首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadmium nephrotoxicity in human proximal tubule cell cultures   总被引:2,自引:0,他引:2  
Summary Human proximal tubule kidney cells grown in a serum-free tissue culture medium were exposed to concentrations of CdCl2 in a range of 0.5 to 10μg/ml. Cells were observed from 1 to 20 d upon initiation of cadmium in the culture fluid. Both confluent and subconfluent populations of cells were treated and evaluated for cytotoxicity. Both populations exhibited a concentration-dependent toxicity to ionic cadmium. For cells treated with 2.0 to 10 μg/ml Cd, the decreases in cell numbers were largely irreversible. However, cells treated with Cd in a range of 0.5 to 1.0 μg/ml exhibited a partial recovery of cell number and control morphology. In this range, recovery was more efficient in the subconfluent cultures. Fine structural alterations in Cd-treated tubule cells included condensation of nuclear chromatin, loss of microvilli structure, disorganization of lateral membrane interdigitation, as well as decreased uptake of aminoglycoside antibiotics as evidenced by decreased numbers of myeloid bodies in these cells. The results of this study imply that use of a human proximal tubule culture system has potential in discerning structural and functional effects of cadmium as well as other nephrotoxic metals and compounds on the human kidney. This paper was presented at a Symposium on the Physiology and Toxicology of the Kidney In Vitro co-sponsored by The Society of Toxicology (SOT) and the Tissue Culture Association held at the 27th annual meeting of the SOT in Dallas, Texas in 1988. This work was supported by the Johns Hopkins Center for Alternatives to Animal Testing.  相似文献   

2.
Summary We have previously shown that shaking the culture plates (SHAKE) of rabbit renal proximal tubule cells (RPTC) to maintain adequate aeration increased aerobic metabolism and decreased the induction of glycolysis compared to RPTC cultured under standard conditions (STILL). However, glycolysis in SHAKE RPTC remained elevated compared to glycolysis in proximal tubules in vivo. In the present study the contribution of culture medium sugar composition and concentration to glycolytic metabolism was assessed in RPTC. SHAKE and STILL RPTC cultured in 5 mM glucose contained lactate levels equivalent to the respective SHAKE and STILL RPTC cultured in standard culture medium which contains 17.5 mM glucose. Similarly, the activity of lactate dehydrogenase was unchanged by lowering the medium glucose concentration. Substituting 5 mM galactose for 5 mM glucose in the culture medium significantly reduced the lactate content of both SHAKE and STILL RPTC but had no effect on lactate dehydrogenase activity. Cell growth was equivalent under all culture conditions. Sensitivity to mitochondrial inhibition was determined for each culture condition by measuring cell death after exposure to the respiratory inhibitor antimycin A. The results showed a hierarchy of sensitivity to antimycin A (5 mM galactose SHAKE >5 mM glucose SHAKE >17.5 mM glucose SHAKE = 17.5 mM glucose STILL), which was generally inversely correlated with the level of glycolysis as measured by lactate content (17.5 mM glucose STILL >17.5 mM glucose SHAKE = 5 mM glucose SHAKE >5 mM galactose SHAKE).  相似文献   

3.
Summary FK506 has been used as the primary immunosuppressive agent administered after a variety of organ transplants, with less reported nephrotoxicity than that of cyclosporine. This study examined in vitro cytotoxicity of FK506 on normal human renal proximal tubule cells. Cytotoxicity was assessed by neutral red inclusion and trypan blue exclusion; morphology was assessed by light and transmission electron microscopy. Neutral red inclusion decreased to less than 10% of the control after 3 days exposure to 200μg/ml FK506. Forty microgram per milliliter FK506 caused a decrease in neutral red inclusion to 61% of the control on Day 7, with recovery to 86% on Day 12. Similarly, trypan blue exclusion decreased to 66% of the control following 7 days exposure to 40μg/ml FK506, and confluency of the monolayer was reduced to 50% as evidenced by phase contrast microscopy. After a 12-day exposure, treated monolayers became more confluent. On ultrastructural examination, FK506-treated cells exhibited increased cytoplasmic vacuolation and lipid inclusion. These data suggest that FK506 is reversibly and mildly toxic to monolayers of human renal proximal tubule cells and are consistent with clinical reports of reversible nephrotoxicity.  相似文献   

