首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
产壳聚糖酶菌株的筛选、鉴定及酶学特性分析   总被引:1,自引:0,他引:1  
王艳君  卓少玲  陈盛  杨谦 《微生物学通报》2012,39(12):1734-1745
【目的】利用筛选培养基,从福建沿海潮间带泥样中分离筛选产壳聚糖酶的菌株,并研究菌株的产酶特性。【方法】通过形态学观察,结合26S rDNA序列进行分类鉴定,采用DNS法测定酶活力。【结果】筛选得到产壳聚糖酶的菌株KQ-1002与草酸青霉(Penicillium oxalicum)的同源性为99%,并初步鉴定为青霉属的一种。发酵培养的最适温度为30°C,最适碳源为1.0%水溶性壳聚糖,最适氮源为1.87%(NH4)2SO4,最适pH为6.0。该菌株液体发酵培养72 h产壳聚糖酶活性最高,经优化后最高产酶量为18 U/mL。纯化后的壳聚糖酶经SDS-PAGE分析其分子量约40 kD。酶促反应最适pH为5.0,最适反应温度为55°C,Km值为1.293 g/L。在离子浓度为1.0×10 3mol/L时,金属离子Cu2+、Hg2+、Ag+对酶的活性均有强烈的抑制作用。壳聚糖酶对不同底物及脱乙酰度的壳聚糖具有不同的降解作用。【结论】筛选获得产壳聚糖酶的真菌菌株KQ-1002的壳聚糖酶活力经优化后提高了约7倍,是一株具有研究和应用潜力的产壳聚糖酶菌株。  相似文献   

2.
高活性壳聚糖酶制剂的制备及其对壳聚糖降解作用的研究   总被引:3,自引:0,他引:3  
对系列壳聚糖酶高产菌株的产酶性能及产酶发酵液的壳聚糖酶活性进行了比较,从中筛选出一株优良芽孢杆菌菌株,其产酶发酵液的壳聚糖酶活力高达5000U/mL(以单位时间内底物壳聚糖的减少量确定酶活力)。利用此粗制壳聚糖酶制剂对壳聚糖进行酶解产糖的研究表明:壳聚糖的转化率及壳寡糖的产率在适合的酶解条件下,短时间内即可接近100%。  相似文献   

3.
段杉  彭志英 《生物技术》2005,15(6):24-27
目的:得到纯化的无花果沙雷氏菌CH02503的壳聚糖酶,并研究其生化性质。方法:将发酵粗酶液先后通过硫酸铵分级沉淀,superdex75凝胶柱和羧甲基纤维素离子交换柱层析,壳聚糖酶得到纯化。结果:经测定,该酶为内切酶,其相对分子质量为29kDa,等电点9.4,在45℃和pH4.0—7.5之间稳定,最适温度是45%,最适pH3.6,Mn^2+、Co^2+能够激活,Pb^2+、Cu^2+、Ni^2+、Cr^3+能够抑制该酶的活性,该酶最适底物是脱乙酰度85%的壳聚糖,对脱乙酰度低于45%的壳聚糖不能作用,对羧甲基甲壳素和羧甲基纤维素不能作用,以完全脱乙酰的壳聚糖为底物时,最终水解产物是单糖、二糖、三糖,反应的米氏常数为0.44mg/ml。  相似文献   

4.
产壳聚糖酶菌株的生物学特性及抑菌性能研究   总被引:2,自引:1,他引:1  
采用透明圈法,通过大量筛选得到8株产壳聚糖酶的野生菌株,对产壳聚糖酶最高的菌株Y8的菌株形态特征和生理生化特征、生长曲线、培养时间、培养起始pH等生物学特性进行了试验并对该菌所产壳聚糖酶进行了抑菌实验比较,Y8菌株产壳聚糖酶酶活力达0.50U/mL,依据《伯杰细菌鉴定手册》(第九版),初步鉴定为似单胞菌(Pseudomonas)属的一个种。菌株Y8的适宜培养pH值为6.0~7.0,最适pH值6.5。适宜养温度为28~32℃,最适值32℃。Y8所产的壳聚糖酶对细菌和真菌都有一定的抑制作用,对细菌的抑制作用要优于真菌。浓度为0.1%的壳聚糖酶抑菌能力高于1%壳聚糖,比0.1%壳低聚糖的抑菌效果略高。  相似文献   

