首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The energy substrates lactate, pyruvate, and glucose were evaluated for supporting in vitro cytoplasmic maturation of rhesus monkey oocytes. A total of 321 cumulus-oocyte complexes (COCs) aspirated from > or = 1000 microm diameter follicles of unstimulated adult monkeys were matured in one of six media with various individual or combinations of energy substrates: (1) mCMRL-1066 (control); (2) HECM-10 (containing 4.5 mM lactate); (3) HECM-10+0.2 mM pyruvate; (4) HECM-10 + 5.0 mM glucose; (5) HECM-10+ 0.2 mM pyruvate + 5.0 mM glucose; and (6) HECM-10 minus lactate + 5.0 mM glucose. All media contained gonadotropins, oestradiol, and progesterone. Following maturation, all mature oocytes were subjected to the same in vitro fertilization and embryo culture procedures. Oocytes matured in control medium or in treatment groups 4 and 6 had the best morulae+ blastocysts developmental responses (35, 36, and 32%, respectively, P < 0.05). HECM-10 + 0.2 mM pyruvate + 5.0 mM glucose for COC maturation supported intermediate embryonic development (16% morulae + blastocysts). The lowest (P < 0.05) morula + blastocyst developmental responses were obtained after maturation of COCs in HECM-t10 and HECM-10 + 0.2 mM pyruvate (4 and 6%, respectively). The COCs matured in glucose-containing medium showed greater levels of cumulus expansion than those in glucose-free medium. These results indicate that (a) glucose is both necessary and sufficient as the energy substrate for supporting optimal cytoplasmic maturation in vitro of oocytes from unstimulated rhesus monkeys; (b) pyruvate suppresses the stimulatory effect of glucose on oocyte maturation; (c) glucose is involved in cumulus expansion; (d) cumulus expansion is not a reliable indicator of primate oocyte competence.  相似文献   

2.
No information is available concerning how the maturation environment controls the metabolism of goat oocytes. The objectives of this experiment were to: (1) Determine the concentrations of glucose, lactate, and pyruvate in caprine follicular fluid; and (2) Investigate the effects of physiological concentrations of glucose and lactate in the in vitro maturation (IVM) medium on the metabolism (glycolysis and pyruvate oxidation), protein content, and developmental competence of caprine oocytes and cumulus-oocyte complexes (COCs). Abattoir-derived COCs were matured for 18-20 hr in a defined, SOF-based medium containing 0.75, 1.5 (follicular fluid = 1.4 mM), or 3.0 mM glucose, and 3.0, 6.0 (follicular fluid = 7.1 mM), or 12.0 mM L-lactate. The protein content of oocytes and COCs was not affected (P > 0.05) by the concentration of glucose and lactate in the maturation medium. Increasing glucose and lactate decreased (P < or = 0.05) glycolytic activity of oocytes, without affecting (P > 0.05) pyruvate oxidation. In COCs, increasing glucose concentrations tended (P = 0.07) to decrease glycolysis. When metabolic activity was corrected for protein content (pmol/microg protein/3 hr), increasing glucose or lactate concentrations in the medium decreased (P < or = 0.05) pyruvate oxidation in oocytes, but increased (P < or = 0.05) pyruvate oxidation in COCs. Embryonic development (cleavage and blastocyst development, hatching, and cell number) was not affected (P > 0.05) by the glucose and lactate concentrations tested. These results indicate that concentrations of glucose and lactate in the medium have cell type-specific effects on metabolism of oocytes and COCs, but do not affect developmental competence within the range of concentrations tested.  相似文献   

3.
Cumulus oophorus cells have been implicated in the regulation of female gamete development, meiotic maturation, and oocyte-sperm interaction. Nevertheless, the specific role of cumulus cells (CCs) during the final stages of oocyte maturation and fertilization processes still remains unclear. Several studies have been conducted in order to clarify the role of follicular cells using culture systems where denuded oocytes (DOs) were co-cultured with isolated CCs, or in the presence of conditioned medium. However, those attempts were ineffective and the initial oocyte competence to become a blastocyst after fertilization was only partially restored. Aim of the present study was to analyze the effect of the interactions between somatic cells and the female gamete on denuded oocyte developmental capability using a system of culture where CCs were present as dispersed CCs or as intact cumulus-oocyte complexes (COCs) in co-culture with oocytes freed of CC investment immediately after isolation from the ovary. Moreover, we analyzed the specific role of cyclic adenosine 3'-5' monophosphate (cAMP) and glutathione (GSH) during FSH-stimulated maturation of denuded oocyte co-cultured with intact COCs. Our data confirm that denuded oocyte has a scarce developmental capability, and the presence of dispersed CCs during in vitro maturation (IVM) does not improve their developmental competence. On the contrary, the co-presence of intact COCs during denuded oocyte IVM partially restores their developmental capability. The absence of CCs investment causes a drop of cAMP content in DOs at the beginning of IVM and the addition of a cAMP analog in the culture medium does not restore the initial oocyte developmental competence. The relative GSH content of denuded oocyte matured in presence of intact COCs is consistent with the partial recovery of their developmental capability. However, the complete restoration of a full embryonic developmental potential is achieved only when DOs are co-cultured with intact COCs during both IVM and in vitro fertilization (IVF). Our results suggest that the direct interaction between oocyte and CCs is not essential during IVM and IVF of denuded oocyte. We hypothesize that putative diffusible factor(s), produced by CCs and/or by the crosstalk between oocyte and CCs in the intact complex, could play a key role in the acquisition of developmental competence of the denuded female gamete.  相似文献   

