首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toll-like receptors (TLRs) play an essential role in innate immune responses and in the initiation of adaptive immune responses. Microglia, the resident innate immune cells in the CNS, express TLRs. In this study, we show that TLR3 is crucial for spinal cord glial activation and tactile allodynia after peripheral nerve injury. Intrathecal administration of TLR3 antisense oligodeoxynucleotide suppressed nerve injury-induced tactile allodynia, and decreased the phosphorylation of p38 mitogen-activated protein kinase, but not extracellular signal-regulated protein kinases 1/2, in spinal glial cells. Antisense knockdown of TLR3 also attenuated the activation of spinal microglia, but not astrocytes, caused by nerve injury. Furthermore, down-regulation of TLR3 inhibited nerve injury-induced up-regulation of spinal pro-inflammatory cytokines, such as interleukin-1β, interleukin-6, and tumor necrosis factor-α. Conversely, intrathecal injection of the TLR3 agonist polyinosine–polycytidylic acid induced behavioral, morphological, and biochemical changes similar to those observed after nerve injury. Indeed, TLR3-deficient mice did not develop tactile allodynia after nerve injury or polyinosine–polycytidylic acid injection. Our results indicate that TLR3 has a substantial role in the activation of spinal glial cells and the development of tactile allodynia after nerve injury. Thus, blocking TLR3 in the spinal glial cells might provide a fruitful strategy for treating neuropathic pain.  相似文献   

2.
3.
Hyperhomocysteinemia is regarded as an independent risk factor for cardiovascular disorders. Although renal dysfunction or failure is one of the important factors causing hyperhomocysteinemia, the role of homocysteine (Hcy) in the development of glomerulosclerosis is largely unknown. One of the key events in the pathogenesis of glomerulosclerosis is the infiltration of circulating monocytes into affected glomeruli. The objective of the present study was to investigate the effect of Hcy on the expression of monocyte chemoattractant protein-1 (MCP-1) in kidney mesangial cells and the mechanisms involved. Levels of MCP-1 and mRNA were significantly elevated in Hcy-treated rat mesangial cells. This increase was associated with activation of NF-kappaB as a result of increased phosphorylation of the inhibitor protein IkappaBalpha. Monocyte chemotactic activity in these cells was also enhanced. In addition, there was a significant elevation of superoxide anion produced by Hcy-treated cells, which preceded the increased phosphorylation of IkappaBalpha. Addition of superoxide dismutase or NF-kappaB inhibitors to the culture medium abolished Hcy-induced NF-kappaB activation and MCP-1 expression. Taken together, these results indicate that Hcy induced MCP-1 expression in mesangial cells. Such a process was mediated by oxidative stress and NF-kappaB activation. This may further aggravate renal function in patients with hyperhomocysteinemia.  相似文献   

4.
Compression and/or contusion of a peripheral nerve trunk can result in painful sensations. It is possible that release of ATP into the extracellular space may contribute to this symptom. In the present study, we used real-time measurements of ATP-induced bioluminescence together with electrophysiological recordings of compound action potentials to follow changes in the extracellular ATP concentration of isolated rat spinal roots exposed to mechanical stimuli. Nerve compression for about 8 s resulted in an immediate release of ATP into the extracellular space and in a decrease in the amplitude of compound action potentials. On average, a rise in ATP to 60 nM was observed when nerve compression blocked 50% of the myelinated axons. After the compression, the extracellular concentration of ATP returned to the resting level within a few minutes. The importance of ecto-nucleotidases for the recovery period was determined by exposure of isolated spinal roots to high concentrations of ATP and by use of inhibitors of ecto-nucleotidases. It was observed that spinal roots have a high capacity for ATP hydrolysis which is only partially blocked by βγ-methylene ATP and ARL 67156. In conclusion, acute nerve compression produces an increase in the extracellular concentration of ATP and of its metabolites which may be sufficient for activation of purinergic P2 and/or P1 receptors on axons of nociceptive afferent neurons.  相似文献   

