首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mouse resident peritoneal macrophages stimulated by purified bacterial lipopolysaccharide (LPS) produced both prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2), the latter detected as its stable metabolite, 6-keto PGF. Maximum production, induced in each case by 1 ng/ml purified LPS, was in the range of 10−7M for PGI2 and 3 × 10−8M for PGE2. A quantitatively similar increase in intracellular levels of macrophage cyclic AMP (measured on a whole cell basis), with a similar duration of effect, was stimulated by PGE2 and PGI2; however, only PGE2 had a negative regulatory effect on macrophage activation for tumor cell killing. These data confirm that more than a whole cell increase in the concentration of cyclic AMP is needed to shut off nonspecific tumor cell killing mediated by LPS-activated resident peritoneal macrophages.  相似文献   

2.
Rat anterior pituitary explants were incubated with PGI2, PGH2 and PGE2 in the presence of theophylline (1mM) and the production of cyclic AMP was measured. PGE2 was found to be about 20 times more potent than PGI2 while PGH2 was slightly more effective than PGI2. The results suggest that PGI2 does not play a physiological role in cyclic AMP mediated events in the rat anterior pituitary.  相似文献   

3.
The ability of prostaglandin I2 (PGI2) to stimulate cyclic AMP production by granulosa cells, isolated from intact immature rats, has been demonstrated in vitro. The minimal effective dose was 15 ng/ml, which was comparable to the minimal effective dose for PGE2. However, a concentration of 15 μg/ml PGI2 was required to stimulate cyclic AMP production maximally, compared to a concentration of 1 μg/ml PGE2, which produced the maximum response. It therefore appears that PGI2 is not more effective than PGE2 in stimulating cyclic AMP production in granulosa cells, and is possibly less effective. Submaximal concentrations of PGI2 appeared to be able to modify the stimulation of cyclic AMP production by follicle- stimulating hormone (FSH), but whether or not PGI2 plays any role in follicular function remains to be established.  相似文献   

4.
Rat anterior pituitary explants were incubated with PGI2, PGH2 and PGE2 in the presence of theophylline (1mM) and the production of cyclic AMP was measured. PGE2 was found to be about 20 times more potent than PGI2 while PGH2 was slightly more effective than PGI2. The results suggest that PGI2 does not play a physiological role in cyclic AMP mediated events in the rat anterior pituitary.  相似文献   

5.
The effect of PGE2 on the conversion of 25-hydroxyvitamin D3 (25 OH D3) to 1,25-dihydroxyvitamin D3 (1,25- (OH) 2D3) by isolated renal tubules from vitamin D deficient chicks was studied under a variety of experimental conditions. In the absence of added vitamin D metabolites, PGE2 (2 × 10−6M) caused an immediate inhibition of formation of 1,25-(OH) 2D3, followed by a delayed stimulation, apparent after 15 h exposure to PGE2. Pretreatment of the tubules with 1,25-(OH) 2D3 prevented the immediate inhibitory action of PGE2, and allowed the stimulation to be apparent after 4 h exposure to PGE2. The cyclic nucleotide phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine (IBMX) significantly stimulated the formation of 1,25-(OH) 2D3. PGE2 significantly inhibited 1,25-(OH) 2D3 formation in tubules which had been stimulated by IBMX. PGE2 stimulated the adenylate cyclase activity in a crude particulate fraction from the chick kidney, and raised cyclic adenosine 3′, 5′-monophosphate (cyclic AMP) levels in the renal tubules.It is concluded that PGE2 can either stimulate or inhibit 1,25-(OH) 2D3 formation in chick renal tubules. The stimulatory effect may be partly due to elevation of cyclic AMP. The mechanism of the inhibitory effect requires further investigation.  相似文献   

