificity. This was confirmed by mutation of Ser16 to Ala in the Pin1 WW domain that eliminated I-2 binding and abrogated I-2 effects on Pin1 binding to different phosphoproteins. A S16E mutation to mimic Pin1 phosphorylation restored binding to both I-2 and phospho-T72-I-2, indicating that phosphorylation of both proteins governs their interaction. The results reveal a novel function for I-2, and suggest phosphorylation-dependent regulation of Pin1 specificity during entry and exit of mitosis, in other phases of the cell cycle, and in multiple cell signaling processes.  相似文献   

7.
Phosphorylation of Tau by the protein kinase GSK-3β was monitored by electrochemical impedance spectroscopy of immobilized Tau on gold surfaces. As a result of Tau phosphorylation, the film resistance decreases significantly due to conformational changes and reorganization of the immobilized phosphorylated Tau (pTau) protein, which in turn enables the interactions of pTau with the peptidyl-prolyl cis/trans isomerase, Pin1. Interactions are specific to phospho-Ser (pSer) and phospho-Thr (pThr) residues of pTau. Impedance changes occurred as a function of pTau?Pin1 interactions and are related to the amount of Pin1 bound, which resulted in an increase of the charge-transfer resistance, R(CT) . Our results clearly indicate that the isomerase Pin1 interacts favorably with pSer/pThr-Pro residues in Tau, but does not bind non-phosphorylated Tau or phospho-Tyr residues in Tau films. Our study demonstrates the utility of electrochemical impedance studies to probe protein modifications and biomolecular interactions.  相似文献   

8.
Pin1 is a peptidyl-prolyl cis/trans isomerase (PPIase) essential for cell cycle regulation. Pin1-catalyzed peptidyl-prolyl isomerization provides a key conformational switch to activate phosphorylation sites with the common phospho-Ser/Thr-Pro sequence motif. This motif is ubiquitously exploited in cellular response to a variety of signals. Pin1 is able to bind phospho-Ser/Thr-Pro-containing sequences at two different sites that compete for the same substrate. One binding site is located within the N-terminal WW domain, which is essential for protein targeting and localization. The other binding site is located in the C-terminal catalytic domain, which is structural homologous to the FK506-binding protein (FKBP) class of PPIases. A flexible linker of 12 residues connects the WW and catalytic domain. To characterize the structure and dynamics of full-length Pin1 in solution, high resolution NMR methods have been used to map the nature of interactions between the two domains of Pin1. In addition, the influence of target peptides on domain interactions has been investigated. The studies reveal a dynamic picture of the domain interactions. 15N spin relaxation data, differential chemical shift mapping, and residual dipolar coupling data indicate that Pin1 can either behave as two independent domains connected by the flexible linker or as a single intact domain with some amount of hinge bending motion depending on the sequence of the bound peptide. The functional importance of the modulation of relative domain flexibility in light of the multitude of interaction partners of Pin1 is discussed.  相似文献   

9.
Binding of the Cdc25c-T48 ligand to PinA from Aspergillus nidulans has been characterised by the identification of 15N and 1H resonances from 1H-15N HSQC NMR titration experiments using previous backbone assignments. It is shown that the binding site for the Cdc25c-T48 ligand with PinA is the same as in the mammalian protein Pin1, although with a reduced binding affinity. It had previously been proposed that the arginine residue (R17) in the loop I region of the Pin1 WW domain is essential for binding to the pSer/pThr-Pro motifs of phosphorylated ligands such as Cdc25c. In PinA, a fungal homologue of Pin1, the arginine residue (R17) is replaced with an asparagine residue (N17). The effect of substitution of R17 by N17 in Pin1 has been investigated via a computational study, which predicted that changing R17 to N17 in Pin1 lowers the ligand binding affinity as a result of reduced hydrogen bonding between the protein and the phosphate group of the ligand.  相似文献   