5.
6.
Rabbit neutrophil attractant/activation protein-1 (NAP-1) and monocyte chemoattractant protein-1 (MCP-1) were investigated. Rabbit spleen cells stimulated with 5 micrograms/ml of Con A produced both neutrophil and monocyte chemotactic activity. Physicochemical characteristics of those activities obtained by HPLC gel filtration and HPLC chromatofocusing were very similar to those of human NAP-1 and MCP-1, suggesting that rabbit spleen cells produce NAP-1 and MCP-1 after Con A stimulation. A cDNA library was constructed from mRNA purified from Con A-stimulated rabbit spleen cells and screened with oligonucleotide probes. By two rounds of screening, NAP-1 and MCP-1 cDNA were cloned. NAP-1 cDNA comprises 1500 bp with an open reading frame that encodes for a 101-amino acid protein highly similar to human NAP-1. MCP-1 cDNA comprises 607 bp with an open reading frame that encodes for a 124-amino acid protein highly similar to human MCP-1. Expression of NAP-1 and MCP-1 mRNA by rabbit spleen cells was studied. Both Con A- and LPS-stimulated spleen cells expressed NAP-1 and MCP-1 mRNA, but the kinetics of expression were different. Con A rapidly induced high NAP-1 and MCP-1 mRNA expression. LPS also rapidly induced NAP-1 mRNA expression, but high MCP-1 mRNA expression was not observed until 15 h after stimulation. Immunoprecipitation of metabolically labeled NAP-1 and MCP-1 with anti-human NAP-1 or MCP-1 polyclonal antibodies was attempted. Immunoprecipitated rabbit NAP-1 with a molecular mass of about 7 kDa was detected by SDS-PAGE and radioautography, but MCP-1 was not. Cloned rabbit NAP-1 and MCP-1 will give us opportunities to study the role of NAP-1 and MCP-1 in vivo.  相似文献   

7.
8.
目的:探讨脊髓自噬功能与大鼠2型糖尿病神经病理性疼痛(DNP)的关系。方法:雄性SD大鼠(42只)高糖高脂饲养8周,腹腔单次注射链脲佐菌素(STZ)制备大鼠2型糖尿病模型。两周后检测机械缩足阈值(MWT)和热缩足潜伏期(TWL),降至基础值80%以下者为2型糖尿病神经病理性疼痛大鼠,记为DNP组(24只);未降至基础值80%以下者为2型糖尿病无神经病理性疼痛大鼠,记为DA组(18只)。另取18只大鼠为对照(control,C)组,普通饲料喂养。于确定DA与DNP分组后的第3、7和14天,测定机械缩足阈值(MWT)和热缩足潜伏期(TWL),并在行为学检测结束后各组随机取6只大鼠处死,取L4~L6脊髓膨大,采用Western blot法检测自噬特异性蛋白微管相关蛋白1(Beclin-1)、微管相关蛋白1轻链3(LC3)和P62的表达。另取6只7 d DNP组大鼠采用免疫荧光双染法检测脊髓背角P62与小胶质细胞、星形胶质细胞、神经元的共表达情况。结果:连续8周喂养高糖高脂饲料的SD大鼠的血浆胰岛素水平升高,胰岛素敏感指数下调,表明出现胰岛素抵抗;在腹腔注射STZ后,血糖升高达到2型糖尿病诊断标准(≥16.7 mmol/L);与C组、DA组比较,DNP组大鼠在第3、7和14天时MWT降低,TWL缩短,并且脊髓背角LC3-Ⅱ、Beclin-1表达上调,P62表达下降(P<0.05)。免疫荧光双染色显示,P62在脊髓背角表达,主要与神经元共存,少量与小胶质细胞共存,几乎不与星形胶质细胞共表达。结论:2型糖尿病神经病理性疼痛大鼠脊髓LC3-Ⅱ、Beclin-1和P62表达的改变提示脊髓自噬功能激活;脊髓背角中神经元自噬激活在2型糖尿病大鼠DNP的发生和发展起着关键作用。  相似文献   