5.
对来源于枯草芽孢杆菌菌株168(Bacillus subtilis 168)的壳聚糖酶编码基因进行了序列优化及全合成,并在毕赤酵母(Pichia pastoris)中实现了分泌表达,表达产物的蛋白质浓度达到0.30mg/ml。表达的壳聚糖酶最适p H为5.6,最适温度为55℃,比酶活达84.54U/ml。该酶在50℃及以下较稳定。利用该酶水解低脱乙酰度壳聚糖并使用超高效液相色谱-四极杆飞行时间质谱(ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry,UPLC-QTOF MS)对产物的组分进行了分离及鉴定。根据一级质谱信息,推测酶解产物中包含至少37种聚合度2~18,不同脱乙酰度的壳寡糖组分。综上,利用毕赤酵母分泌表达了来源于枯草芽孢杆菌菌株168的壳聚糖酶基因,利用表达产物水解制备了低脱乙酰度壳寡糖并对其组分进行了分析,可为后续壳寡糖结构与功能关系的研究提供参考。  相似文献   

6.
目的:克隆壳聚糖酶基因于大肠杆菌中实现高表达,制备壳寡糖。方法:以枯草芽孢杆菌总DNA为模板扩增壳聚糖酶基因(CSN),克隆至载体pET23a(+)上,转化菌株BL21(DE3)。重组子经0.5 mmol/L IPTG诱导后,SDS-PAGE和质谱检测与鉴定重组酶。酶纯化后水解壳聚糖,薄层色谱分析其水解产物。结果:质谱证明壳聚糖酶(31.5kDa)成功表达,表达量占菌体总蛋白的45%左右。纯化后重组酶浓度为900 mg/L,纯度95%、回收率85%,酶活力为10 000 U/mg。壳聚糖降解产物为壳二糖至壳四糖。结论:原核表达载体pET23a(+)-CSN构建正确,壳聚糖酶表达量与活性高,适用于水解壳聚糖制备壳寡糖。  相似文献   

7.
从废弃食用菌培养基周围土壤中分离得到一株产壳聚糖酶的菌株,结合形态学特征与26SrDNA序列进行了分类学鉴定,结果表明,该菌株与高山被孢霉(Mortierella alpina)的同源性较高,达99%,初步鉴定为被孢霉属的一种,命名为KB-1001。并对该菌株的产酶特性进行了研究,结果表明,该菌株液体发酵培养产酶高峰出现在第84h,最适碳源为1%的水溶性壳聚糖,最适氮源为1.87%的(NH4)2SO4,摇瓶培养的最适初始pH值为6.0,最适温度为28℃~30℃,接种量为4%,最佳装瓶量为70 mL/250 mL,150 r/min摇瓶培养,经优化培养后,该菌株发酵液中壳聚糖酶活力最高达到8.130 U/mL。比原始的未经发酵条件优化的产酶活性提高了12.78%。  相似文献   

8.
方法:通过单因子实验,对保存的1株产壳聚糖酶的菌株C001进行发酵产酶条件优化,确定了最适产酶培养基组分.结果:温度30℃,发酵时间18h,pH5.5,接种量5%优化发酵条件后,产壳聚糖酶活力增长了37.4%.  相似文献   

9.
以实验室分离的产壳聚糖酶的LS菌株出发,制备壳聚糖酶粗酶液,经(NH_4)_2SO_4盐析、透析、DEAE-Sephadex A25阴离子交换、Sephadex G-100凝胶过滤分离纯化后,SDS-PAGE显示为一条带,壳聚糖酶被纯化了22.4倍,回收率为34.2%。同时对其酶学性质进行了初步研究,发现该酶在低于35℃和pH 6.O~7.5范围内较稳定,最适反应温度为55℃,反应pH 5.0~5.5;Zn~(2 )、Ag~ 、Ca~(2 )、Co~(2 )、Mn~(2 )对该酶有明显的促进作用,而Fe~(3 )、Hg~(2 )对该酶有强烈的抑制作用;该酶的米氏常数(K_m)为2.50 mg/mL,最大反应速度(V_(max))为4.19μmol/(mL·min);SDS-PAGE测定的相对分子质量为30.9×10~3。  相似文献   