10.
Phosphorylation of the microtubule-associated Tau protein plays a major role in the regulation of its activity of tubulin polymerization and/or stabilization of microtubule assembly. A dysregulation of the phosphorylation/dephosphorylation balance leading to the hyperphosphorylation of Tau proteins in neurons is thought to favor their aggregation into insoluble filaments. This in turn might underlie neuronal death as encountered in many neurodegenerative disorders, including Alzheimer's disease. Another post-translational modification, the O-linked β-N-acetylglucosaminylation (O-GlcNAcylation), controls the phosphorylation state of Tau, although the precise mechanism is not known. Moreover, analytical difficulties have hampered the precise localization of the O-GlcNAc sites on Tau, except for the S400 site that was very recently identified on the basis of ETD-FT-MS. Here, we identify three O-GlcNAc sites by screening a library of small peptides sampling the proline-rich, the microtubule-associated repeats and the carboxy-terminal domains of Tau as potential substrates for the O-β-N-acetylglucosaminyltransferase (OGT). The in vitro activity of the nucleocytoplasmic OGT was assessed by tandem mass spectrometry and NMR spectroscopy. Using phosphorylated peptides, we establish the relationship between phosphate and O-GlcNAc incorporation at these sites. Phosphorylation of neighboring residues S396 and S404 was found to decrease significantly S400 O-GlcNAcylation. Reciprocally, S400 O-GlcNAcylation reduces S404 phosphorylation by the CDK2/cyclinA3 kinase and interrupts the GSK3β-mediated sequential phosphorylation process.  相似文献   

11.
Human Pin1 is a peptidyl prolyl cis/trans isomerase with a unique preference for phosphorylated Ser/Thr-Pro substrate motifs.Here we report that MCM3 (minichromosome maintenance complex component 3) is a novel target of Pin1. MCM3 interacts directly with the WW domain of Pin1. Proline-directed phosphorylation of MCM3 at S112 and T722 are crucial for the interaction with Pin1. MCM3 as a subunit of the minichromosome maintenance heterocomplex MCM2–7 is part of the pre-replication complex responsible for replication licensing and is implicated in the formation of the replicative helicase during progression of replication. Our data suggest that Pin1 coordinates phosphorylation-dependently MCM3 loading onto chromatin and its unloading from chromatin, thereby mediating S phase control.  相似文献   

12.
Phosphorylation of the neuronal Tau protein is implicated in both the regulation of its physiological function of microtubule stabilization and its pathological propensity to aggregate into the fibers that characterize Alzheimer's diseased neurons. However, how specific phosphorylation events influence both aspects of Tau biology remains largely unknown. In this study, we address the structural impact of phosphorylation of the Tau protein by Nuclear Magnetic Resonance (NMR) spectroscopy on a functional fragment of Tau (Tau[Ser208–Ser324] = TauF4). TauF4 was phosphorylated by the proline‐directed CDK2/CycA3 kinase on Thr231 (generating the AT180 epitope), Ser235, and equally on Thr212 and Thr217 in the Proline‐rich region (Tau[Ser208‐Gln244] or PRR). These modifications strongly decrease the capacity of TauF4 to polymerize tubulin into microtubules. While all the NMR parameters are consistent with a globally disordered Tau protein fragment, local clusters of structuration can be defined. The most salient result of our NMR analysis is that phosphorylation in the PRR stabilizes a short α‐helix that runs from pSer235 till the very beginning of the microtubule‐binding region (Tau[Thr245‐Ser324] or MTBR of TauF4). Phosphorylation of Thr231/Ser235 creates a N‐cap with helix stabilizing role while phosphorylation of Thr212/Thr217 does not induce modification of the local transient secondary structure, showing that the stabilizing effect is sequence specific. Using paramagnetic relaxation experiments, we additionally show a transient interaction between the PRR and the MTBR, observed in both TauF4 and phospho‐TauF4. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