6.
The mechanism of the stimulatory effect of prostaglandin (PG) F on the production of hexosamine-containing substances by cultured fibroblasts was studied with special reference to adenosine 3′:5′- cyclic monophosphate (cAMP). At the stationary phase, the cells were exposed for 6 hrs to PGF, E1, cAMP or dibutyryl-cAMP in a wide range of concentrations. cAMP itself showed a slight stimulation on the production of hexosamine-containing substances, and the effect was enhanced by using the dibutyryl derivative. PGF had much a greater capacity than either the exogeneous cAMP or the dibutyryl-cAMP for enhancing the production of hexosamine-containing substances. To know whether cAMP is involved in the stimulatory effect of PGF, intracellular cAMP level was concomitantly measured in both PGF and PGE1 treated cultures. Although the cellular cAMP level in PGE1 treated cultures was much higher than that in the PGF treated cultures, the stimulatory effect on the production of hexosamine-containing substances in PGE1 treated cultures was always much smaller than that in the PGF treated cultures. Moreover, PGF had a significant stimulatory effect on the production of hexosamine-containing substances even at a low concentration as 100 pg/ml, which is small enough not to increase any cellular cAMP level. From these results, it was concluded that the stimulatory effect of PGF on the production of hexosamine-containing substances by cultured fibroblasts is not mediated by cAMP and is caused by a mechanism different from that caused by cAMP.  相似文献   

7.
Prostacyclin (PGI2) dose-dependently increases the adenosine 3′,5′-cyclic monophosphate (cyclic AMP) levels in canine femoral, carotid, and canine and bovine coronary arteries. The prostacyclin-stimulation is enhanced by phosphodiesterase inhibitors, and is readily measurable after 60 sec incubation. The prostaglandin endoperoxide PGH2, but not PGH1, also elevates cAMP levels in femoral arteries. Inhibition of arterial prostacyclin synthetase with 28 μM 9,11-azoprosta-5,13-dienoic acid (azo analog I) blocks the PGH2-stimulation of cAMP accumulation. Azo analog I does not attenuate a direct PGI2 stimulation, indicating that the PGH2 dependent elevation of cAMP is due to conversion of PGH2 to PGI2 by the artery. PGI2 and PGE1 increase cyclic AMP levels and relax dog femoral and bovine coronary arteries, while PGE2, which actually contracts bovine coronary arteries, has no effect on arterial cyclic AMP levels. The significance of the PGI2-stimulation of arterial cyclic AMP is not known, but it is probably related to relaxation of arterial strips.  相似文献   

8.
Effects of prostaglandin E1(PGE1) and prostaglandin I2(PGI2) on the mechanical activity and tissue cyclic AMP content of the longitudinal muscle of rabbit intestine were examined, comparing that of isoproterenol. PGE1 or PGI2 caused a contraction and did not affect the tissue cyclic AMP content. Isoproterenol caused a relaxation and increasedtissue cyclic AMP content.  相似文献   

9.
The effect of adenosine on the mouse thymocyte adenylate cyclase-adenosine 3′:5′-monophosphate (cyclic AMP) system was examined. Adenosine, like prostaglandin E1, can cause 5-fold or greater increases in thymocyte cyclic AMP content in the presence but not in the absence of certain cyclic phosphodiesterase inhibitors. Two non-methylxanthine inhibitors potentiated the prostaglandin E1 and adenosine responses, while methylxanthines selectively inhibited the adenosine response. Adenosine increased cyclic AMP content significantly wihtin 1 min and was maximal by 10 to 20 min with approx. 2 and 10 μM adenosine being minimal and half-maximal effective doses, respectively. Combinations of prostaglandin E1, isoproterenol and adenosine were near additive and not synergistic. Of the adenosine analogues tested, only 2-chloro- and 2-fluoroadenosine significantly increased cyclic AMP. Thymocytes prelabeled with [14C] adenine exhibited dramatic increases in cyclic [14C]AMP 10 min after addition of adenosine or prostaglandin E1 which corresponded to simultaneously determined increases in total cyclic AMP. Using [14C]adenosine, the percent of total cyclic AMP increase due to adenosine was only 16%. Adenosine was also shown to elicit a 40% increase in particulate thymocyte adenylate cyclase activity. Therefore, the increased content of cyclic AMP seen in mouse thymocytes after incubation with adenosine was due primarily to stimulation of adenylate cyclase and only partially to conversion of adenosine to cyclic AMP. The increased cellular content of cyclic AMP may be, in part, responsible for various immunosuppressive effects of adenosine.  相似文献   

10.
Intracerebroventricular administration of PGI2 or PGE2 reduced aconitine-induced cardiac arrhythmia in rats. PGF had no antiarrhythmic effect under the same conditions. The ED50 values of PGI2 and E2 were 0.25 μg/kg and 1.1 μg/kg, respectively. Central mechanisms may participate in the antiarrhythmic effect of these PGs.  相似文献   

