首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A series of novel ligands based on the diaryl anilide (DAA) class of translocator protein (TSPO) ligands was synthesised and evaluated as potential positron emitting tomography (PET) ligands for imaging TPSO in vivo. Fluorine-18 labelling of the molecules was achieved using direct radiolabelling or synthon based labelling approaches. Several of the ligands prepared have promising profiles as potential TSPO PET imaging ligands and will be evaluated further as potential clinical imaging agents.  相似文献   

2.
A series of novel TSPO ligands based on the tetracyclic class of translocator protein (TSPO) ligands first described by Okubo et al. was synthesised and evaluated as potential positron emitting tomography (PET) ligands for imaging TPSO in vivo. Fluorine-18 labelling of the molecules was achieved using direct radiolabelling or synthon based labelling approaches. Several of the ligands prepared have promising profiles as potential TSPO PET imaging ligands.  相似文献   

3.
This paper compares proteomic interaction-types and binding-effectiveness of secretory chorionic ligands (including pPAGs) with other proteins, i.e. gonadotropin membrane receptors (Rc) isolated from luteal-phase corpora lutea, uterine myometrium and endometrium of cyclic (cCLRc, cMYORc and cENDRc) or pregnant (pCLRc, pMYORc and pENDRc) pigs. Binding-effectiveness of miscellaneous in vitro-produced chorionic ligands (+pPAGs) was compared by radioreceptor assay (RRA) with endometrial (END) proteins of cyclic, pseudopregnant and pregnant gilts - as negative control ligands and porcine LH and hCG - as positive control ligands. The binding-comparison suggests that the pPAGs may play an important role as potential antiluteolytic or luteoprotective chorionic-origin signals during pregnancy, according to the binding-effectiveness of secretory chorionic ligands (+pPAGs) that was relatively comparable to LH/hCG - as classical ligands competing for luteal and uterine gonadotropin receptors of cyclic and pregnant pigs.  相似文献   

4.
Autocrine, paracrine and juxtacrine signaling by EGFR ligands   总被引:4,自引:0,他引:4  
Singh AB  Harris RC 《Cellular signalling》2005,17(10):1183-1193
Receptor and cytoplasmic protein tyrosine kinases play prominent roles in the control of a range of cellular processes during embryonic development and in the regulation of many metabolic and physiological processes in a variety of tissues and organs. The epidermal growth factor receptor (EGFR) is a well-known and versatile signal transducer that has been highly conserved during evolution. It functions in a wide range of cellular processes, including cell fate determination, proliferation, cell migration and apoptosis. The number of ligands that can activate the EGF receptor has increased during evolution. These ligands are synthesized as membrane-anchored precursor forms that are later shed by metalloproteinase-dependent cleavage to generate soluble ligands. In certain circumstances the membrane anchored isoforms as well as soluble growth factors may also act as biologically active ligands; therefore depending on the circumstances these ligands may induce juxtacrine, autocrine, paracrine and/or endocrine signaling. In this review, we discuss the different ways that EGFR ligands can activate the receptor and the possible biological implications.  相似文献   

5.
PDZ domains in general, and those of PSD-95 in particular, are emerging as promising drug targets for diseases such as ischemic stroke. We have previously shown that dimeric ligands that simultaneously target PDZ1 and PDZ2 of PSD-95 are highly potent inhibitors of PSD-95. However, PSD-95 and the related MAGUK proteins contain three consecutive PDZ domains, hence we envisioned that targeting all three PDZ domains simultaneously would lead to more potent and potentially more specific interactions with the MAGUK proteins. Here we describe the design, synthesis and characterization of a series of trimeric ligands targeting all three PDZ domains of PSD-95 and the related MAGUK proteins, PSD-93, SAP-97 and SAP-102. Using our dimeric ligands targeting the PDZ1-2 tandem as starting point, we designed novel trimeric ligands by introducing a PDZ3-binding peptide moiety via a cysteine-derivatized NPEG linker. The trimeric ligands generally displayed increased affinities compared to the dimeric ligands in fluorescence polarization binding experiments and optimized trimeric ligands showed low nanomolar inhibition towards the four MAGUK proteins, thus being the most potent inhibitors described. Kinetic experiments using stopped-flow spectrometry showed that the increase in affinity is caused by a decrease in the dissociation rate of the trimeric ligand as compared to the dimeric ligands, likely reflecting the lower probability of simultaneous dissociation of all three PDZ ligands. Thus, we have provided novel inhibitors of the MAGUK proteins with exceptionally high affinity, which can be used to further elucidate the therapeutic potential of these proteins.  相似文献   