10.
利用以壳聚糖为唯一碳源的选择性培养基,从自然界中筛选得到一株壳聚糖酶活较高的菌株 ,其壳聚糖酶活为0.59U/mL.经初步鉴定,该菌株为芽孢杆菌属,以A表示.以该芽孢杆菌为出发菌株,经硫酸二乙酯(DES)诱变处理50 min后,筛选得到壳聚糖酶活明显提高的突变株DES-4,其壳聚糖酶活为1.60U/mL,是出发菌株的2.7倍.该突变株经连续传代5次后仍稳定产酶.研究表明,突变株DES-4的壳聚糖酶产生与芽孢形成之间关系密切,当芽孢充分形成后发酵液的壳聚糖酶活力不再增大.  相似文献   

11.
Chitosanase is an enzyme that hydrolyzes chitosan, a beta-(1-4) glucosamine polymer, into size-specific oligomers that have pharmaceutical and biological properties. The aim of the present work was to use the bipolar membrane technology, in particular the OH(-) stream produced by water splitting, for inactivation of chitosanase at alkaline pH in order to terminate the enzymatic reaction producing chitosan oligomers. The objectives consisted of studying the effect of pH: (a) on the stability of chitosanase, and (b) on the catalytic activity of chitosanase during chitosan hydrolysis. The enzyme was found to be stable in the pH range of 3-8 during at least 7h, and partially lost its activity after 1h at pH 8. The catalytic activity of chitosanase during chitosan hydrolysis decreased after pH adjustment by electrobasification. The reaction rate decreased by 50% from pH 5.5 to 6, whereas the reaction was completely inhibited at pH>7. The decrease of reaction rate was due to chitosan substrate insolubilization and chitosanase denaturation at alkaline pH values.  相似文献   

12.
球孢白僵菌Beauveria bassiana 1316-V1的培养上清液经硫酸铵分级沉淀,Sephadex G-75凝胶过滤,Chitosan-bead亲和层析,第二次Sephadex G-75凝胶过滤, 得到电泳纯的一种胞外壳聚糖酶,比活力达到45u/mg 。此酶的分子量为36 kD; 最适酶反应温度为60℃;最适pH为4.0;最适离子强度为 0.25mol/L NaCl; 37℃以下,pH 2.0~5.0之间稳定性好; Cu2+、Hg2+、Pb2+、Ni2+ 对该酶有强烈抑制作用;Ag+、Mn2+也有较强抑制作用;Fe2+有轻微激活作用。该壳聚糖酶是一种糖蛋白,含糖约为12.6%。酶的最适底物为脱乙酰度为90%的胶体壳聚糖;也能轻微水解CMC、DEAE-Cellulose和胶体几丁质;但不能水解片状的壳聚糖和几丁质。  相似文献   

13.
For the enzymatic production of chitosan oligosaccharides from chitosan, a chitosanase-producing bacterium, Bacillus sp. strain KCTC 0377BP, was isolated from soil. The bacterium constitutively produced chitosanase in a culture medium without chitosan as an inducer. The production of chitosanase was increased from 1.2 U/ml in a minimal chitosan medium to 100 U/ml by optimizing the culture conditions. The chitosanase was purified from a culture supernatant by using CM-Toyopearl column chromatography and a Superose 12HR column for fast-performance liquid chromatography and was characterized according to its enzyme properties. The molecular mass of the enzyme was estimated to be 45 kDa by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme demonstrated bifunctional chitosanase-glucanase activities, although it showed very low glucanase activity, with less than 3% of the chitosanase activity. Activity of the enzyme increased with an increase of the degrees of deacetylation (DDA) of the chitosan substrate. However, the enzyme still retained 72% of its relative activity toward the 39% DDA of chitosan, compared with the activity of the 94% DDA of chitosan. The enzyme produced chitosan oligosaccharides from chitosan, ranging mainly from chitotriose to chitooctaose. By controlling the reaction time and by monitoring the reaction products with gel filtration high-performance liquid chromatography, chitosan oligosaccharides with a desired oligosaccharide content and composition were obtained. In addition, the enzyme was efficiently used for the production of low-molecular-weight chitosan and highly acetylated chitosan oligosaccharides. A gene (csn45) encoding chitosanase was cloned, sequenced, and compared with other functionally related genes. The deduced amino acid sequence of csn45 was dissimilar to those of the classical chitosanase belonging to glycoside hydrolase family 46 but was similar to glucanases classified with glycoside hydrolase family 8.  相似文献   

