首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccine adjuvants: current state and future trends   总被引:14,自引:0,他引:14  
The problem with pure recombinant or synthetic antigens used in modern day vaccines is that they are generally far less immunogenic than older style live or killed whole organism vaccines. This has created a major need for improved and more powerful adjuvants for use in these vaccines. With few exceptions, alum remains the sole adjuvant approved for human use in the majority of countries worldwide. Although alum is able to induce a good antibody (Th2) response, it has little capacity to stimulate cellular (Th1) immune responses which are so important for protection against many pathogens. In addition, alum has the potential to cause severe local and systemic side-effects including sterile abscesses, eosinophilia and myofascitis, although fortunately most of the more serious side-effects are relatively rare. There is also community concern regarding the possible role of aluminium in neurodegenerative diseases such as Alzheimer's disease. Consequently, there is a major unmet need for safer and more effective adjuvants suitable for human use. In particular, there is demand for safe and non-toxic adjuvants able to stimulate cellular (Th1) immunity. Other needs in light of new vaccine technologies are adjuvants suitable for use with mucosally-delivered vaccines, DNA vaccines, cancer and autoimmunity vaccines. Each of these areas are highly specialized with their own unique needs in respect of suitable adjuvant technology. This paper reviews the state of the art in the adjuvant field, explores future directions of adjuvant development and finally examines some of the impediments and barriers to development and registration of new human adjuvants.  相似文献   

2.
新型疫苗佐剂的研究进展   总被引:3,自引:0,他引:3  
与传统的灭活或活体疫苗相比,由基因工程重组抗原或化学合成多肽组成的现代疫苗往往存在免疫原性弱等问题,需要新型的免疫佐剂来增强其作用。尽管传统的铝盐佐剂是目前唯一全球公认的人用佐剂,但存在激发细胞免疫应答能力差等不足,因此,需要研发更为安全有效的人用新型佐剂,尤其是安全无毒、能够刺激较强细胞免疫应答的佐剂,以及适合粘膜疫苗、DNA疫苗和癌症疫苗的免疫佐剂。分析阐述了新型佐剂研究状况和佐剂发展方向,并进一步对新型佐剂的临床前和临床试验研究以及已批准上市的新型疫苗佐剂进行了综述。  相似文献   

3.
Advances in vaccine adjuvants.   总被引:21,自引:0,他引:21  
M Singh  D O'Hagan 《Nature biotechnology》1999,17(11):1075-1081
Currently, aluminum salts and MF59 are the only vaccine adjuvants approved for human use. With the development of new-generation vaccines (including recombinant subunit and mucosal vaccines) that are less immunogenic, the search for more potent vaccine adjuvants has intensified. Of the novel compounds recently evaluated in human trials, immunostimulatory molecules such as the lipopolysaccharide derived MPL and the saponin derivative QS21 appear most promising, although doubts have been raised as to their safety in humans. Preclinical work with particulate adjuvants, such as the MF59 microemulsion and lipid-particle immune-stimulating complexes (Iscoms), suggest that these molecules are also potent elicitors of humoral and cellular immune responses. In addition, preclinical data on CpG oligonucleotides appear to be encouraging, particularly with respect to their ability to selectively manipulate immune responses. While all these adjuvants show promise, further work is needed to better define the mechanisms of adjuvant action. Ultimately, the development of more potent adjuvants may allow vaccines to be used as therapeutic, rather than prophylactic, agents.  相似文献   