4.
The objective of this study was to investigate the effects of oocyte selection using brilliant cresyl blue (BCB) and culture density during individual in vitro maturation (IVM) on porcine oocyte maturity and subsequent embryo development using a chemically defined medium. Cumulus-oocyte complexes (COCs) were classified as BCB-positive or BCB-negative after exposure to a BCB solution for 90 min. The classified COCs were matured in a group (15 COCs per 100-μL droplet) or individually (1 COC per 1-, 2.5-, 5-, or 10-μL droplet). Meiotic competence, intraoocyte glutathione concentration, and developmental competence after intracytoplasmic sperm injection were monitored. The BCB selected oocytes competent for nuclear and cytoplasmic maturation. Furthermore, meiotic competence for oocytes matured individually in a 5-μL droplet was superior (P < 0.05) to that of oocytes matured in a 1-μL droplet. Also, the culture density in a 5-μL droplet during IVM resulted in a higher (P < 0.05) rate of cleaved embryos than that in a 1-μL droplet and produced a similar rate of blastocysts compared with that of a group culture system. Conversely, BCB selection did not improve cleavage and blastocyst formation. In conclusion, it was possible to predict porcine oocytes competent for maturation using oocyte selection with BCB. Moreover, a 5-μL droplet during the individual IVM culture was most suitable for oocyte maturation and subsequent embryo development, although every culture density used in this study supported development up to the blastocyst stage.  相似文献   

5.
Information gained from most human studies indicate a negative correlation between the apoptotic index (AI) in cumulus cells (CC) and the quality of the corresponding oocytes. However, results obtained in other species are not so consistent. The rate of apoptosis-free COCs (cumulus oocytes complexes) subjected to IVM (in vitro maturation) also varies among studies. The aim of the present study was to investigate whether the AI in cumulus cells of post-IVM COCs is related to the morphology of pre-IVM COCs and to meiotic competence of bovine oocytes. COCs of known morphology (four grade scale) obtained from individual follicles were matured in a well-in-drop system. After IVM, the external layers of CC of each COC were analyzed by TUNEL. In order to determine the meiotic stage, oocytes were stained with DAPI. It was found that 25.6% of bovine COCs contained apoptosis-free cumulus cells. Moreover, the majority of COCs with apoptotic cells were characterized by apoptotic index lower than 15%. The level of apoptosis in CC was related neither to COC morphology nor to the oocyte meiotic stage. It is suggested that the extent of apoptosis in cumulus cells is not a reliable quality marker of the corresponding oocyte after IVM.  相似文献   

6.
In the mare only a limited number of oocytes can be successfully collected in vivo, so that when large numbers of oocytes are needed for experimentation, ovaries harvested from slaughtered mares must be used. The resulting temperature changes and time intervals mandated by handling and transport of ovaries from the slaughterhouse to the laboratory adversely affect the rate of oocyte recovery and their quality after IVF and maturation. We chose to study the effect of temperature and time in transit of excised ovaries by evaluating rate of oocyte recovery, nuclear maturation stage reached before, and cleavage rate reached after IVF, following short (1.5 to 4 h) and long (6 to 8 h) storage. Temperatures in the storage container decreased from 37-C to 32 degrees and 27.5 degrees C during the short and long interval, respectively. The cumulus-oocytes complexes (COCs) were classified as having a compact cumulus, completely or partially surrounding the oocyte (compact); those having only a corona radiata surrounding the oocyte (corona); those having a completely or partially expanded cumulus, showing a cellular or sparsely cellular, gelatinous cloud around the oocyte (expanded); and those that were completely denuded of both cumulus and corona cells (denuded). All COCs, except the denuded ones, which were discarded, were matured in vitro for 30 h at 38.5 degrees C in 5% CO2. The recovery rate of oocytes was significantly higher after long vs short storage (48 vs 35%; P < 0.01), but the distribution of the collected COCs into the 4 classes was not affected by the storage time. After in vitro maturation nuclear maturity was not affected by the storage time, but oocytes with intact cytoplasmic membranes were more frequently found after short than after long storage (54 vs 34%; P = 0.07), and fully matured oocytes were more often seen with intact membrane (P < 0.01). Moreover, oocytes with intact membranes in metaphase II (MII) were associated with short storage intervals and the corona COC class, while damaged membranes and incomplete maturation were associated with the long storage and the compact COC class.  相似文献   