4.
Summary Proximal tubule cells were isolated from swine kidney and cultured for periods of more than 30 days. The cells formed confluent monolayers after plating on a collagen surface and they were passaged more than 5 times on this matrix. The cells maintain several metabolic functions of proximal tubule cells, including gluconeogenesis and the ability to respond to epinephrine and parathyroid hormone. Gluconeogenesis, a principal metabolic pathway in proximal tubule cells, was examined as a function of days in culture. The isolated cells showed a nearly constant rate of gluconeogenesis from 14C-lactate, 14C-alkaine and 14C-glycerol with no significant loss of activity for at least 30 days in culture. Likewise, the activities of several cytosolic and membrane associated enzymes including, alkaline phosphatase, -glutamyltransferase, fructose-1,6-bisphosphatase and phosphofructokinase were nearly constant over the same time period.The cells responded to treatment with epinephrine and parathyroid hormone, and the rate of gluconeogenesis from 14C-lactate doubled in the presence of these hormones. The morphological and biochemical evidence obtained in these studies show that the proximal tubule cells isolated from swine kidney provide an excellent well defined system for studying the hormonal regulation of carbohydrate metabolism in this tissue.Abbreviations PTH Parathyroid Hormone - cAMP cyclic 3,5-adenosine Monophosphate  相似文献   

5.
Migration of human proximal tubule cells (HKC-5) was stimulated by epidermal growth factor (EGF), hepatocyte growth factor (HGF), and insulin-like growth factor-1 (IGF-1). Integrin signaling via phosphorylation of focal adhesion kinase (FAK) appears to play a central role in cell migration. Once stimulated, FAK undergoes autophosphorylation at tyrosine (Y) 397, followed by phosphorylation of several sites including Y576/Y577 which increases FAK's kinase activity, as well as at Y407, Y861, and Y925. EGF, HGF, and IGF-1 stimulate FAK phosphorylation in various cells. We showed that endothelin stimulated phosphorylation of Y397 in fibroblasts but not HKC-5 cells. After EGF stimulation, HKC-5 cells showed no change in tyrosine phosphorylation at FAK Y397, 407, 576, 861, or 925. Similarly, HGF and IGF-1 did not stimulate the phosphorylation of FAK Y397 in HKC-5 cells. Further, after inhibition of FAK expression by siRNA, cell migration was similar to cells treated with non-target siRNA and responded to EGF with increased migration. Thus, in proximal tubule cells, stimulation of cell migration by growth factors was independent of augmented FAK tyrosine phosphorylation.  相似文献   

6.
This study has examined whether elevated glucose can induce lipid peroxidation and contribute to the inhibition of cell growth in human kidney proximal tubule(HPT) cells. HPT cells were cultured in media containing glucose concentrations of 8 mM (control), 25 mM, and 50 mM. Lipid peroxidation was assessed by the thiobarbituric acid reactivity and cell growth was assessed by 3H-thymidine uptake. Results show decreased (59%, p < 0.01) growth of HPT cells cultured in 50 mM glucose. Cells cultured in 50 mM mannitol did not show any growth inhibition, suggesting that the decreased cell growth associated with glucose is not due to osmolarity changes. There was an increase (108%, p < 0.02) in lipid peroxidation in cells cultured with high levels of glucose (50 mM) compared with controls and cells cultured with 50 mM mannitol. To examine if membrane lipid peroxidation or malondialdehyde (MDA, an end product of lipid peroxidation) has any role in the inhibition of cell growth, we examined the effect of tertiary butylhydroperoxide (TBH, known to cause lipid peroxidation and generate MDA) on the growth of HPT cells. TBH decreased cell growth (49, 17 and 3% of controls at 0.1, 0.25, and 0.5 [mole TBH/ml medium). Similarly, a marked reduction in the growth was observed with exogenous MDA (72, 69 and 34% of controls at 0.1, 0.25, and 0.5 mole MDA/ml medium). This suggests that elevated glucose can induce membrane lipid peroxidation and accumulation of MDA, which in turn can inhibit cellular growth and contribute to the altered structure and function of HPT cells in diabetes.  相似文献   