14.
Extracellular chitosanase produced by Amycolatopsis sp. CsO-2 was purified to homogeneity by precipitation with ammonium sulfate followed by cation exchange chromatography. The molecular weight of the chitosanase was estimated to be about 27,000 using SDS-polyacrylamide gel electrophoresis and gel filtration. The maximum velocity of chitosan degradation by the enzyme was attained at 55°C when the pH was maintained at 5.3. The enzyme was stable over a temperature range of 0–50°C and a pH range of 4.5–6.0. About 50% of the initial activity remained after heating at 100°C for 10 min, indicating a thermostable nature of the enzyme. The isoelectric point of the enzyme was about 8.8. The enzyme degraded chitosan with a range of deacetylation degree from 70% to 100%, but not chitin or CM-cellulose. The most susceptible substrate was 100% deacetylated chitosan. The enzyme degraded glucosamine tetramer to dimer, and pentamer to dimer and trimer, but did not hydrolyze glucosamine dimer and trimer.  相似文献   

15.
This study aimed at isolation, purification and characterization of a chitosanase from Mucor circinelloides mycelium. The latter contains also a mycelium-bound lipase and lipids. The chitosanase and lipase were extracted from defatted M. circinelloides mycelium with a detergent and purified through a two-step procedure comprising chromatography on bacitracin–CNBr-Sepharose 4B and gel filtration on Sephadex G-100. Purification degree of the chitosanase (endo-type enzyme) and lipase was 23 and 12, respectively. These enzymes were optimally active at pH of 5.5–6.0 (chitosanase) and 7.2 (lipase in olive oil hydrolysis) and at 37 °C. Both purified enzymes were activated by Ca2+ and Mg2+ ions. The preferred substrates of chitosanase were chitosan preparations with a high degree of deacetylation. This enzyme showed no activity for colloidal chitin, Na-CMC and starch. SDS–PAGE of both purified enzymes showed two bands with molecular masses of 42 and 43 kDa. Our results suggest that M. circinelloides synthesizes an oligomeric (bifunctional) lipase which also efficiently depolymerizes chitosan.  相似文献   

16.
A new strain Penicillium sp. IB-37-2, which actively hydrolyzes chitosan (SD ~80–85%) but possesses low activity against colloidal chitin, was isolated. The fungus was observed to have a high level chitosanase biosynthesis (1.5–3.0 U/mL) during submerged cultivation at 28°C, with a pH of 3.5–7.0 and 220 rpm in nutrient media containing chitosan or chitin from shells of crabs. Purification of the chitosanase enzyme complex from Penicillium sp. IB-37-2 by ultrafiltration and hydrophobic chromatography, followed by denaturing electrophoresis, revealed two predominant proteins with molecular weights of 89 and 41 kDa. The purified enzyme complex demonstrated maximal activity (maximal rate of hydrolysis of dissolved chitosan) and stability at 50–55°C and a pH of 3.5–4.0. The enzyme preparation also hydrolyzed laminarin, β-(1,3)-(1,4)-glycan, and colloidal chitin. Exohydrolysis of chitosan by the preparation isolated from Penicillium sp. IB-37-2 resulted in the formation of single product, D-glucosamine.  相似文献   