7.
Oocyte-secreted factors enhance oocyte developmental competence   总被引:6,自引:0,他引:6  
The capacity of fully grown oocytes to regulate their own microenvironment by paracrine factors secreted by the oocyte (oocyte-secreted factors, OSFs) may in turn contribute to oocyte developmental competence. Here, we investigated if OSFs have a direct influence on oocyte developmental competence during in vitro maturation (IVM). Bovine cumulus-oocyte complexes (COCs) were aspirated from abattoir-derived ovaries and matured in serum-free medium. COCs were either co-cultured with denuded oocytes (DOs) or treated with specific OSFs: recombinant bone morphogenetic protein 15 (BMP15) and/or growth differentiation factor 9 (GDF9). Following maturation, embryos were fertilized and cultured in vitro and blastocyst development and cell number were assessed on day 8. Co-culturing intact COCs with DOs did not affect cleavage rate, but increased (P<0.001) the proportion of cleaved embryos that reached the blastocyst stage post-insemination from 39% to 51%. OSFs also altered blastocyst cell allocation as co-culture of COCs with DOs significantly increased total and trophectoderm cell numbers, compared to control COCs. BMP15 alone, GDF9 alone or the two combined all (P<0.05) increased the proportion of oocytes that reached the blastocyst stage post-insemination from 41% (controls) to 58%, 50% and 55%, respectively. These results were further verified in neutralization experiments of the exogenous growth factors and of the native OSFs. Follistatin and the kinase inhibitor SB-431542, which antagonize BMP15 and GDF9, respectively, neutralized the stimulatory effects of the exogenous growth factors and impaired the developmental competence of control COCs. These results demonstrate that OSFs, and particularly BMP15 and GDF9, enhance oocyte developmental competence and provide evidence that OSF regulation of the COC microenvironment is an important determinant of oocyte developmental programming.  相似文献   

8.
To establish a reliable in vitro maturation system for activation and subsequent development as nuclear recipients for the effective production of pig clones, we assessed maturation, activation and parthenogenetic development in response to the following: (1) type of immature oocytes (cumulus-oocyte complexes (COCs) or parietal granulosa plus cumulus-oocyte complexes (GCOCs)); (2) oxygen (O(2)) tension (5 or 20%); and (3) maturation period (36-60 h). The rate of nuclear maturation to metaphase-II (M-II) in the GCOC group (73.0 +/- 3.1%) was higher than that in the COC group (P < 0.05, 60.6 +/- 3.5%), but the rates did not differ between the 5 and 20% O(2) tension groups. M-II rate increased (P < 0.05) to about 70% after 42 h and then remained constant until 60 h of culture. When oocytes were matured under 5% O(2) tension and stimulated, the rate of normal oocyte activation (a female pronucleus formation and emission of the second polar body) was higher (P < 0.05, 38.5 +/- 3.9%) than when oocytes were matured under 20% O(2) tension (24.5 +/- 3.9%). On the other hand, the rate of normal activation was not significantly different between the COC and GCOC groups, and the highest (P < 0.05) normal activation rate was obtained in oocytes cultured for 48 and 54 h (48.4 +/- 5.5% and 47.9 +/- 8.2%, respectively). When COC and GCOC matured for 48 h under 5 and 20% O(2) tension were stimulated and subsequently cultured in vitro for 6 days, the rate of blastocyst formation did not differ between the oocyte types nor between the O(2) tension groups. However, blastocyst quality, as measured by mean total cell number, was significantly higher in the 5% O(2) group (P < 0.05, 34.6 +/- 2.0 for COC; 33.8 +/- 1.8 for GCOC) compared with the 20% O(2) group (25.9 +/- 1.8 for COC; 27.0 +/- 2.0 for GCOC). In conclusion, low O(2) tension (5%) during in vitro maturation of porcine oocytes promoted their ability to be activated normally and improved the quality of parthenogenetic blastocysts developed in vitro in modified NCSU-37 solutions. This knowledge may be applicable for preparation of in vitro matured oocytes with good quality as recipient oocytes for generating pig clones.  相似文献   