7.
Summary To assess the mechanism(s) by which intraluminal chloride concentration is raised above equilibrium values, intracellular Cl activity ( i Cl ) was studied in the proximal tubule ofNecturus kidney. Paired measurements of cell membrane PD (V BL) and Cl-selective electrode PD (V BL Cl ) were performed in single tubules, during reversible shifts of peritubular or luminal fluid composition. Steadystate i Cl was estimated at 14.6±0.6 mmol/liter, a figure substantially higher than that predicted for passive distribution. To determine the site of the uphill Cl transport into the cell, an inhibitor of anion transport (SITS) was added to the perfusion fluid. Introduction of SITS in peritubular perfusate decreased i Cl , whereas addition of the drug in luminal fluid slightly increased i Cl ; both results are consistent with basolateral membrane uphill Cl transport from interstitium to the cell. TMA+ for Na+ substitutions in either luminal or peritubular perfusate had no effect on i Cl . Removal of bicarbonate from peritubular fluid, at constant pH (a situation increasing HCO 3 outflux), resulted in an increase of i Cl , presumably related to enhanced Cl cell influx: we infer that Cl is exchanged against HCO 3 at the basolateral membrane. The following mechanism is suggested to account for the rise in luminal Cl concentration above equilibrium values: intracellular CO2 hydration gives rise to cell HCO 3 concentrations above equilibrium. The passive exit of HCO 3 at the basolateral membrane energizes an uphill entry of Cl into the cell. The resulting increase of i Cl , above equilibrium, generates downhill Cl diffusion from cell to lumen. As a result, luminal Cl concentration also increases.C.N.R.S. Greco 24. Part of this work was presented at the 12th annual meeting of the American Society of Nephrology, Boston, Mass. (Edelman et al., 1979).  相似文献   

8.
Summary Proximal tubules were prepared from rat kidney cortex by collagenase digestion and purified by percoll gradient centrifugation. Their enrichment was estimated by comparing the specific activities of various cell-specific enzymes in homogenates of renal cortex and of the isolated tubules. The tubules were cultured in a 50:50 mixture of Dulbecco’s modified Eagle’s and Ham’s F12 media supplemented with insulin, transferrin, epidermal growth factor, hydrocortisone, and prostaglandin E1. After 2 to 3 d an extensive outgrowth of epithelial cells developed from the attached tubules. After 5 to 7 d near confluent monolayers were obtained. Hormonal responsiveness, marker enzyme activities, and transport properties were determined to further characterize the primary cultures. The cultured cells exhibited increased cyclic AMP production in response to parathyroid hormone but not calcitonin or vasopressin, consistent with the absence of cells derived from distal and collecting tubules. The cells also retained significant levels of 25-hydroxyvitamin D3-lα-hydroxylase, alkaline phosphatase, and ψ-glytamyltranspeptidase, three enzymes that are primarily associated with the proximal tubule. The cultured epithelial cells also exhibit a Na+-dependent phosphate and glucose transport systems. Therefore, the cells retain many functional properties that are characteristic of proximal tubules. Thus, the primary cultures should be suitable for the study of processes that occur specifically within this segment of the rat nephron. This work was supported in part by the Veterans Administration (JBP), Washington, DC, by grant DK-37124 (NPC) from the National Institutes of Health, Bethesda, MD, and by grant BNS-86-17004 (CFL) from the National Science Foundation, Washington, DC.  相似文献   