17.
Chitosan raises a great interest among biotechnologists due to its potential for applications in biomedical or environmental fields. Enzymatic hydrolysis of chitosan is a recognized method allowing control of its molecular size, making possible its optimization for a given application. During the industrial hydrolysis process of chitosan, viscosity is a major problem; which can be circumvented by raising the temperature of the chitosan solution. A thermostable chitosanase is compatible with enzymatic hydrolysis at higher temperatures thus allowing chitosan to be dissolved at higher concentrations. Following an extensive micro-plate screening of microbial isolates from various batches of shrimp shells compost, the strain 1794 was characterized and shown to produce a thermostable chitosanase. The isolate was identified as a novel member of the genus Paenibacillus, based on partial 16S rDNA and rpoB gene sequences. Using the chitosanase (Csn1794) produced by this strain, a linear time course of chitosan hydrolysis has been observed for at least 6 h at 70 °C. Csn1794 was purified and its molecular weight was estimated at 40 kDa by SDS-PAGE. Optimum pH was about 4.8, the apparent K m and the catalytic constant kcat were 0.042 mg/ml and 7,588 min?1, respectively. The half-life of Csn1794 at 70 °C in the presence of chitosan substrate was >20 h. The activity of chitosanase 1794 varied little with the degree of N-acetylation of chitosan. The enzyme also hydrolyzed carboxymethylcellulose but not chitin. Chitosan or cellulose-derived hexasaccharides were cleaved preferentially in a symmetrical way (“3?+?3”) but hydrolysis rate was much faster for (GlcN)6 than (Glc)6. Gene cloning and sequencing revealed that Csn1794 belongs to family 8 of glycoside hydrolases. The enzyme should be useful in biotechnological applications of chitosan hydrolysis, dealing with concentrated chitosan solutions at high temperatures.  相似文献   

18.
Chitosanase from the culture filtrate of Nocardia orientalis was purified to apparent homogeneity by precipitation with ammonium sulfate followed by CM-Sephadex chromatography, biospecific affinity chromatography on a Sepharose CL-4B with immobilized chitotriose and by gel filtration on Sephadex G-75. The enzyme specifically acted on chitooligosaccharides and chitosan to yield chitobiose and chitotriose as final products. The mode of action of the chitosanase on chitooligosaccharides and their corresponding alcohols suggests that the enzyme requires substrates with four or more glucosamine residues for the expression of activity and its shows maximum activity on chitohexaose and chitoheptaose. In the hydrolysis of chitosans of varying N-acetyl content, the enzyme cleaved about 30% acetylated chitosan with maximum activity and the enzyme activity decreased with increasing the degree of deacetylation of chitosans tested. The analysis of products formed from 33% acetylated chitosan shows the chitosanase is capable of cleaving between glucosamine and glucosamine or N-acetylglucosamine, but not cleaving between N-acetylglucosamine and glucosamine. On the basis of the results, the whole pathway of enymatic degradation of partially acetylated chitosan by a combination of chitosanase, exo-beta-D-glucosaminidase and beta-N-acetylhexosaminidase is proposed.  相似文献   

19.
A species of bacterium with high chitosanase activity was isolated from soil samples in Haiyan City, China, and identified as an Acinetobacter species. This strain, named Acinetobacter sp. strain C-17, produced a chitosanase that was inducible and secreted into the medium. The optimal conditions for enzyme production were cells used to inoculate a medium containing 1% chitosan (pH 7.0) followed by culture at 30 degrees C. The chitosanase activity reached 1.7 U/ml when strain C-17 was incubated in a 250-ml flask under the optimal conditions for 24 h, and reached 2.8 U/ml when cells were incubated in a 3-l fermentor. The optimal pH and temperature for hydrolysis of chitosanase were 7.0 and 36 degrees C, respectively. The chitosanase activity was stable in the pH range of 5-8 and temperature range of 30-40 degrees C. The chitosanase of the strain was extracted by zinc acetate and ammonium sulfate precipitation. The molecular mass was estimated to be 35.4 kDa by SDS-PAGE.  相似文献   

20.
A chitosanase produced constitutively by Bacillus sp. MET 1299 was purified by SP-Sephadex column chromatography. The molecular weight was estimated to be 52 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Optimal enzyme activity was observed at a pH of 5.5 and temperature of 60 degrees C. The purified chitosanase showed high activity on 90% deacetylated colloidal chitosan and beta-glucan, but not on hydrolyzed colloidal chitin, CMC, or their derivatives. The N-terminal amino acid sequence of the enzyme was determined. The cloned full length gene, 1362 bp in size, encoded a single peptide of 453 amino acids and had a conserved amino acid sequence of glycosyl hydrolase family 8. A search of the cDNA sequence with NCBI BLAST showed homology with chitosanase of Bacillus sp. KTCC 0377BP and Bacillus sp. No. 7-M. The recombinant protein was expressed in Escherichia coli, purified using affinity chromatography and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号