9.
The aim of the present study was to examine the cumulus morphology and the oocyte chromatin quality of camel cumulus-oocyte complexes (COCs) at the time of recovery, and to monitor changes in oocyte chromatin configuration and apoptosis in cumulus cells from camel COCs during in vitro maturation (IVM) (0, 12, 24, 32, 36, 42, and 48 p.IVM) depending on pregnancy of donors. A total of 1023 COCs were isolated from sliced ovaries after slaughtering of 47 pregnant and 43 non-pregnant camels in an abattoir. The mean number of COCs per donor was 10.3 in pregnant and 12.5 in non-pregnant donors. The cumulus morphology of COCs was independent of the type of donor and was divided in COCs with compact (26.9 and 28%), dispersed (39.3 and 46%), corona radiata cumulus investment (27.9 and 21.7%) and without cumulus (6 and 4.2%), respectively for pregnant and non-pregnant donors. The highest proportion of COCs exhibited dispersed cumulus (P<0.05). Oocytes with meiotic stages of diplotene >50% were found only in compact (55 and 56.5%) and in dispersed COCs (58.4 and 60%), respectively for pregnant and non-pregnant donors. During IVM (0-48h) the first significant onset of specific meiotic stages were different in oocytes from pregnant donors: metaphase 1 (24-32h), metaphase 2 (36-42h), versus oocytes from non-pregnant donors: metaphase 1 (24h), metaphase 2 (32-48h) (P<0.05). The level of apoptotic cells in cumuli of matured COCs increased during IVM and was higher in matured COCs from non-pregnant donors for each time point during IVM (P<0.01). Camel oocytes meiosis during IVM is accompanied by a drastic increase of apoptosis in the surrounding cumulus cells 0-32 and 0-24h during IVM, respectively for pregnant and non-pregnant donors. The oocytes of pregnant camels require 36h of maturation to reach levels of >50% metaphase 2 stage in comparison to oocytes from non-pregnant donors where 32h are sufficient. The earlier onset of apoptosis in the COCs derived from non-pregnant donors possibly determines the faster progression of the oocytes through the final stages of meiosis.  相似文献   

10.
The 5'AMP-activated protein kinase (AMPK) activation is involved in the meiotic maturation of oocytes in the ovaries of mice and pigs. However, its effects on the oocyte appear to be species-specific. We investigated the patterns of AMPK and mitogen-activated protein kinases (MAPK3/1) phosphorylation during bovine in vitro maturation (IVM) and the effects of metformin, an AMPK activator, on oocyte maturation in cumulus-oocyte complexes (COCs) and denuded bovine oocytes (DOs). In bovine COCs, PRKAA Thr172 phosphorylation decreased, whereas MAPK3/1 phosphorylation increased in both oocytes and cumulus cells during IVM. Metformin (5 and 10 mM) arrested oocytes at the GV stage in COCs but not in DOs. In COCs, this arrest was associated with the inhibition of cumulus cell expansion, an increase in PRKAA Thr172 phosphorylation, and a decrease in MAPK3/1 phosphorylation in both oocytes and cumulus cells. However, the addition of compound C (10 muM), an inhibitor of AMPK, accelerated the initiation of the GV breakdown (GVBD) process without any alteration of MAPK3/1 phosphorylation in oocytes from bovine COCs. Metformin decreased AURKA and CCNB1 protein levels in oocytes. Moreover, after 1 h of IVM, metformin decreased RPS6 phosphorylation and increased EEF2 phosphorylation, suggesting that protein synthesis rates were lower in oocytes from metformin-treated COCs. Most oocytes were arrested after the GVBD stage following the treatment of COCs with the MEK inhibitor, U0126 (100 micromoles). Thus, in bovine COCs, metformin blocks meiotic progression at the GV stage, activates PRKAA, and inhibits MAPK3/1 phosphorylation in both the oocytes and cumulus cells during IVM. Moreover, cumulus cells were essential for the effects of metformin on bovine oocyte maturation, whereas MAPK3/1 phosphorylation was not.  相似文献   