6.
Selective separation of chymotrypsinogen using anti-chymotrypsinogen-antibodies as affinity ligands was realized in reverse micellar system composed of a nonionic surfactant tetra-oxyethylenemonodecylether. Antibodies as affinity ligands were immobilized in reverse micelles by combining cholesteryl groups covalently. Selective separation of proteins using bioaffinity ligands was extended to antigen-antibody reaction system, which enables us to choose any kind of target proteins.  相似文献   

7.
Affinity partitioning and extraction of proteins.   总被引:1,自引:0,他引:1  
Affinity partitioning of enzymes and plasma proteins in aqueous two-phase systems has been reviewed. Besides basic theoretical considerations of the principle of affinity partitioning the chemistry of coupling ligands to the polymers, the nature and properties of selected biomimetic ligands like dye-ligands, immunoligands, metal chelate ligands and hydrophobic ligands are reported. The usefulness of affinity partitioning for studying the affinity of ligands and their specificity to proteins has been demonstrated by selected examples. The method proved also applicable to study the structural dynamics of proteins as exemplified with phosphofructokinase from baker's yeast and human alpha-2-macroglobulin. The current knowledge of metal chelate affinity partitioning is presented as well as the applicability of affinity partitioning for the purification of enzymes.  相似文献   

8.
Rotenone-sensitive, uncoupler-insensitive, NADH-dependent respiration was demonstrated in osmotically inactive fragments of the mitochondrial inner-membrane obtained following high amplitude (spontaneous) swelling. This NADH-dependent respiration as well as mitochondrial ATPase activity was stimulated by ligands which are known to be transported by specific transporters/mechanisms. The ligands capable of this anomalous respiratory control included several intermediates of the citric acid cycle, besides non-metabolizable ligands including lactate, cations such as K+ and Ca2+. The interaction between NADH-dependent respiration and these ligands, as manifested by stimulation of respiration, was strongly ionic strength-dependent. The thermodynamic relationship between respiratory control and stimulation of transport ATPase by the relevant transportable ligands could also be demonstrated in the conventional (rat liver) microsomes. These experimental results offer a novel experimental base for search into an intra-membranous mechanism of energy transduction.  相似文献   

9.
Abstract

Similar to other neuroreceptors of the vertebrate central nervous system, the nicotinic acetylcholine receptor (nAChR) is subject to modulatory control by allosterically acting ligands. Of particular interest in this regard are allosteric ligands that enhance the sensitivity of the receptor to its natural agonist acetylcholine (ACh), as such ligands could be useful as drugs in diseases associated with impaired nicotinic neurotransmission. Here we discuss the action of a novel class of nAChR ligands which act as allosterically potentiating ligands (APL) on the nicotinic responses induced by ACh and competitive agonists. In addition, APLs also act as noncompetitive agonists of very low efficacy, and as direct blockers of ACh-activated channels. These actions are observed with nAChRs from brain, muscle and electric tissue, and they depend on the structure of the APL and the concentration range applied. We focus here on Torpedo nAChR because (i) the unusual pharmacology of these ligands was first discovered with this system, and (ii) large quantities of this receptor are readily available for biochemical studies.  相似文献   