9.
Normal rat kidney proximal tubule cells in primary and multiple subcultures   总被引:5,自引:0,他引:5  
Summary Anin vitro model to establish primary and subcultures of rat kidney proximal tubule (RPT) cells is described. After excising the kidneys and separating the cortex, the cortical tissue is digested with the enzyme DNAse-collagenase (Type I) resulting in a high yield of viable RPT Cells. The isolated RPT cells are then seeded onto rat tail collagen-coated surfaces and grown to confluency in a serum-free, hormonally defined medium. The cell yield can be increased by transfering the conditioned medium on Day 1 to more rat tail collagen-coated surfaces. RPT cell attachment and morphology was better on rat tail collagen-coated surfaces than on bovine collagen Type I coated surfaces. The culture medium was a 1∶1 mixture of Ham’s F-12 and Dulbecco’s modified Eagle’s medium supplemented with bovine serum albumin, insulin, transferrin, selenium, hydrocortisone, triiodothyronine, epidermal growth factor, and glutamine. The RPT cells became confluent in 7–10 d, at which point they could be subcultured by trypsinizing and growth in the same medium. In some studies, 10 ng/ml cholera toxin was added to the culture medium. We could passage the RPT cells up to 14 times in the presence of cholera toxin. The cells were investigated for activity of several markers. The cells were histochemically positive for alkaline phosphatase and γ-glutamyl transpeptidase activity and synthesized the intermediate filament pankeratin. The RPT cells displayed apically directed sodium-dependent active glucose transport in culture. Hence, the RPT cells retain structural and functional characteristics of transporting renal epithelia in culture. This rat cell culture model will be a valuable tool for substrate uptake and nephrotoxicity studies.  相似文献   

10.
Summary This study examined the role of odd and even short-chain fatty acid substrates on aerobic and glycolytic metabolism in well-aerated primary cultures of rabbit renal proximal tubule cells (RPTC). Increasing oxygen delivery to primary cultures of RPTC by shaking the dishes (SHAKE) reduced total lactate levels and lactate dehydrogenase (LDH) activity and reduced net glucose consumption compared to RPTC cultured under standard conditions (STILL). The addition of butyrate, valerate, heptanoate, or octanoate to SHAKE RPTC produced variable effects on glycolytic metabolism. Although butyrate and heptanoate further reduced total lactate levels and net glucose consumption during short-term culture (<24 h), no fatty acid tested further reduced total lactate levels, net glucose consumption, or LDH activity during long-term culture (7 days). During the first 12 h of culture, maintenance of aerobic metabolism in SHAKE RPTC was dependent on medium supplementation with fatty acid substrates (2 mM). However, by 24 h, SHAKE RPTC did not require fatty acid substrates to maintain levels of aerobic metabolism equivalent to freshly isolated proximal tubules and greater than STILL RPTC. This suggests that SHAKE RPTC undergo adaptive changes between 12 and 24 h of culture, which give RPTC the ability to utilize other substrates for mitochondrial oxidation, therefore allowing greater expression of mitochondrial oxidative potential in SHAKE RPTC than in STILL RPTC.  相似文献   

11.
Primary rabbit kidney proximal tubule (RPT) cells (S.D. Chung et al., 1982, J. Cell Biol. 95, 118-126) were transfected with the vector pRSV-T, which contains SV40 early region genes. After the third passage (when normal cells had stopped dividing), individual colonies formed in cultures transfected with pRSV-T. Clonal isolates (RPT-I cells) could be obtained in a simple and reproducible manner. Southern analysis of clone RPT-I8 indicated the presence of SV40 early region genes. Nuclear SV40 T was detected. After 23 passages, and subcloning, RPT-I8 (and subclones) was found to express renal proximal tubule markers to a similar extent, indicating that the phenotype was stable. Nevertheless, the activities of the Na(+)/glucose cotransport system, gamma-glutamyl transpeptidase and alkaline phosphatase, were reduced as compared with primary cultures. Western analysis indicated that the level of Na(+)/glucose cotransporters was maintained in RPT-I8 cells, when compared with intact proximal tubules and primary cultures. Thus, the reduction in alpha-MG uptake in RPT-I8 cells may be attributed to other types of cellular alterations, including changes in energy metabolism. Indeed, growth in glucose-free medium was not observed in RPT-I8 cell cultures, suggesting that unlike primary RPT cells (J. C. Chung et al., 1992, J. Cell. Physiol. 150, 243-250), the gluconeogenic pathway was not intact.  相似文献   