11.
Shi L  Yue W  Zhang J  Lv L  Ren Y  Yan P 《Animal reproduction science》2009,113(1-4):299-304
The objective of this study was to investigate the influence of ovarian cortex cells (OCCs) monolayers on the nuclear maturation of sheep oocytes with or without cumulus cells during IVM. Sheep ovaries collected from a local abattoir were transported to the laboratory in warm PBS containing antibiotics within 2-3h after collection. Cumulus-oocyte complexes (COCs) were obtained by aspiration and evaluated in a pre-incubated Hepes-modified TCM 199 medium. The selected COCs were randomly divided into six treatment groups: group 1 (control group): oocytes enclosed by cumulus cells were cultured in maturation medium; group 2 (co-culture group): oocytes enclosed by cumulus cells co-cultured with OCCs monolayers; group 3 (conditioned group): oocytes enclosed by cumulus cells were cultured in OCCs-conditioned medium; group 4 (denuded group): denuded oocytes were cultured in the maturation medium; group 5 (denuded co-culture group): denuded oocytes co-cultured with OCCs monolayers in maturation medium; group 6 (denuded conditioned group): denuded oocytes were cultured in OCCs-conditioned medium. After maturation for 24h, the oocytes in each treatment group were fixed, stained and the nuclear status of the oocytes were assessed under an inverted microscope. The highest percentage of metaphase II (M-II) stage oocyte was observed in group 2 (86.3%) and the lower percentage was observed in the denuded groups (group 4-6). The removal of cumulus cells dramatically decreased the percentage of M-II stage oocyte. The comparison of the nuclear maturation status in group 4-6 showed that the co-culture of oocyte with OCCs monolayers resulted in progression to completing the GVBD stage to reach the M-II stage. The results demonstrated that the presence of OCCs could positively influence the meiotic resumption and progression of sheep oocytes during IVM.  相似文献   

12.
This study investigated the effect of deriving oocytes from different stages of the estrous cycle on oocyte diameter, germinal vesicle (GV) chromatin configuration, and in vitro meiotic competence in canine oocytes. Cumulus oocyte complexes (COCs) were recovered from both ovaries during anestrous, follicular, and luteal phases and in vivo ovulated oocytes. The diameter of canine oocyte was compared with or without the zona pellucida (ZP) before in vitro maturation (IVM). Also, GV chromatin configuration was evaluated before (0 h) or 72 h after IVM by fixation with 3.7% formaldehyde supplemented with 10 microg/ml Hoechst 33342 for 30 min. COCs were matured in TCM199 supplemented with 10% fetal bovine serum (FBS), 0.6 mM cysteine, 0.2 mM pyruvic acid, 50 microg/ml gentamycin sulfate, and 20 microg/ml 17beta-estradiol (E(2)) at 39 degrees C and 5% CO(2) in air for 72 h. The diameter of in vivo ovulated oocytes with the ZP (167.5+/-12.7 microm) or without ZP (133.9+/-5.3 microm) was significantly greater (p<0.05) than those of anestrous, follicular, and luteal oocytes (with ZP, 151.2+/-7.4, 153.1+/-8.8 and 152.8+/-5.4 microm, respectively; without ZP, 115.3+/-7.6, 122.1+/-4.9 and 114.3+/-6.6 microm, respectively). At 0 h, the GV-II configuration was more prevalent in oocytes from anestrual ovaries than from follicular or luteal ovaries or in vivo ovulated oocytes (63.6% versus 14.8%, 33.0%, and 0.0%; p<0.05), whereas the proportion of oocytes with the GV-V configuration was higher in follicular phase and ovulated oocytes than in oocytes from anestrus and luteal phase (57.4% and 100% versus 2.0% and 22.7%; p<0.05). However, oocytes in luteal phase exhibited diverse GV configurations (10.3%, 33.0%, 16.5%, 13.4%, and 22.7% in GV-I, GV-II, GV-III, GV-IV, and GV-V, respectively). After 72 h post-IVM, a greater percentage of in vivo ovulated oocytes progressed to MII than those oocytes collected during anestrous, follicular, and luteal phases (50.0% versus 5.5%, 11.5%, and 9.1%; p<0.05). In conclusion, the oocyte diameter, GV chromatin configuration, and meiotic maturation of canine COCs are related to the oocyte source. These results indicated that the oocyte source could be critical to nuclear progression to MII stage in canines.  相似文献   

13.
Successful in vitro maturation (IVM) of oocytes obtained from medium-sized antral follicles could avoid the need for superovulation for in vitro fertilization. The wide range of doses of FSH used in IVM prompted us to study the effect of varying concentrations of FSH on the dynamics of nutrient uptake and production by individual maturing mouse cumulus-oocyte complexes (COCs). COCs isolated from the antral follicles of unprimed, prepubertal B6CBF(1) mice were cultured individually in increasing concentrations of FSH (0-2000 ng/ml). Following culture, pyruvate, glucose, and lactate uptake or production by individual complexes were noninvasively assessed and compared with the stage of nuclear maturation of the enclosed oocyte. FSH significantly increased oocyte maturation and produced a two- to threefold increase in glucose uptake and lactate production by COCs in which the enclosed oocyte completed maturation. In these COCs, pyruvate was taken up under control conditions but was produced in progressively higher quantities in increasing concentrations of FSH. In COCs where the oocyte failed to complete maturation, pyruvate was taken up (rather than produced) and glucose uptake and lactate production were lower and unaffected by the presence or absence of FSH. This suggests that there is dialogue between cumulus cells and the maturing oocyte that influences FSH responsiveness and substrate metabolism of the whole COC. Finally, inhibition of FSH-stimulated glucose uptake by the PI3-kinase inhibitor LY294002 and the finding of GLUT4 protein in granulosa cells suggest that FSH increases glucose uptake by PI3-kinase-mediated translocation of GLUT4 to the granulosa cell membrane.  相似文献   