10.
Toll-like receptors (TLRs) recognize evolutionarily-conserved molecular patterns originating from invading microbes. In this study, we were interested in determining if microbial ligands, which use distinct TLR2-containing receptor complexes, represent unique signals to the cell and can thereby stimulate unique cellular responses. Using the TLR2 ligands, R-FSL1, S-FSL1, Pam2CSK4, Pam3CSK4, and lipoteichoic acid (LTA), we demonstrate that these ligands activate NF-κB and MAP Kinase pathways with ligand-specific differential kinetics in murine macrophages. Most strikingly, LTA stimulation of these pathways was substantially delayed when compared with the other TLR2 ligands. These kinetics differences were associated with a delay in the LTA-induced expression of a subset of genes as compared with another TLR2 ligand, R-FSL1. However, this did not translate to overall differences in gene expression patterns four hours following stimulation with different TLR2 ligands. We extended this study to evaluate the in vivo responses to distinct TLR2 ligands using a murine model of acute inflammation, which employs intravital microscopy to monitor leukocyte recruitment into the cremaster muscle. We found that, although R-FSL1, S-FSL1, Pam2CSK4, and Pam3CSK4 were all able to stimulate robust leukocyte recruitment in vivo, LTA remained functionally inert in this in vivo model. Therefore distinct TLR2 ligands elicit unique cellular responses, as evidenced by differences in the kinetic profiles of signaling and gene expression responses in vitro, as well as the physiologically relevant differences in the in vivo responses to these ligands.  相似文献   

11.
Acquisition and homeostasis of micronutrients such as iron (Fe) and zinc (Zn) pose specific challenges. Poor solubility and high reactivity require controlled synthesis and supply of ligands to complex these metals extracellularly and intracellularly. Cytosolic labile pools represent only a minute fraction of the total cellular content. Several low‐molecular‐weight ligands are known in plants, including sulfur ligands (cysteine and peptides), nitrogen/oxygen ligands (S‐adenosyl‐l ‐methionine‐derived molecules and histidine), and oxygen ligands (phenolics and organic acids). Some ligands are secreted into the extracellular space and influence the phytoavailability of metal ions. A second principal function is the intracellular buffering of micronutrients as well as the facilitation of long‐distance transport in xylem and phloem. Furthermore, low‐molecular‐weight ligands are involved in the storage of metals, predominantly in vacuoles. A detailed molecular understanding is hampered by technical limitations, in particular the difficulty to detect and quantify cellular metal–ligand complexes. More, but still too little, is known about ligand synthesis and the transport across membranes, either with or without a complexed metal. Metal ligands have an immediate impact on human well‐being. Engineering metal ligand synthesis and distribution in crops has tremendous potential to improve the nutritional quality of food and to tackle major human health risks.  相似文献   

12.
13.
Structural and mechanistic determinants of affinity of streptavidin-binding peptide ligands discovered by phage display are reviewed along with the use of streptavidin as a paradigm for structure-based design. A novel way of producing protein-dimerizing ligands in the streptavidin model system is discussed, in which crystal packing topochemically mediates or even catalyzes dimerization of adjacent bound ligands whose reactive ligating groups are presented toward one another in productive orientations in the crystal lattice. Finally, through crystallography on a set of streptavidin complexes with small molecule and peptide ligands at multiple pHs in two space groups, the mechanism by which ligands enhance intersubunit stabilization of the streptavidin tetramer is probed.  相似文献   

14.
15.
Niemann-Pick type C1-like 1 (NPC1L1) is an intestinal cholesterol transporter that is known to be the target of the cholesterol absorption inhibitor ezetimibe. We previously discovered steroidal NPC1L1 ligands by using a novel cell-based assay that employs pharmacological chaperone effect as a readout. Those steroid derivatives bound to a site different from both the sterol-binding domain and the ezetimibe-binding site, implying that they may be a novel class of NPC1L1 inhibitors with a distinct mode of action. As an extension of that work, we aimed here to find non-steroidal NPC1L1 ligands, which may be better candidates for clinical application than steroidal ligands, by using the same assay to screen our focused library of ligands for liver X receptor (LXR), a nuclear receptor that recognizes oxysterols as endogenous ligands. Here we describe identification of a novel class of NPC1L1 ligands with a ring-fused quinolinone scaffold, and an analysis of the structure–activity relationships of their derivatives as NPC1L1 ligands.  相似文献   

16.
The potential for the use of affinity ligands in expanded bed adsorption (EBA) procedures is reviewed. The use of affinity ligands in EBA may improve its use in direct recovery operations, as the enhanced selectivity of the adsorbent permits selective capture of the target from complex feedstocks and high degrees of purification. The properties of ligands suitable for use in EBA processes are identified and illustrated with examples. In addition to its use in the recovery of soluble products, such as proteins and nucleic acids, from particulate feedstocks, EBA can also be used to recover particulate entities, such as cells and packaged DNA (viruses and phages), from feedstocks. Affinity ligands coupled to appropriate chosen support materials will be required for such processes in order to achieve the necessary selectivity for the required particulate entity. The latter point is illustrated by the use of proteinaceous ligands immobilized to perfluorocarbon emulsions to achieve separations of microbial cells.  相似文献   