4.
《Biotechnology advances》2017,35(3):375-389
Traditional vaccination approaches (e.g. live attenuated or killed microorganisms) are among the most effective means to prevent the spread of infectious diseases. These approaches, nevertheless, have failed to yield successful vaccines against many important pathogens. To overcome this problem, methods have been developed to identify microbial components, against which protective immune responses can be elicited. Subunit antigens identified by these approaches enable the production of defined vaccines, with improved safety profiles. However, they are generally poorly immunogenic, necessitating their administration with potent immunostimulatory adjuvants. Since few safe and effective adjuvants are currently used in vaccines approved for human use, with those available displaying poor potency, or an inability to stimulate the types of immune responses required for vaccines against specific diseases (e.g. cytotoxic lymphocytes (CTLs) to treat cancers), the development of new vaccines will be aided by the availability of characterized platforms of new adjuvants, improving our capacity to rationally select adjuvants for different applications. One such approach, involves the addition of microbial components (pathogen-associated molecular patterns; PAMPs), that can stimulate strong immune responses, into subunit vaccine formulations. The conjugation of PAMPs to subunit antigens provides a means to greatly increase vaccine potency, by targeting immunostimulation and antigen to the same antigen presenting cell. Thus, methods that enable the efficient, and inexpensive production of antigen-adjuvant fusions represent an exciting mean to improve immunity towards subunit antigens. Herein we review four protein-based adjuvants (flagellin, bacterial lipoproteins, the extra domain A of fibronectin (EDA), and heat shock proteins (Hsps)), which can be genetically fused to antigens to enable recombinant production of antigen-adjuvant fusion proteins, with a focus on their mechanisms of action, structural or sequence requirements for activity, sequence modifications to enhance their activity or simplify production, adverse effects, and examples of vaccines in preclinical or human clinical trials.  相似文献   

5.
Adjuvants for anti-parasite vaccines   总被引:1,自引:0,他引:1  
To date the most successful human vaccines use attenuated living pathogens, but the advent of techniques in genetic engineering has meant that pure antigen can be provided in quantity. This has allowed the development of combined vaccines that use only the parasite antigens that convey protective immunity. However, isolated antigens lose immunogenicity so to regain potency, living attenuated carriers like Vaccinia or Salmonella can be used. To avoid the attendant drawbacks of carriers as immunopotentiating agents, adjuvants are under investigation as alternatives for use in vaccines against parasitic infections. In this review, Robert Bomford describes the adjuvants currently being examined for use in vaccines for both protozoan and helminth infections including Leishmania, malaria and Schistosoma. He also points out the drawbacks of using adjuvants and the dilemma of needing to stimulate cell'-mediated immunity while avoiding the immunopathological consequences of doing so.  相似文献   

6.
DNA vaccines have been widely used in efforts to develop vaccines against various pathogens as well as for cancer, autoimmune diseases and allergy. DNA vaccines offer broad efficacy (particularly for their ability to generate both cellular and humoral immunity), ease of construction and manufacture and the potential for world-wide usage even in low-resource settings. However, despite their successful application in many preclinical disease models, their potency in human clinical trials has been insufficient to provide protective immunity. Nevertheless, two DNA vaccines were recently licensed for use in animals (horse and fish), underscoring the potential of this technology. Here, we describe recent advances in increasing the potency of these vaccines, in understanding their immunological mechanisms, and in their applications and efficacy in clinical trials so far.  相似文献   

7.
Traditional vaccines consisting of whole attenuated micro-organisms, or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection, adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity, and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic, and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system, incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore, mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.  相似文献   

8.
An adjuvant is defined as a product that increases or modulates the immune response against an antigen (Ag). Based on this general definition many authors have postulated that the ideal adjuvant should increase the potency of the immune response, while being non-toxic and safe. Although dozens of different adjuvants have been shown to be effective in preclinical and clinical studies, only aluminium-based salts (Alum) and squalene-oil-water emulsion (MF59) have been approved for human use. However, for the development of therapeutic vaccines to treat cancer patients, the prerequisites for an ideal cancer adjuvant differ from conventional adjuvants for many reasons. First, the patients that will receive the vaccines are immuno-compromised because of, for example, impaired mechanisms of antigen presentation, non-responsiveness of activated T cells and enhanced inhibition of self-reactivity by regulatory T cells. Second, the tumour Ag are usually self-derived and are, therefore, poorly immunogenic. Third, tumours develop escape mechanisms to avoid the immune system, such as tumour editing, low or non-expression of MHC class I molecules or secretion of suppressive cytokines. Thus, adjuvants for cancer vaccines need to be more potent than for prophylactic vaccines and consequently may be more toxic and may even induce autoimmune reactions. In summary, the ideal cancer adjuvant should rescue and increase the immune response against tumours in immuno-compromised patients, with acceptable profiles of toxicity and safety. The present review discusses the role of cancer adjuvants at the different phases of the generation of antitumour immunity following vaccination.  相似文献   