14.
Dey SR  Deb GK  Ha AN  Lee JI  Bang JI  Lee KL  Kong IK 《Theriogenology》2012,77(6):1064-1077
The present study examined the effect of coculturing cumulus oocyte complexes (COCs) and denuded oocytes (DOs) during in vitro maturation (IVM) on nuclear and cytoplasmic maturation, zona pellucida (ZP) hardening, the pattern of fertilization and glutathione peroxidase 1 (GPX1) gene expression in the oocyte. Furthermore, the rate of embryonic development and the quality of blastocysts were examined for both COCs and DOs. Three IVM conditions were studied: 1) the coculture of 12 COCs and 60 DOs, 2) COC control with 12 COCs, and 3) DO control with 60 DOs. The IVM was performed in a 120-μl droplet of TCM199-based IVM medium. Following IVM, in vitro fertilization (IVF) and in vitro culture (IVC) were conducted separately for the COCs and DOs (DO coculture) from the IVM coculture group. Coculturing COCs and DOs increased the percentage of oocytes reaching the blastocyst stage and the total number of cells per blastocyst in both the COC coculture (44.4 ± 8.6 vs 26.7 ± 9.7%, P < 0.01, and 137.9 ± 24.9 vs 121.7 ± 21.1, P < 0.05) and the DO coculture (20.5 ± 5.0 vs 11.1 ± 2.5%, P < 0.01, and 121.9 ± 27.5 vs 112.3 ± 33.2, P < 0.05) compared to their respective control groups. The synergistic effects of coculturing were detected as increased nuclear and cytoplasmic maturation, the prevention of ZP hardening, increased monospermic fertilization and increased expression of GPX1 in the oocytes in response to endogenous oocyte-secreted factors. In conclusion, coculturing COCs and DOs may be an effective culture system for both intact COCs and immature DOs.  相似文献   

15.
Reduced atmospheric oxygen concentration is beneficial to embryo development; however, optimal oxygen concentration for oocyte maturation remains undetermined. Likewise, there is no consensus of appropriate medium supplementation during maturation. The objective of this study was to determine whether oxygen tension (20% or 5% O2) and epidermal growth factor (EGF) affect oocyte metabolism and subsequent embryo development. Cumulus-oocyte complexes (COCs) were collected from 28-day-old equine chorionic gonadotropin (eCG) primed or unprimed F1 (C57BL/6xCBA) mice. COCs were matured in defined medium in one of four groups: 20% O2, 20% O2 + EGF, 5% O2, 5% O2 + EGF. In vivo matured COCs were also collected for analysis. COCs from unprimed mice, matured in 5% O2 +/- EGF or 20% O2 + EGF had higher metabolic rates than COCs matured in 20% O2 (P < 0.05). COCs from primed mice had higher metabolic rates when matured in the presence of EGF, regardless of oxygen tension (P < 0.01). Oxygen uptake and mitochondrial membrane potential were higher for in vivo matured oocytes and oocytes matured under 5% O2 compared to oocytes matured under 20% O2 (P < 0.05). Blastocyst formation was not different between maturation groups (primed or unprimed); however, embryo cell numbers were 20-45% significantly higher when COCs were matured at 5% O2 (P < 0.05). Results suggest that oocytes matured in physiological concentrations of oxygen have improved development and metabolic activity, more closely resembling in vivo maturation. These findings have implications for oocyte maturation in both clinical and research laboratories.  相似文献   