11.
The antithrombotic effect of topical application of the 3-oxamethano-prostaglandin (PG) I1 analog, SM-10902 in the microcirculation and in vitro antiplatelet functions of its active form SM-10906 were estimated in comparison with PGI2 and PGE1. In rat platelets, SM-10906 evoked accumulation of intracellular cyclic adenosine 3′,5′-monophosphate, and exhibited antiaggregatory and disaggregatory activities, which were all enhanced by the phosphodiesterase inhibitor theophylline. Additionally, SM-10906 was shown to inhibit platelet adhesion to collagen in human platelet-rich plasma. PGI2 and PGE1 also showed in vitro antiplatelet effects in the order of PGI2 > SM-10906 ≥ PGE1. SM-10902 exhibited a dose-dependent antithrombotic effect in the guinea pig mesenteric arteriole by a topical application, and this activity might be exerted by the antiplatelet functions of SM-10906. Although SM-10906, PGI2 and PGE1 also showed the antithrombotic effects, SM-10902 was the most potent. In conclusion, the present studies indicate that an external topical preparation of SM-10902 may be useful for the therapy of peripheral circulatory insufficiency.  相似文献   

12.
The effect of several inhibitors of the enzyme cyclic 3′,5′-AMP phosphodiesterase as chemoattractants in Physarum polycephalum was examined. Of the compounds tested, 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Roche 20-1724/001) and 1-ethyl-4-(isopropylidinehydrazino)-1H-pyrazolo-(3,4-b)-pyridine-5-carboxylic acid ethyl ester, hydrochloride (Squibb 20009) were the most potent attractants. 3-Isobutyl-1-methyl xanthine, theophylline, and morin (a flavanoid) were moderate attractants and sometimes gave negative chemotaxis at high concentrations. Cyclic 3′,5′-AMP was an effective, but not potent attractant. A repellent effect following the positive chemotactic action was sometimes observed with cyclic 3′,5′-AMP at concentrations as high as 1 · 10−2 M. Dibutyryl cyclic AMP appeared to be a somewhat more potent attractant than cyclic 3′,5′-AMP. The 8-thiomethyl and 8-bromoderivatives of cyclic AMP, which are poorly hydrolyzed by the phosphodiesterase, were not attractants in Physarum. Possible participation of cyclic 3′,5′-AMP in the directional movement in P. polycephalum is discussed.  相似文献   

13.
Prostaglandin (PG)F, E2, D2 and 6-keto-F were determined in human cerebrospinal fluid by a mass spectrometric technique. The samples were obtained from 12 patients with suspected intracranial disease. A 64 fold variation in PG levels was observed. The major PG was 6-keto-F (0.12–15 ng/ml). PGF and PGE2 were present in lower concentrations PGD2 was below the level of detection (0.05 ng/ml) except in one patient with extremely high total levels of PGs.  相似文献   

14.
The role of the central nervous system (CNS) in the antiarrhythmic effects of prostaglandins (PGs) E2, F, and I2 was studied by administering each agent into the left lateral cerebral ventricle (i.c.v. administration) of chloralose-anesthetized cats. The cardiac arrhythmias were produced by intravenous (i.v.) infusion of ouabain (1 μg/kg/min). The PGs E2, F and I2 on i.c.v. administration in the dose range of 1 ng to 10 μg failed to inhibit ouabain-induced cardiac arrhythmias. However, when infused i.v., PGE2 (1 μg/kg/min), PGF (5 μg/kg/min), and PGI2 (2 μg/kg/min) effectively suppressed these arrhythmias. The standard antiarrhythmic drug propanolol (0.5–8.0 mg)oni.c.v.administration also significantly reduced the ouabain-induced cardiac arrhythmias. It is suggested that the CNS is not the site of action of PGs E2, F, and I2 in antagonising the ouabain-induced cardiotoxicity in cats.  相似文献   

15.
WI-38 lung diploid fibroblasts repond to protaglandin E1 with increased levels of cyclic adenosine 3′:5′-monophosphate. This increase is affected by cell density in two ways: (a) The initial rate of accumulation of intracellular cyclic AMP increases with increasing cell density. (b) However, the elevated levels of cyclic AMP are more stably maintained in lower-density cells, and this stability decreases with increasing cell density. Cyclic AMP phosphodiesterase activities, as well as the efflux of intracellular cyclic AMP into the medium are simelar at all cell densities.  相似文献   