9.
To develop safe vaccines for inducing mucosal immunity to major pulmonary bacterial infections, appropriate vaccine antigens (Ags), delivery systems and nontoxic molecular adjuvants must be considered. Such vaccine constructs can induce Ag‐specific immune responses that protect against mucosal infections. In particular, it has been shown that simply mixing the adjuvant with the bacterial Ag is a relatively easy means of constructing adjuvant‐based mucosal vaccine preparations; the resulting vaccines can elicit protective immunity. DNA‐based nasal adjuvants targeting mucosal DCs have been studied in order to induce Ag‐specific mucosal and systemic immune responses that provide essential protection against microbial pathogens that invade mucosal surfaces. In this review, initially a plasmid encoding the cDNA of Flt3 ligand (pFL), a molecule that is a growth factor for DCs, as an effective adjuvant for mucosal immunity to pneumococcal infections, is introduced. Next, the potential of adding unmethylated CpG oligodeoxynucleotide and pFL together with a pneumococcal Ag to induce protection from pneumococcal infections is discussed. Pneumococcal surface protein A has been used as vaccine for restoring mucosal immunity in older persons. Further, our nasal pFL adjuvant system with phosphorylcholine‐keyhole limpet hemocyanin (PC‐KLH) has also been used in pneumococcal vaccine development to induce complete protection from nasal carriage by Streptococcus pneumoniae . Finally, the possibility that anti‐PC antibodies induced by nasal delivery of pFL plus PC‐KLH may play a protective role in prevention of atherogenesis and thus block subsequent development of cardiovascular disease is discussed.
  相似文献   

10.
New generation vaccines, particularly those based on recombinant proteins and DNA, are likely to be less reactogenic than traditional vaccines, but are also less immunogenic. Therefore, there is an urgent need for the development of new and improved vaccine adjuvants. Adjuvants can be broadly separated into two classes, based on their principal mechanisms of action; vaccine delivery systems and 'immunostimulatory adjuvants'. Vaccine delivery systems are generally particulate e.g. emulsions, microparticles, iscoms and liposomes, and mainly function to target associated antigens into antigen presenting cells (APC). In contrast, immunostimulatory adjuvants are predominantly derived from pathogens and often represent pathogen associated molecular patterns (PAMP) e.g. LPS, MPL, CpG DNA, which activate cells of the innate immune system. Once activated, cells of innate immunity drive and focus the acquired immune response. In some studies, delivery systems and immunostimulatory agents have been combined to prepare adjuvant delivery systems, which are designed for more effective delivery of the immunostimulatory adjuvant into APC. Recent progress in innate immunity is beginning to yield insight into the initiation of immune responses and the ways in which immunostimulatory adjuvants may enhance this process. However, a rational approach to the development of new and more effective vaccine adjuvants will require much further work to better define the mechanisms of action of existing adjuvants. The discovery of more potent adjuvants may allow the development of vaccines against infectious agents such as HIV which do not naturally elicit protective immunity. New adjuvants may also allow vaccines to be delivered mucosally.  相似文献   

11.
Adjuvants and the promotion of Th1-type cytokines in tumour immunotherapy   总被引:4,自引:0,他引:4  
Immunotherapy includes both active and passive mechanisms that have the potential to treat many tumour types. Whereas monoclonal antibodies may kill cells by merely binding to them, 'cancer vaccines' involve the induction of an active immune response. The activation of tumour antigen-specific T-helper and cytotoxic T lymphocytes or non-specific macrophages and natural killer (NK) cells using immunotherapeutic approaches may lead to the subsequent destruction of tumour tissue. Administration of a tumour antigen alone is often not sufficient to stimulate an appropriate immune response. However, incorporating an immunological adjuvant into a vaccine regime often improves anti-tumour immunity. There are various types of adjuvants used in immunotherapy, ranging from microbial, chemical, and cellular components to proteins and cytokines. Previous reports have demonstrated that the induction of Th1-promoting cytokines, using specific adjuvants, can enhance anti-tumour immunity and can reduce or even prevent tumour growth. There is also increasing evidence that many adjuvants induce Th1-type cytokines, which correlates with the induction anti-tumour immunity. Th1-type responses which comprise cell-mediated immunity are characterised by the secretion of interferon-gamma by T cells, which is induced by antigen-presenting cell (APC)-derived IL-12. This review describes immunoadjuvants that are currently undergoing preclinical investigation, and emerging clinical data revealing that adjuvants which induce Th1-type responses can improve the efficacy of cancer vaccines. Therefore, the use of Th1-inducing adjuvants may provide an essential strategy for the future success of immunotherapy.  相似文献   