16.
Bormann CL  Ongeri EM  Krisher RL 《Theriogenology》2003,59(5-6):1373-1380
Only a small proportion of goat oocytes selected for in vitro oocyte maturation (IVM) can successfully complete cytoplasmic maturation and support embryonic development. To produce goat blastocysts more efficiently in vitro, it is necessary to identify factors required during oocyte maturation. The objective of this study was to determine the role of vitamins during maturation of caprine oocytes in semi-defined medium on subsequent developmental capacity in vitro. Cumulus oocyte complexes (COCs) collected from a local abattoir were matured in synthetic oviductal fluid (SOF) medium supplemented with BSA, LH, FSH, and EGF in the presence or absence of MEM vitamins for 24 h. The COCs were co-incubated with frozen-thawed sperm in Bracket and Oliphant fertilization medium for 18-22 h. Embryos were cultured in G1.2 medium for 72 h followed by culture in G2.2 medium for an additional 72 h. Addition of vitamins significantly increased (P<0.05) overall blastocyst development (16.4+/-1.2% versus 12.3+/-1.1%), and tended to increase (P<0.06) the percentage of cleaved embryos (61.4+/-3.0% versus 52.7+/-2.6%). Addition of MEM vitamins to SOF maturation medium significantly increased (P<0.05) mean blastocyst cell number compared with control medium (107.7+/-6.0 versus 85.1+/-6.3). Hatched blastocysts tended to have increased (P<0.06) cell numbers in the vitamin-treated group (150.5+/-8.4 versus 123.4+/-8.8). These results suggest that addition of vitamins during oocyte maturation is beneficial for subsequent blastocyst development and viability.  相似文献   

17.
The aim of the present study was to investigate the effects of inhibition of the enzyme inducible nitric oxide synthase (iNOS) by aminoguanidine (AG) on the in vitro maturation of oocyte-cumulus cell complex(es) (COC) of cattle. COC were cultured with different concentrations of AG (0, 1, 10, and 100mM) for 24h. In Experiment 1, the extent of cumulus complex expansion, nuclear maturation status and plasma membrane integrity of oocytes and cumulus cells from each treatment were assessed. Nitrate/nitrite (NO(3)(-)/NO(2)(-)) concentrations were determined in culture medium by the Griess method. Addition of different concentrations of AG to maturation medium promoted a dose-response inhibitory effect on cumulus expansion (P<0.05). Addition of 1 and 10mM AG to IVM medium did not affect plasma membrane integrity of oocytes or nuclear maturation rates (P>0.05), but it did reduce plasma membrane integrity in cumulus cells. One hundred millimolar inhibited pre-metaphase I (pre-MI) to metaphase II (MII) transition, promoted plasma membrane damage in oocytes (P<0.05), and increased NO(3)(-)/NO(2)(-) concentration when compared to controls (P<0.05). To evaluate if this effect was reversible, 10(-5)M sodium nitroprusside (SNP, NO donor) was added, only in the treatment with 100mM AG that inhibited the nuclear maturation. However, association of 10(-5)M SNP to 100mM AG did not reverse the effects of AG, but increased NO(3)(-)/NO(2)(-)concentration (P<0.05). In Experiment 2, the effect of different AG concentrations on cytoplasmic maturation in vitro was assessed based on cortical granule migration, and embryonic development. There was a dose effect on cortical granule migration rate, in which 1mM AG (83.9+/-6.2%) did not differ from control oocytes (83.6+/-8.2%; P>0.05), but 10mM partially inhibited migration (3.8+/-6.4%) and 100mM totally inhibited migration (P<0.05). SNP (10(-5)M) did not revert this inhibitory effect on cortical granules migration in oocytes treated with 100mM AG. Only those concentrations that did not inhibit IVM were used to assess cleavage and blastocyst development. Addition of 10mM AG to IVM medium reduced (73.0+/-8.1%, 15.0+/-8.9%; P<0.05) cleavage and blastocyst development, respectively when compared with controls (89.1+/-3.4%, 37.6+/-7.3%, respectively), but did not differ, (P>0.05), from the group treated with 1mM AG (80.9+/-8.4%, 41.5+/-10.5%, respectively). The results from the present study demonstrate that NO derived from iNOS affects the in vitro maturation of bovine COC, modulating the viability of cumulus cells and of oocyte, the progression of meiosis after GVBD, the migration of cortical granules, and cleavage and blastocyst development.  相似文献   