17.
Two classes of amino acid-derived heterocyclic progesterone receptor ligands were developed to address the metabolic issues posed by the dimethyl amide functionality of the lead compound (1). The tetrazole-derived ligands behaved as potent partial agonists, while the 1,2,4-triazole ligands behaved as potent full agonists.  相似文献   

18.
Here, we present an automatic assignment of potential cognate ligands to domains of enzymes in the CATH and SCOP protein domain classifications on the basis of structural data available in the wwPDB. This procedure involves two steps; firstly, we assign the binding of particular ligands to particular domains; secondly, we compare the chemical similarity of the PDB ligands to ligands in KEGG in order to assign cognate ligands. We find that use of the Enzyme Commission (EC) numbers is necessary to enable efficient and accurate cognate ligand assignment. The PROCOGNATE database currently has cognate ligand mapping for 3277 (4118) protein structures and 351 (302) superfamilies, as described by the CATH and (SCOP) databases, respectively. We find that just under half of all ligands are only and always bound by a single domain, with 16% bound by more than one domain and the remainder of the ligands showing a variety of binding modes. This finding has implications for domain recombination and the evolution of new protein functions. Domain architecture or context is also found to affect substrate specificity of particular domains, and we discuss example cases. The most popular PDB ligands are all found to be generic components of crystallisation buffers, highlighting the non-cognate ligand problem inherent in the PDB. In contrast, the most popular cognate ligands are all found to be universal cellular currencies of reducing power and energy such as NADH, FADH2 and ATP, respectively, reflecting the fact that the vast majority of enzymatic reactions utilise one of these popular co-factors. These ligands all share a common adenine ribonucleotide moiety, suggesting that many different domain superfamilies have converged to bind this chemical framework.  相似文献   

19.
The effects of muscimol and/or incubation temperature on the inhibition of [3H]flunitrazepam receptor binding by benzodiazepine receptor ligands were investigated. At 0 degree C muscimol decreased the Ki values for some ligands as displacers of [3H]flunitrazepam binding to brain-specific sites while increasing or having no effect on the Ki values for other ligands. The Ki values for some ligands are higher at 37 degrees C than at 0 degree C but are reduced by muscimol at both 0 degrees and 37 degrees C. In contrast, the ligands whose Ki values are increased by muscimol either decreased or did not alter the Ki values at 37 degrees C as compared to those at 0 degree C. Incubation of membranes at 37 degrees C for 30 min accelerated gamma-aminobutyric acid (GABA) release by 221% over that at 0 degree C. These results indicate that changes in incubation temperature alter benzodiazepine receptor affinity for ligands via GABA.  相似文献   

20.
Developing small molecule agonistic ligands for tyrosine kinase receptors has been difficult, and it is generally thought that such ligands require bivalency. Moreover, multisubunit receptors are difficult to target, because each subunit contributes to ligand affinity, and each subunit may have distinct and sometimes opposing functions. Here, the nerve growth factor receptor subunits p75 and the tyrosine kinase TrkA were studied using artificial ligands that bind specifically to their extracellular domain. Bivalent TrkA ligands afford robust signals. However, genuine monomeric and monovalent TrkA ligands afford partial agonism, activate the tyrosine kinase activity, cause receptor internalization, and induce survival and differentiation in cell lines and primary neurons. Monomeric and monovalent TrkA ligands can synergize with ligands that bind the p75 subunit. However, the p75 ligands used in this study must be bivalent, and monovalent p75 ligands have no effect. These findings will be useful in designing and developing screens of small molecules selective for tyrosine kinase receptors and indicate that strategies for designing agonists of multisubunit receptors require consideration of the role of each subunit. Last, the strategy of using anti-receptor mAbs and small molecule hormone mimics as receptor ligands could be applied to the study of many other heteromeric cell surface receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号