16.
Prostaglandins (PG)I2, PGE2 and 6-keto PGF1α were infused directly into the gastric arterial supply at 10−9, 10−8 and 10−7 g/kg/min during an intra-gastric artery pentagastrin infusion in anesthetized dogs. 6-keto PGF1α was also infused at 10−6 g/kg/min. Gastric arterial blood flow was measured continuously with a non-cannulating electromagnetic flow probe and gastric acid collected directly from the stomach. PGI2 and PGE2 produced similar dose-dependent increases in blood flow with an increase of more than four-fold at the highest dose. Both PGs inhibited acid output over this dose range with PGE2 having 10 times the potency of PGI2. 6-keto PGF1α was at least 1000 times less active than PGI2 or PGE2 at increasing blood flow and failed to inhibit acid output even at 10−6 g/kg/min.  相似文献   

17.
Several bisdeoxy PGE1 analogs are potent, competitive antagonists of PGE1-induced colonic contractions in the gerbil. The efficacy of these analogs in antagonizing PGE1-mediated systemic vasodepression has not been previously demonstrated. In this study, serial doses of PGs were administered before, during and after infusion of d,1–11, 15-bisdeoxy PGE1. Bolus injections of PGE1 (3.0 μk/kg), PGE2 (3.0 μg/kg) and PGI2 (0.3 μg/kg) were administered via the right external jugular vein to male Wistar rats. PGE1, PGE2 and PGI2 decreased systemic arterial pressure 41%, 38% and 38%, respectively. The PGE1 analog was infused (200 μg/kg/min) through the right common carotid artery. The analog itself had no effect on mean systemic arterial pressure, but maximum reversible inhibition (51%) of PGE1-mediated vasodepression occurred following a 50 minute infusion. No significant effect of the PGE1 analog was observed on PGE2 or PGI2-mediated vasodepression. These data demonstrate the ability to antagonize PGE1-mediated vasodepression, and to differentiate the vascular responses to PGE1 and PGE2 or PGI2.  相似文献   

18.
It has been shown in vitro that the lamb ductus arteriosus forms prostaglandins PGE2, PGF2α, 6 keto PGF1α (and its unstable precursor PGI2). In this study the relative potencies of these endogenous prostaglandins were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2 and indomethacin. All the prostaglandins (except PGF2α) relaxed the vessel. This is consistent with the hypothesis that endogenous prostaglandins inhibit the tendency of the vessel to contract in response to oxygen. Only PGE2, however, relaxed the vessel at concentrations below 10−8M. PGI2 and 6 keto PGF had approximately 0.001 and 0.0001 times the activity of PGE2. Although PGE2 has been observed to be a minor product of prostaglandin production in the lamb ductus arteriosus, the tissue's marked sensitivity to PGE2 might make it the most significant prostaglandin in regulating the patency of the vessel.  相似文献   

19.
We have investigated the direct effects of prostaglandins E1, E2, F and D2 on renin release from rabbit renal cortical slices. Prostaglandin E1 (PGE1) was the most potent stimulant of renin release, while PGE2 was 20–30 fold less active. PGF was found not to be an inhibitor of renin release as reported by others, but rather a weak agonist. PGD2 up to a concentration of 10 μg/ml had no activity in this system. That the stimulation of renin release by PGE1 is a direct effect is supported by the finding that PGE1-induced release is not blocked by L-propranolol or by Δ5,8,11,14-eicosatetraynoic acid (ETYA), a prostaglandin synthesis is inhibitor. The fatty acid precursor of PGE1, Δ8,11,14-eicosatrienoic acid, also stimulated renin release, an effect which was blocked by ETYA. In addition to the above findings, ethanol, a compound frequently used to dissolve prostaglandins, was shown to inhibit renin release.  相似文献   

20.
The actions of prostacyclin (PGI2) and its stable metabolite 6-OXO-PGF were investigated in strips of normal human uterus and in fallopian tubes.Both compounds were also compared with natural prostaglandins (PGE2, PGF and PGD2).PGI2 showed biphasic response both in uterus and fallopian tubes qualitatively and quantitatively similar to that induced by PGE2 and PGD2; prostacyclin was also able to inhibit the spasmus induced by PGF but not that induced by BaCl2 and vasopressin.6-OXO-PGF on the other hand induced only small contractions on both tissues investigated.The authors discusse the possible implication of these findings in the physiology of the reproductive system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号