12.
Summary Water transport mechanisms in rabbit proximal convoluted cell membranes were examined by measurement of: (1) osmotic (P f ) and diffusional (P d ) water permeabilities, (2) inhibition ofP f by mercurials, and (3) activation energies (E a ) forP f .P f was measured in PCT brush border (BBMV) and basolateral membrane (BLMV) vesicles, and in viable PCT cells by stopped-flow light scattering;P d was measured in PCT cells by proton NMR Ti relaxation times using Mn as a paramagnetic quencher. In BLMV,P f (0.019 cm/sec, 23°C) was inhibited 65% by 5mm pCMBS and 75% by 300 m HgCl2 (K l =42 m);E a increased from 3.6 to 7.6 kcal/mole (15–40°C) with 300 m HgCl2. In BBMV,P f (0.073 cm/sec, 23°C,E a =2.8 kcal/mole, <33°C and 13.7 kcal/mole, >33°C) was inhibited 65% with HgCl2 withE a =9.4 kcal/mole (15–45°C). Mercurial inhibition in BLMV and BBMV was reversed with 10 m mercaptoethanol. Viable PCT cells were isolated from renal cortex by Dounce homogenization and differential seiving. Impedence sizing studies show that PCT cells are perfect osmometers (100–1000 mOsm). Assuming a cell surface-to-volume ratio of 25,000 cm–1,P f was 0.010±0.002 cm/sec (37°C) andP d was 0.0032 cm/sec.P f was independent of osmotic gradient size (25–1000 mOsm) withE a 2.5 kcal/mole (<27°C) and 12.7 kcal/mole (>27°C). CellP f was inhibited 53% by 300 m HgCl2 (23°C) withE a 6.2 kcal/mole. These findings indicate that cellP f is not restricted by extracellular or cytoplasmic unstirred layers and that cellP f is not flow-dependent. The high BLMV and BBMVP f , inhibition by HgCl2, lowE a which increases with inhibition, and the measuredP f /P d >1 in cells in the absence of unstirred layers provide strong evidence for the existence of water channels in proximal tubule brush border and basolateral membranes. These channels are similar to those found in erythrocytes and are likely required for rapid PCT transcellular water flow.  相似文献   

13.
Summary Individual resistances of the apical cell membrane,R a , the basolateral cell membrane,R bl , and the paracellular shunt,R s , were determined in theNecturus proximal tubule using a set of three electrical parameters. Four electrical parameters were measured: the transepithelial resistance, (R te ), the apical and basolateral cell membrane resistance in parallel, (R Z free-flow tubules), the basolateral cell membrane resistance in oil-filled tubules, (R Z oil-filled), and the ratio of apical and basolateral cell membrane resistance (R a /R bl ).R te was determined from an analysis of the spatial decay of luminal voltage following luminal current injection.R Z free-flow andR Z oil-filled were measured by the analysis of the spatial decay of intracellular voltage deflections following cellular current injection in free flow and oil-filled tubules, respectively.R a /R bl was estimated from the ratio of voltage deflections across the apical and basolateral cell membranes following transepithelial current injection. In addition, the magnitude of cellular and luminal cable interactions was evaluated, by comparing the spatial decay of voltage deflections in the cell and in the lumen following intracellular current injection. The combined cell membrane resistance (R a +R bl ) is between one to two orders of magnitude greater than the paracellular resistance. This result supports the view that theNecturus proximal tubule is a leaky epithelium.  相似文献   

14.
We summarize the results of study of the properties of two models of transimmortalized proximal tubule epithelial cells derived from the kidneys of transgenic mice harboring the SV40 large T and little t antigens/L-pyruvate kinase hybrid gene. The two cell lines, reffered to as PKSV-PCT and PKSV-PR cells, maintained for long-term passages the main biochemical and functional properties from the convoluted and terminal parts of the proximal tubule, respectively from which they were derived. In PKSV-PCT cells, gentamicin induced lysosomal alkalinization, decreased the cellular N-acetyl--D-glucuronidase, and stimulated its secretion in a dose-dependent manner. The results indicate that these models of mouse proximal cultured cells could be suitable models for the study of the cellular action of drugs.Abbreviations MDR multidrug resistance - NAG N-acetyl--D-glucuronidase - PGP P-glycoprotein  相似文献   