13.
The Polo-like kinase 1 (Plk1) is a key regulator of mitosis. It is reported that the human peptidyl-prolyl cis/trans-isomerase Pin1 binds to Plk1 from mitotic cell extracts in vitro. Here we demonstrate that Ser-65 in Pin1 is the major site for Plk1-specific phosphorylation, and the polo-box domain of Plk1 is required for this phosphorylation. Interestingly, the phosphorylation of Pin1 by Plk1 does not affect its isomerase activity but rather is linked to its protein stability. Pin1 is ubiquitinated in HeLa S3 cells, and substitution of Glu for Ser-65 reduces the ubiquitination of Pin1. Furthermore, inhibition of Plk1 activity by expression of a dominant negative form of Plk1 or by transfection of small interfering RNA targeted to Plk1 enhances the ubiquitination of Pin1 and subsequently reduces the amount of Pin1 in human cancer cells. Since previous reports suggested that Plk1 is a substrate of Pin1, our work adds a new dimension to this interaction of two important mitotic regulators.  相似文献   

14.
Neurodegenerative diseases associated with the pathological aggregation of microtubule-associated protein Tau are classified as tauopathies. Alzheimer disease, the most common tauopathy, is characterized by neurofibrillary tangles that are mainly composed of abnormally phosphorylated Tau. Similar hyperphosphorylated Tau lesions are found in patients with frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) that is induced by mutations within the tau gene. To further understand the etiology of tauopathies, it will be important to elucidate the mechanism underlying Tau hyperphosphorylation. Tau phosphorylation occurs mainly at proline-directed Ser/Thr sites, which are targeted by protein kinases such as GSK3β and Cdk5. We reported previously that dephosphorylation of Tau at Cdk5-mediated sites was enhanced by Pin1, a peptidyl-prolyl isomerase that stimulates dephosphorylation at proline-directed sites by protein phosphatase 2A. Pin1 deficiency is suggested to cause Tau hyperphosphorylation in Alzheimer disease. Up to the present, Pin1 binding was only shown for two Tau phosphorylation sites (Thr-212 and Thr-231) despite the presence of many more hyperphosphorylated sites. Here, we analyzed the interaction of Pin1 with Tau phosphorylated by Cdk5-p25 using a GST pulldown assay and Biacore approach. We found that Pin1 binds and stimulates dephosphorylation of Tau at all Cdk5-mediated sites (Ser-202, Thr-205, Ser-235, and Ser-404). Furthermore, FTDP-17 mutant Tau (P301L or R406W) showed slightly weaker Pin1 binding than non-mutated Tau, suggesting that FTDP-17 mutations induce hyperphosphorylation by reducing the interaction between Pin1 and Tau. Together, these results indicate that Pin1 is generally involved in the regulation of Tau hyperphosphorylation and hence the etiology of tauopathies.  相似文献   

15.
16.
Reversible protein phosphorylation is the most common and important regulatory modification of proteins. Litter is known about exactly how protein phosphorylation affects protein local conformation. This study explores the effect of phosphorylation on the local secondary structure of the peptide, which would have implications for understanding the structural properties of kinase targets since these consist of the amino acid sequences immediately adjacent to the phosphorylated site as well as the phosphorylated amino acid itself. To this end ten pentapeptides (five phosphorylated), which represent variations of the consensus sequence for the cyclic-AMP dependent protein kinase, were synthesized and studied using NMR spectroscopy. The NMR experiments with downfield shifts of these protons upon peptide phosphorylation as well as relatively low shifts upon a temperature change, are consistent with the existence of transient hydrogen bonds between the phosphate group on pSer4 and both the Arg1 εH and the pSer4 NH in a peptide of the sequence Ac-RKGpSS-NH2. Furthermore, pH titrations, which would be expected to deprotonate the phosphate, result in the expected upfield shift of pSer4 side chain resonances and also show a striking downfield shift of pSer4 NH compared with other NHs and also a downfield shift of Arg1 εH. Similar experimental observations were identified on Ac-RKGpTS-NH2 peptide, but not on Ac-RKGpYS-NH2 peptide. Conformational searches using a MCMM conformational modeling program resulted in peptide conformations within which these hydrogen bonds were formed. These findings point to a possible structural explanation for the effect of preceding Arg residues on the Ser and Thr phosphorylation specificity of protein kinases.  相似文献   