9.
Strong evidence for the direct modulation of the immune system by opioids is well documented. Mu-opioids have been shown to alter the release of cytokines important for both host defense and the inflammatory response. Proinflammatory chemokines monocyte chemoattractant protein-1 (MCP-1), RANTES, and IFN-gamma-inducible protein-10 (IP-10) play crucial roles in cell-mediated immune responses, proinflammatory reactions, and viral infections. In this report, we show that [D-Ala(2),N:-Me-Phe(4),Gly-ol(5)]enkephalin (DAMGO), a mu-opioid-selective agonist, augments the expression in human PBMCs of MCP-1, RANTES, and IP-10 at both the mRNA and protein levels. Because of the proposed relationship between opioid abuse and HIV-1 infection, we also examined the impact of DAMGO on chemokine expression in HIV-infected cells. Our results show that DAMGO administration induces a significant increase in RANTES and IP-10 expression, while MCP-1 protein levels remain unaffected in PBMCs infected with the HIV-1 strain. In contrast, we show a dichotomous effect of DAMGO treatment on IP-10 protein levels expressed by T- and M-tropic HIV-infected PBMCs. The differential modulation of chemokine expression in T- and M-tropic HIV-1-infected PBMCs by opioids supports a detrimental role for opioids during HIV-1 infection. Modulation of chemokine expression may enhance trafficking of potential noninfected target cells to the site of active infection, thus directly contributing to HIV-1 replication and disease progression to AIDS.  相似文献   

10.
The interaction between mesangial cells (MCs) and monocytes/macrophages (Mo/Mo) is an important pathogenic feature of glomerulonephritis. However, its mechanism is not fully elucidated. Studies to date have focused on the interactions through mediators. In the present study, to obtain insight into the mechanism of the interaction between MCs and Mo/Mo, we examined the significance of the cell to cell interaction of these cells in the context of monocyte chemoattractant protein-1 (MCP-1) expression using cell contact cultures or co-culture without contact. Our results revealed that the cellular adhesion of cultured macrophages to MCs induced the expression of MCP-1, which was mainly observed in the MCs. In addition, the induction of MCP-1 was, at least in part, mediated by nuclear factor kappa-B activation which occurs preferentially in the MCs. Because MCP-1 is suggested to play an important role in glomerulonephritis, this novel cell to cell interaction between the MCs and Mo/Mo could be important in glomerulonephritis.  相似文献   

11.
Cytokines such as interleukins are known to be involved in the development of neuropathic pain through activation of neuroglia. However, the role of chemokine (C-C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, in the nociceptive transmission remains unclear. We found that CCL-1 was upregulated in the spinal dorsal horn after partial sciatic nerve ligation. Therefore, we examined actions of recombinant CCL-1 on behavioural pain score, synaptic transmission, glial cell function and cytokine production in the spinal dorsal horn. Here we show that CCL-1 is one of the key mediators involved in the development of neuropathic pain. Expression of CCL-1 mRNA was mainly detected in the ipsilateral dorsal root ganglion, and the expression of specific CCL-1 receptor CCR-8 was upregulated in the superficial dorsal horn. Increased expression of CCR-8 was observed not only in neurons but also in microglia and astrocytes in the ipsilateral side. Recombinant CCL-1 injected intrathecally (i.t.) to naive mice induced allodynia, which was prevented by the supplemental addition of N-methyl-𝒟-aspartate (NMDA) receptor antagonist, MK-801. Patch-clamp recordings from spinal cord slices revealed that application of CCL-1 transiently enhanced excitatory synaptic transmission in the substantia gelatinosa (lamina II). In the long term, i.t. injection of CCL-1 induced phosphorylation of NMDA receptor subunit, NR1 and NR2B, in the spinal cord. Injection of CCL-1 also upregulated mRNA level of glial cell markers and proinflammatory cytokines (IL-1β, TNF-α and IL-6). The tactile allodynia induced by nerve ligation was attenuated by prophylactic and chronic administration of neutralizing antibody against CCL-1 and by knocking down of CCR-8. Our results indicate that CCL-1 is one of the key molecules in pathogenesis, and CCL-1/CCR-8 signaling system can be a potential target for drug development in the treatment for neuropathic pain.  相似文献   