12.
The data from the Russian and foreign literature on the effects of brown seaweed-derived sulfated polysaccharides (fucoidans) used as potential vaccine adjuvants to enhance the anti-infection and anti-tumor immune response are discussed in the present review. Due to their low toxicity, high biocompatibility, safety, and good tolerability by macroorganisms, as well as their mechanisms of immunomodulatory activity, fucoidans can be considered as promising adjuvants to administer in the composition of prophylactic and therapeutic vaccines. Fucoidans are agonists to receptors of innate immunity and are potent inducers of the cellular and humoral immune response, which is an important factor to be taken into account in the development of vaccines against various pathogens, including viruses, as well as anti-tumor vaccines. The results of numerous studies in which sulfated polysaccharides were tested as components of experimental vaccines, as presented in this review, show that these substances can be used as safe and effective adjuvants.  相似文献   

13.
An effective protein-based vaccine for tuberculosis will require a safe and effective adjuvant. There are few adjuvants in approved human vaccines, including alum and the oil-in-water-based emulsions MF59 (Novartis Vaccines and Diagnostics), AS03 and AS04 (GlaxoSmithKline Biologics), AF03 (Sanofi), and liposomes (Crucell). When used with pure, defined proteins, both alum and emulsion adjuvants are effective at inducing primarily humoral responses. One of the newest adjuvants in approved products is AS04, which combines monophosphoryl lipid A, a TLR-4 agonist, with alum. In this study, we compared two adjuvants: a stable oil-in-water emulsion (SE) and a stable oil-in-water emulsion incorporating glucopyranosyl lipid adjuvant, a synthetic TLR-4 agonist (GLA-SE), each together with a recombinant protein, ID93. Both the emulsion SE and GLA-SE adjuvants induce potent cellular responses in combination with ID93 in mice. ID93/SE induced Th2-biased immune responses, whereas ID93/GLA-SE induced multifunctional CD4(+) Th1 cell responses (IFN-γ, TNF-α, and IL-2). The ID93/GLA-SE vaccine candidate induced significant protection in mice and guinea pigs, whereas no protection was observed with ID93/SE, as assessed by reductions in bacterial burden, survival, and pathology. These results highlight the importance of properly formulating subunit vaccines with effective adjuvants for use against tuberculosis.  相似文献   

14.
15.
乙型肝炎脂肽疫苗   总被引:1,自引:0,他引:1  
脂肽疫苗中的脂质部分能够提高肽苗的免疫原性,在无佐剂的条件下即能有效地激发体内抗原特异性的体液和细胞免疫反应。该文主要综述了乙型肝炎脂肽疫苗研究进展,为进一步研制用于预防和治疗的新型乙型肝炎脂肽疫苗奠定基础。  相似文献   

16.
There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates.  相似文献   

17.
Safe and effective immunologic adjuvants are often essential for vaccines. However, the choice of adjuvant for licensed vaccines is limited, especially for those that are administered intradermally. We show that non-tissue damaging, near-infrared (NIR) laser light given in short exposures to small areas of skin, without the use of additional chemical or biological agents, significantly increases immune responses to intradermal influenza vaccination without augmenting IgE. The NIR laser-adjuvanted vaccine confers increased protection in a murine influenza lethal challenge model as compared to unadjuvanted vaccine. We show that NIR laser treatment induces the expression of specific chemokines in the skin resulting in recruitment and activation of dendritic cells and is safe to use in both mice and humans. The NIR laser adjuvant technology provides a novel, safe, low-cost, simple-to-use, potentially broadly applicable and clinically feasible approach to enhancing vaccine efficacy as an alternative to chemical and biological adjuvants.  相似文献   