17.
18.
The NMR solution structure of the isolated Apo Pin1 WW domain (6-39) reveals that it adopts a twisted three-stranded antiparallel beta-sheet conformation, very similar to the structure exhibited by the crystal of this domain in the context of the two domain Pin1 protein. While the B factors in the apo x-ray crystal structure indicate that loop 1 and loop 2 are conformationally well defined, the solution NMR data suggest that loop 1 is quite flexible, at least in the absence of the ligand. The NMR chemical shift and nuclear Overhauser effect pattern exhibited by the 6-39 Pin1 WW domain has proven to be diagnostic for demonstrating that single site variants of this domain adopt a normally folded structure. Knowledge of this type is critical before embarking on time-consuming kinetic and thermodynamic studies required for a detailed understanding of beta-sheet folding.  相似文献   

19.
The peptidyl-prolyl isomerase Pin1 interacts in a phosphorylation-dependent manner with several proteins involved in cell cycle events. In this study, we demonstrate that Pin1 interacts with protein kinase CK2, an enzyme that generally exists in tetrameric complexes composed of two catalytic CK2 alpha and/or CK2 alpha' subunits together with two regulatory CK2 beta subunits. Our results indicate that Pin1 can interact with CK2 complexes that contain CK2 alpha. Furthermore, Pin1 can interact directly with the C-terminal domain of CK2 alpha that contains residues that are phosphorylated in vitro by p34(Cdc2) and in mitotic cells. Substitution of the phosphorylation sites of CK2 alpha with alanines resulted in decreased interactions between Pin1 and CK2. The other catalytic isoform of CK2, designated CK2 alpha', is not phosphorylated in mitotic cells and does not interact with Pin1, but a chimeric protein consisting of CK2 alpha' with the C terminus of CK2 alpha was phosphorylated in mitotic cells and interacts with Pin1, further implicating the phosphorylation sites in the interaction. In vitro, Pin1 inhibits the phosphorylation of Thr-1342 on human topoisomerase II alpha by CK2. Topoisomerase II alpha also interacts with Pin1 suggesting that the effect of Pin1 on the phosphorylation of Thr-1342 could result from its interactions with CK2 and/or topoisomerase II alpha. As compared with wild-type Pin1, isomerase-deficient and WW domain-deficient mutants of Pin1 are impaired in their ability to interact with CK2 and to inhibit the CK2-catalyzed phosphorylation of topoisomerase II alpha. Collectively, these results indicate that Pin1 and CK2 alpha interact and suggest a possible role for Pin1 in the regulation of topoisomerase II alpha. Furthermore, these results provide new insights into the functional role of the mitotic phosphorylation of CK2 and provide a new mechanism for selectively regulating the ability of CK2 to phosphorylate one of its mitotic targets.  相似文献   

20.
The functional impact of multisite protein phosphorylation can depend on both the numbers and the positions of phosphorylated sites—the global pattern of phosphorylation or ‘phospho‐form’—giving biological systems profound capabilities for dynamic information processing. A central problem in quantitative systems biology, therefore, is to measure the ‘phospho‐form distribution’: the relative amount of each of the 2n phospho‐forms of a protein with n‐phosphorylation sites. We compared four potential methods—western blots with phospho‐specific antibodies, peptide‐based liquid chromatography (LC) and mass spectrometry (MS; pepMS), protein‐based LC/MS (proMS) and nuclear magnetic resonance spectroscopy (NMR)—on differentially phosphorylated samples of the well‐studied mitogen‐activated protein kinase Erk2, with two phosphorylation sites. The MS methods were quantitatively consistent with each other and with NMR to within 10%, but western blots, while highly sensitive, showed significant discrepancies with MS. NMR also uncovered two additional phosphorylations, for which a combination of pepMS and proMS yielded an estimate of the 16‐member phospho‐form distribution. This combined MS strategy provides an optimal mixture of accuracy and coverage for quantifying distributions, but positional isomers remain a challenging problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号