15.
Autophagy plays an essential role in cellular homeostasis through the quality control of proteins and organelles. Although a time-dependent decline in autophagic activity is believed to be involved in the aging process, the issue remains controversial. We previously demonstrated that autophagy maintains proximal tubular cell homeostasis and protects against kidney injury. Here, we extend that study and examine how autophagy is involved in kidney aging. Unexpectedly, the basal autophagic activity was higher in the aged kidney than that in young kidney; short-term cessation of autophagy in tamoxifen-inducible proximal tubule-specific autophagy-deficient mice increased the accumulation of SQSTM1/p62- and ubiquitin-positive aggregates in the aged kidney. By contrast, autophagic flux in response to metabolic stress was blunted with aging, as demonstrated by the observation that transgenic mice expressing a green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3B fusion construct, showed a drastic increase of GFP-positive puncta in response to starvation in young mice compared to a slight increase observed in aged mice. Finally, proximal tubule-specific autophagy-deficient mice at 24 mo of age exhibited a significant deterioration in kidney function and fibrosis concomitant with mitochondrial dysfunction as well as mitochondrial DNA abnormalities and nuclear DNA damage, all of which are hallmark characteristics of cellular senescence. These results suggest that age-dependent high basal autophagy plays a crucial role in counteracting kidney aging through mitochondrial quality control. Furthermore, a reduced capacity for upregulation of autophagic flux in response to metabolic stress may be associated with age-related kidney diseases.  相似文献   

16.
Summary Monolayers of human proximal tubule (HPT) cells, when grown on permeable supports and mounted in Ussing chambers, spontaneously display a transepithelial potential difference (PD), short-circuit current (Isc), and transepithelial specific resistance (RT). These electrical parameters were used to determine the degree of heterogeneity among independent isolates of human proximal tubule cell cultures. Seventeen independent isolates of cells were assessed, totaling 260 individual determinations of spontaneous electrical properties. On average, these cell monolayers displayed an apicalnegative PD of 1.5 ± 0.1 mV, an Isc of 2.7 ± 0.2 μA/cm2, and an RT of 480 ± 19 ohms × cm2. Each independent cell isolate, however, displayed electrical values within a narrow range, in some cases allowing isolates to be distinguished from one another. The individual isolates were also assessed for Na-coupled glucose transport, Na+,K+-ATPase activity, cAMP stimulation by parathyroid hormone (PTH), forskolin stimulation of Isc, and ouabain inhibition. With the exception of a strong correlation between Na+,K+-ATPase activity and Isc, these parameters, in contrast to electrical properties, were found to be consistent and did not reveal distinctions among the isolates. HPT cell cultures seem to consistently retain important features of proximal tubule differentiation while maintaining the variability, as demonstrated by electrical properties, that might be expected of cells isolated from a random population.  相似文献   

17.
《Autophagy》2013,9(11):1876-1886
Chronic metabolic stress is related to diseases, whereas autophagy supplies nutrients by recycling the degradative products. Cyclosporin A (CsA), a frequently used immunosuppressant, induces metabolic stress via effects on mitochondrial respiration, and thereby, its chronic usage is often limited. Here we show that autophagy plays a protective role against CsA-induced metabolic stress in kidney proximal tubule epithelial cells. Autophagy deficiency leads to decreased mitochondrial membrane potential, which coincides with metabolic abnormalities as characterized by decreased levels of amino acids, increased tricarboxylic acid (TCA) ratio (the levels of intermediates of the latter part of the TCA cycle, over levels of intermediates in the earlier part), and decreased products of oxidative phosphorylation (ATP). In addition to the altered profile of amino acids, CsA decreased the hyperpolarization of mitochondria with the disturbance of mitochondrial energy metabolism in autophagy-competent cells, i.e., increased TCA ratio and worsening of the NAD+/NADH ratio, coupled with decreased energy status, which suggests that adaptation to CsA employs autophagy to supply electron donors from amino acids via intermediates of the latter part of the TCA cycle. The TCA ratio of autophagy-deficient cells was further worsened with decreased levels of amino acids in response to CsA, and, as a result, the deficiency of autophagy failed to adapt to the CsA-induced metabolic stress. Deterioration of the TCA ratio further worsened energy status. The CsA-induced metabolic stress also activated regulatory genes of metabolism and apoptotic signals, whose expressions were accelerated in autophagy-deficient cells. These data provide new perspectives on autophagy in conditions of chronic metabolic stress in disease.  相似文献   