18.
Mucosal immune responses are an early and important line of defense against pathogens. The current understanding of the mucosal immune system allows us to consider the use of nasal immunization for induction of antigen-specific immune responses at the mucosal surface and the systemic compartment. Mucosal adjuvants are key for developing novel mucosal vaccines and represent 1 approach to improving mucosal and systemic immunity. However, few mucosal vaccine adjuvants are currently approved for human use. Neisseria meningitidis B proteoliposome-derived cochleate (AFCo1 - Adjuvant Finlay Cochleate 1) has been demonstrated to be a potent mucosal adjuvant. The present work demonstrates that intranasal immunization of 3 doses of tetanus toxoid (TT) coadministered with AFCo1 in mice promotes high systemic and mucosal responses. The anti-TT IgG serum titers and the mucosal anti-TT IgA in saliva and vaginal wash were significantly higher than TT alone. The analysis of antibody subclasses showed that intranasal administration of AFCo1 + TT induced not only IgG1 but also IgG2a anti-TT antibodies at levels comparable to those obtained with TT vaccine (vax-TET). These data support the fact that AFCo1 is a potent mucosal adjuvant in nasal immunization to a coadministered protein antigen.  相似文献   

19.
Fundamentally new approaches are required for the development of vaccines to pre-empt and protect against emerging and pandemic influenzas. Current strategies involve post-emergent homotypic vaccines that are modelled upon select circulating 'seasonal' influenzas, but cannot induce cross-strain protection against newly evolved or zoonotically introduced highly pathogenic influenza (HPI). Avian H5N1 and the less-lethal 2009 H1N1 and their reassortants loom as candidates to seed a future HPI pandemic. Therefore, more universal 'seasoned' vaccine approaches are urgently needed for heterotypic protection ahead of time. Pivotal to this is the need to understand mechanisms that can deliver broad strain protection. Heterotypic and heterosubtypic humoral immunities have largely been overlooked for influenza cross-protection, with most 'seasoned' vaccine efforts for humans focussed on heterotypic cellular immunity. However, 5 years ago we began to identify direct and indirect indicators of humoral-herd immunity to protein sites preserved among H1N1, H3N2 and H5N1 influenzas. Since then the evidence for cross-protective antibodies in humans has been accumulating. Now proposed is a rationale to stimulate and enhance pre-existing heterotypic humoral responses that, together with cell-mediated initiatives, will deliver pre-emptive and universal human protection against emerging epidemic and pandemic influenzas.  相似文献   

20.
A central goal in vaccinology is the induction of high and sustained Ab responses. Protein-in-adjuvant formulations are commonly used to achieve such responses. However, their clinical development can be limited by the reactogenicity of some of the most potent preclinical adjuvants and the cost and complexity of licensing new adjuvants for human use. Also, few adjuvants induce strong cellular immunity, which is important for protection against many diseases, such as malaria. We compared classical adjuvants such as aluminum hydroxide to new preclinical adjuvants and adjuvants in clinical development, such as Abisco 100, CoVaccine HT, Montanide ISA720, and stable emulsion-glucopyranosyl lipid A, for their ability to induce high and sustained Ab responses and T cell responses. These adjuvants induced a broad range of Ab responses when used in a three-shot protein-in-adjuvant regimen using the model Ag OVA and leading blood-stage malaria vaccine candidate Ags. Surprisingly, this range of Ab immunogenicity was greatly reduced when a protein-in-adjuvant vaccine was used to boost Ab responses primed by a human adenovirus serotype 5 vaccine recombinant for the same Ag. This human adenovirus serotype 5-protein regimen also induced a more cytophilic Ab response and demonstrated improved efficacy of merozoite surface protein-1 protein vaccines against a Plasmodium yoelii blood-stage challenge. This indicates that the differential immunogenicity of protein vaccine adjuvants may be largely overcome by prior immunization with recombinant adenovirus, especially for adjuvants that are traditionally considered poorly immunogenic in the context of subunit vaccination and may circumvent the need for more potent chemical adjuvants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号