18.
Effect of 17beta-estradiol on the in vitro maturation of bovine oocytes   总被引:2,自引:0,他引:2  
Although 1 microg/ml of 17beta-estradiol (E2) is often used in routine in vitro maturation (IVM) and in vitro fertilization (IVF), its effect remains controversial. The objective of our study was to investigate the effects of E2 on bovine oocyte IVM and subsequent embryo development, using a defined medium. Bovine cumulus oocyte complexes (COCs), aspirated from 2 to 8 mm follicles of slaughterhouse ovaries, were matured in TCM199 in the presence of 1 microg/ml E2 with or without 0.05 IU/ml recombinant hFSH. Cultures without E2, FSH or both served as controls. COCs were matured for 22 h at 39 degrees C in a humidified atmosphere of 5% CO2 in air. To investigate the effect of E2 with and without FSH on nuclear maturation, COCs were fixed after maturation and the nuclear stage was assessed following DAPI staining. Similarly, denuded oocytes (DO) were matured in the presence of E2 and the nuclear stage assessed after 22 h. To investigate the effect of E2 with and without FSH during IVM on subsequent embryo development, in vitro matured COCs were fertilized in vitro and after removal of the cumulus cells, the presumed zygotes were cocultured on BRL monolayer for 11 days. At Day 4, the number of cleaved embryos, and at Days 9 and 11, the number of blastocysts, were assessed. Addition of 1 microg/ml E2 to TCM199 significantly decreased the percentage of Metaphase II (MII) compared to control (56.3 and 74.0%, respectively), and increased the percentage of nuclear aberrations compared to control (13.3 and 2.1%, respectively). The negative effect of E2 on nuclear maturation was stronger when DO were matured; 25.1 and 60.0% of the oocytes reached MII stage for the E2 and control groups, respectively. When COCs were matured in TCM199 supplemented with FSH, the addition of 1 microg/ml E2 did not influence the proportion of MII oocytes, although a higher percentage of nuclear aberrations as compared to control was observed. Presence of E2 during IVM also decreased the blastocyst rate (14.4 and 10.0% for control and E2 groups, respectively). However, when FSH was present, the addition of E2 had no effect on the cleavage rate and blastocyst formation (20.3 and 21.7% for control and E2 groups, respectively). In conclusion, supplementation of 1 microg/ml E2 to a serum free maturation medium negatively affects bovine oocyte nuclear maturation and subsequent embryo development. Although these effects are attenuated in the presence of FSH, we strongly suggest omission of E2 in routine maturation protocols of bovine oocytes.  相似文献   

19.
Cui MS  Fan YP  Wu Y  Hao ZD  Liu S  Chen XJ  Zeng SM 《Theriogenology》2009,71(3):412-421
The objective was to explore mechanisms of the influence of porcine cumulus cells (CC) on oocyte maturation. Immature porcine oocytes were matured in groups of denuded oocyte (DOs), cumulus-oocyte complexes (COCs), denuded oocytes co-cultured with CC (DoCC), or with cumulus-oocyte complexes (DoCOCs). Ooplasmic mitochondria-lipid distributions, glutathione (GSH)-adenosine triphosphate (ATP) contents, calcium release pattern, and developmental competence after parthenogenetic activation were assessed after IVM. The portion of matured oocytes after IVM and the developmental competence and GSH content in single oocytes were lower in DOs than in COCs (P < 0.05). In contrast, the maturation rate and development in DoCOCs and COCs were higher than in DoCC and DOs (P < 0.05). The blastocyst rate in DoCOCs was higher than in DOs (P < 0.05), and ATP content in COCs was higher than in all other groups (P < 0.01). In addition, the rate of oocytes with damaged oolemma in DOs (35%) was significantly higher than in COCs (3%), DoCOCs (7%), and DoCC (10%). The rate of oocytes with evenly distributed mitochondria was 70% in DOs, which was significantly lower than in COCs and DoCC (89 and 84%, respectively). The percentage of oocytes with normal lipid droplets distributions in COCs (70%) was significantly higher than in three other groups, whereas both percentages in DoCC and DoCOCs were higher than in DOs (P < 0.05). The duration of [Ca2+] rise in DOs was longer than in three other groups, whereas the duration was shortest in COCs. The amplitude of the [Ca2+] rise in DOs was significantly lower than in other groups (P < 0.05), but the amplitude did not differ significantly among DoCC, DoCOCs and COCs. In conclusion, the presence of porcine CC during IVM functionally affected ooplasmic mitochondria-lipid distributions and GSH-ATP contents, which may affect the calcium release pattern and developmental competence of oocytes after electro-activation.  相似文献   

20.
The aim of this study was to assess the presence and distribution of apoptosis in porcine cumulus‐oocyte complexes (COCs) and its relations with COC morphology and developmental competence. The COCs were obtained from slaughterhouse ovaries, classified into A1 (top category), A2, B1, B2, C, and D based on their morphology. A1, A2, and B1 were matured and fertilized in vitro, and blastocyst rate was compared among them. Before and after in vitro maturation (IVM), annexin‐V staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays were performed to assess early and late apoptosis, respectively. There was a significant increase in both annexin‐V (+) oocytes and TUNEL (+) cumulus cells as morphology further deteriorated. There were no statistical differences regarding annexin‐V (+) oocytes within immature and post‐IVM COCs, but TUNEL (+) oocytes were only observed in post‐IVM COCs. Early and late apoptosis was detected in cumulus cells of all categories of immature and post‐IVM COCs. However, the difference was only significant for annexin‐V (+). There were no significant differences in embryo development. Therefore, apoptosis increases as the morphological features of the immature COCs decrease. In conclusion, the selection of COCs from Categories A1, A2, and B1 may be used as a selection criterion for in vitro development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号