12.
Increased monocyte recruitment into subendothelial space in atherosclerotic lesions is one of the hallmarks of diabetic angiopathy. The aim of this study was to determine the state of peripheral blood monocytes in diabetes associated with atherosclerosis. Diabetic patients treated with/without an oral hypoglycemic agent and/or insulin for at least 1 year were recruited (n=106). We also included 24 non-diabetic control subjects. We measured serum levels of monocyte chemoattractant protein (MCP)-1, fasting plasma glucose (FPG), HbA1c, total cholesterol, triglyceride, body mass index (BMI), high sensitivity CRP (hs-CRP) and evaluated CCR2, CD36, CD68 expression on the surface of monocytes. Serum MCP-1 levels were significantly (p<0.05) higher in diabetic patients than in normal subjects. In diabetic patients, serum MCP-1 levels correlated significantly with FPG, HbA1c, triglyceride, BMI, and hs-CRP. The expression levels of CCR2, CD36, and CD68 on monocytes were significantly increased in diabetic patients and were more upregulated by MCP-1 stimulation. Our data suggest that elevated serum MCP-1 levels and increased monocyte CCR2, CD36, CD68 expression correlate with poor blood glucose control and potentially contribute to increased recruitment of monocytes to the vessel wall in diabetes mellitus.  相似文献   

13.
14.
Accumulation of monocytes and the entrapment of oxidized-low-density lipoprotein (ox-LDL) in monocytes are important in the differentiation into "foam" macrophages and the pathogenesis of atherosclerosis. We investigated the role of monocyte chemoattractant protein-1 (MCP-1) in the expression of scavenger receptor (SCR) by using resting monocytes prepared by counterflow centrifugal elutriation. Our results showed that: (1) MCP-1 increased the expression of CD36 SCR by flow cytometric analysis. (2) MCP-1 increased incorporation of 125I-labeled ox-LDL and oil red O staining. (3) MCP-1 and ox-LDL enhanced in vitro transendothelial monocyte migration. (4) These functions were mediated at least in part via extracellular signal-regulated kinase (ERK) pathway. (5) MCP-1 and ox-LDL did not induce monocyte proliferation. Our results imply that MCP-1 is involved in the inflammatory process of atherosclerosis through the induction of SCR expression via the ERK pathway and differentiation of monocytes into foam macrophages, as well as induction of monocyte migration.  相似文献   

15.
Proteome analysis was carried out to identify the proteins associated with neuropathic pain after peripheral nerve injury. Five proteins displayed different expression levels among three groups of rats. Among these proteins, creatine kinase B expression level was lower in the pain-positive rats compared to the sham or pain-negative rats. Therefore, a lower creatine kinase B expression level may be important in the development and maintenance of neuropathic pain.  相似文献   

16.
The effect of intraperitoneal administration of tocopherol (100 mg/kg wt/24 h) on ascorbate (0.4 mM) induced lipid peroxidation of mitochondria and microsomes isolated from rat liver and testis was studied. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:6 n3 in liver and C20:4 n6 and C22:5 n6 in testis. The lipid peroxidation of liver mitochondria or microsomes produced a significant decrease of C20:4 n6 and C22:6 n3 in the control group, whereas changes in the fatty acid composition of the tocopherol treated group were not observed. The light emission was significantly higher in the control than in the tocopherol treated group. The lipid peroxidation of testis microsomes isolated from the tocopherol group produced a significant decrease of C20:4 n6 , C22:5 n6 and C22:6 n3, these changes were not observed in testis mitochondria. The light emission of both groups was similar. The treatment with tocopherol at the dose and times indicated showed a protector effect on the polyunsaturated fatty acids of liver mitochondria, microsomes and testis mitochondria, whereas those fatty acids situated in testis microsomes were not protected during non enzymatic ascorbateFe2+ lipid peroxidation. The protector effect observed by tocopherol treatment in the fatty acid composition of rat testis mitochondria but not in microsomes could be explained if we consider that the sum of C20:4 n6 + C22:5 n6 in testis microsomes is 2-fold than that present in mitochondria.  相似文献   