18.
Among kidney tubular epithelial cell types, proximal tubule cells are one of the major renal targets for xenobiotics. Several in vitro culture models have been proposed for use of proximal tubule cells for in vitro pharmacotoxicology studies. This paper reports a comparative study of the response to cephaloridine exposure of two established cell lines from pig (LLC-PK1) and rabbit (LLC-RK1) kidneys and primary cultures of rat and rabbit proximal tubule cells. These cultured cells were first compared for their levels of activity of -methylglucopyranoside transport, alkaline phosphatase, succinate dehydrogenase, and NADPH cytochrome c reductase, their glutathione-dependent activity levels, and their adenylate cyclase response pattern to stimulation by PTH and AVP. The results presented show major phenotypic differences between these four cellular models. The differences observed in glutathione-dependent mechanism activities and regulation may in part be responsible for the variability of the responses of these four cellular models when exposed to cephaloridine.Abbreviations AVP arginine vasopressin - GGT -glutamyl transpeptidase - GRED glutathione reductase - GSH glutathione - GST glutathione S-transferase - PTC proximal tubule cells - PTH parathyroid hormone - SDH succinate dehydrogenase  相似文献   

19.
Summary Normal rat kidney proximal tubule epithelial cell cultures were obtained by collagenase digestion of cortex and studied for 10 days. To assess the purity of the seeding suspension, we histochemically demonstrated γ-glutamyltranspeptidase in >95% of the starting material. To identify cell types in cultures, we investigated several markers. Cells stained positively for lectinArachis hypogaea (rat proximal tubule) and negatively forLotus tetragonolobus (rat distal tubule). Intermediate filament expression of cytokeratin confirmed the epithelial differentiation of the cultured cells. Using indirect immunofluorescence, we found that cultures were negative for vimentin and Factor VIII. Cells exhibited activities of two brush border enzymes, γ-glutamyltranspeptidase and leucine aminopeptidase, and Na+-dependent glucose transport activity. Multicellular domes were evident in the Week 2 of culture. Proliferation was studied by comparing growth factor-supplemented serum-free medium to cells grown in serum; growth enhancers included insulin, hydrocortisone, transferrin, glucose, bovine albumin, and epidermal growth factor. Cells proliferate best in medium with 5 or 10% serum and in serum-free medium supplemented with insulin, hydrocortisone, transferrin, glucose, and bovine albumin. Proliferation was assessed by determining cell number (population doublings). By light microscopy, the cells were squamous with numerous mitochondria, a central nucleus, and a rather well-defined homogeneous ectoplasm. By electron microscopy, the cells were polarized with microvilli and cell junctions at the upper surface and a thin basal lamina toward the culture dish. These data show that the proximal tubule epithelial cells retain a number of functional characteristics and that they represent an excellent model for studies of normal and abnormal biology of the renal proximal tubule epithelium. This project was supported by grant 2-R01-DK15440-16A1 from the National Institutes of Health, Bethesda, MD, and by grant N0001 4-88-K-0427 from the Department of the Navy, Washington, DC.  相似文献   

20.
Gao Y  Luo L  Liu H 《生理学报》2007,59(3):382-386
本研究旨在对Doucet等报道的定量检测大鼠单根近端肾小管Na^+-K^+-ATPase活性方法进行改进。取经过Ⅱ型胶原酶消化的大鼠肾脏皮质组织,在体视显微镜下手工分离单根近端肾小管,并测量其长度,经低渗和冻融处理后与[γ-^32P]ATP共同孵育,液闪法检测从[γ-^32P]ATP解离出的^32Pi,采用修正后的公式计算Na^+-K^+-ATPase活性。改良法与Doucet等的方法比较,测定单根近端肾小管Na^+-K^+-ATPase活性无显著性差异(P〉0.05)。改进后的方法节省试剂,操作简便、省时。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号