17.
Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.  相似文献   

18.
Recently, monocyte chemoattractant protein (MCP)-1 has been characterized as a novel adipocytokine upregulated in obesity and insulin resistance which impairs insulin signaling in muscle and fat in vitro. Growing evidence, on the other hand, suggests that increased activity of the sympathetic nervous system is an integral part in the development of insulin resistance. In the current study, the impact of the beta-adrenergic agonist isoproterenol on MCP-1 mRNA synthesis and secretion was determined in 3T3-L1 adipocytes. Interestingly, isoproterenol increased MCP-1 secretion 3-fold. Furthermore, 10 microM isoproterenol acutely induced MCP-1 mRNA by up to 5.3-fold in a time-dependent fashion with significant stimulation seen at concentrations as low as 0.3 microM effector. Studies using pharmacological inhibitors suggested that basal and isoproterenol-induced MCP-1 expressions are mediated via beta-adrenergic receptors and protein kinase A. Moreover, acute activation of adenylyl cyclase by forskolin was sufficient to mimic the effects of isoproterenol. Taken together, our results demonstrate that isoproterenol induces MCP-1 expression and secretion via a classical GS-protein-coupled pathway and support the notion that MCP-1 might be an interesting novel candidate linking obesity and insulin resistance.  相似文献   

19.
It has previously been observed that expression of chemokine monocyte chemoattractant protein-1 (MCP-1/CC chemokine ligand 2 (CCL2)) and its receptor CC chemokine receptor 2 (CCR2) is up-regulated by dorsal root ganglion (DRG) neurons in association with rodent models of neuropathic pain. MCP-1 increases the excitability of nociceptive neurons after a peripheral nerve injury, while disruption of MCP-1/CCR2 signaling blocks the development of neuropathic pain, suggesting MCP-1 signaling is responsible for heightened pain sensitivity. To define the mechanisms of MCP-1 signaling in DRG, we studied intracellular processing, release, and receptor-mediated signaling of MCP-1 in DRG neurons. We found that in a focal demyelination model of neuropathic pain both MCP-1 and CCR2 were up-regulated by the same neurons including transient receptor potential vanilloid receptor subtype 1 (TRPV1) expressing nociceptors. MCP-1 expressed by DRG neurons was packaged into large dense-core vesicles whose release could be induced from the soma by depolarization in a Ca2+-dependent manner. Activation of CCR2 by MCP-1 could sensitize nociceptors via transactivation of transient receptor potential channels. Our results suggest that MCP-1 and CCR2, up-regulated by sensory neurons following peripheral nerve injury, might participate in neural signal processing which contributes to sustained excitability of primary afferent neurons.  相似文献   

20.
目的 探讨单核细胞趋化蛋白-1(MCP-1)、高迁移率族蛋白B1(HMGB1)与溃疡性结肠炎(UC)患者肠道菌群变化的相关性。方法 选取2016年9月‒2018年1月遂宁市中心医院收治的98例UC患者资料,根据Mayo评分系统将UC患者分为活动期组(n=50)和缓解期组(n=48)。选取同期进行体检的健康人50例作为对照组。比较各组间肠道菌群,血清MCP-1、HMGB1水平,并进行Pearson相关分析。结果 活动期组患者肠道乳杆菌、双歧杆菌含量[(5.34±0.87)、(5.81±0.83)CFU/g]显著低于缓解期组和对照组[(8.07±0.86)、(8.35±0.88)CFU/g;(8.13±0.91)、(8.46±0.95)CFU/g](F=12.035,P0.05)。活动期组和缓解期组患者血清MCP-1、HMGB1水平[(267.42±23.51)、(21.35±2.26)ng/mL;(188.15±20.73)、(6.28±1.38)ng/mL]显著高于对照组[(106.38±15.92)、(2.13±0.41)ng/mL](F=84.163,P<0.001;F=25.386,P<0.001);活动期组患者血清MCP-1、HMGB1水平[(267.42±23.51)、(21.35±2.26)ng/mL]显著高于缓解期组[(188.15±20.73)、(6.28±1.38)ng/mL](t=17.676、39.641,均P<0.05)。经过Pearson相关性分析,MCP-1、HMGB1与UC患者乳杆菌、双歧杆菌含量呈负相关(r=‒0.715、‒0.659,r=‒0.703、‒0.614,均P<0.001),与大肠埃希菌、肠球菌、拟杆菌含量呈正相关(r=0.783、0.702,r=0.762、0.735,r=0.653、0.612,均P<0.001)。结论 MCP-1、HMGB1作为促炎因子可介导肠黏膜炎性反应,引起UC患者肠道菌群的紊乱。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号