首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3H 2-azido-4-nitrophenol, a photoactive uncoupler, has been synthesized, and its uncoupling action on oxidative phosphorylation and its binding to the mitochondrial membrane have been studied. The uncoupler bound covalently to the mitochondrial membrane on photoirradiation was 3–4 times that bound reversibly in the absence of light. When irradiation was carried out in the presence of serum albumin, covalent binding was significantly depressed. The pattern of loss of ATP-Pi' exchange activity with increasing amounts of the uncoupler suggests that serum albumin prevents the binding of the uncoupler to the functional sites as well. Polyacrylamide gel electrophoresis of photoaffinity labeled submitochondrial particles in the presence of sodium dodecyl sulfate revealed that a 9000 dalton peptide bound high levels of uncoupler. Other proteins in the molecular weight range of 20,000–40,000 and 55,000 were also labeled. Photolysis in the presence of serum albumin or ATP decreased the covalent binding of the uncoupler to all the proteins, but particularly to the 20,000 dalton component. Soluble ATPase and the mitochondrial proteolipid purified from labeled mitochondria showed the presence of label.Abbreviations NPA 2-azido-4-nitrophenol - DNP 2,4-dinitrophenol - DCCD N, N1-dicyclohexylcarbodiimide - AE particles=bovine heart submitochondrial particles prepared by treatment with NH4OH and EDTA at pH 8.8 - RCI respiratory control index - BSA bovine serum albumin  相似文献   

2.
In sabellid polychaetes the vitelline envelopes, in which microvilli with glycocalyx structures at the tips are invested, change in structure during oogenesis. Vitelline envelopes isolated from Schizobranchia oocytes 25–100 μ m and 160–185 μ m in diameter, were analyzed in protein components by iodination, electrophoresis, Western blotting and radioactive labeling technique. The observations demonstrate that the membrane proteins of the vitelline envelopes are not consistent but variable in components during oogenesis. Most of these proteins, particularly the high molecular weight proteins, are PAS-positive glycoproteins, which may have specific carbohydrate residues binding to wheat germ agglutinin. The proteins could be labeled with [3H]valine within 36 h by incubating the whole oocytes in sea water to a high level, indicating that the proteins are actively synthesized by the growing oocytes. Synthetic rates of the proteins differ from each other at one stage and are higher in the small than in the large oocytes in general, suggesting that the membrane proteins are involved in the function of the vitelline envelopes during oogenesis.  相似文献   

3.
Identification of Surface Proteins on Viable Plasmodium knowlesi Merozoites   总被引:3,自引:0,他引:3  
Viable merozoites of Plasmodium knowlesi were isolated and the proteins that were labeled on intact merozoites by lactoperoxidase-catalyzed radioiodination were identified. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography of Triton soluble extracts of labeled merozoites demonstrated eight major bands ranging in apparent molecular weight from 150,000 D to 22,000 D. Exposure of intact merozoites to trypsin (10 μg/ml) for 10 min resulted in the loss of the two highest molecular weight proteins (150,000 D and 105,000 D) and the appearance of two new bands at 70,000 D and 62,000 D. Trypsin treatment under these conditions also removed the receptor(s) for merozoite attachment to erythrocytes. Therefore, these high molecular weight proteins are candidates for the merozoite component that attaches to erythrocytes. There was no evidence that the labeled membrane components were serum or erythrocyte membrane components, two potential contaminants in the preparation. Anti-rhesus erythrocyte antibody did not precipitate labeled merozoite proteins. Furthermore, the immunoprecipitation of labeled merozoite proteins by rhesus anti-merozoite serum was not inhibited by erythrocyte ghosts.  相似文献   

4.
Rat liver rough microsomes were labeled enzymatically with 125I using lactoperoxidase and glucose oxidase. In intact microsomes only proteins exposed on the outside face of the microsomal membrane were iodinated. Low concentrations of detergent (0.049% deoxycholate) were used to allow entrance of the iodination system into the vesicles without disassembling the membranes. This led to iodination of the soluble content proteins and to an increased labeling of the membrane proteins. The distribution of radioactivity in microsomal proteins was analyzed after separation by sodium dodecyl sulfate acrylamide gel electrophoresis. Most membrane proteins were labeled when intact microsomes were iodinated. No major membrane proteins were exclusively labeled in the presence of low detergent concentrations or after complete membrane disassembly. Therefore it is unlikely that there are major membrane proteins, other than glycoproteins, present only on the inner membrane face or completely embedded within the microsomal membrane. Microsomal proteins were also labeled by incubating rough microsomes with [3H]-NaBH4 after reaction with pyridoxal phosphate. Microsomal membranes were permeable to these small molecular weight reagents as shown by the fact that proteins in the vesicular cavity as well as membrane proteins were labeled with this system.  相似文献   

5.
P D Wagner  R G Yount 《Biochemistry》1975,14(9):1908-1914
A purine disulfide analog of ATP, 6,6'-dithiobis(inosinyl imidodiphosphate), forms mixed disulfides with cysteine residues at what are believed to be ATP regulatory sites of myosin. Blocking these sites causes inactivation of the ATPase activity at the active sites. Two cysteine residues per head are specifically modifed by this disulfide analog. The thiopurine nucleotides can be stoichiometrically displaced from myosin by [14-C]cyanide to give a more stable thiocyanato derivative of the enzyme. [14-C]Thiocyanatomyosin (3.7 14-CN/myosin) was dissociated in 4 M urea and the individual subunits were isolated. The heavy chains each had 0.78 14-CN bound per 200,000 molecular weight unit. The light chain with molecular weight of 20,700 had 1.00 14-CN bound and the 16,500 molecular weight light chain had 0.65 14-CN bound. The two 19,000 molecular weight light chains were not labeled. The two labeled light chains have only a single cysteine which is stoichiometrically modified. These two light chains show a high degree of homology and presumably perform identical functions in myosin. Their specific modification by the purine disulfide analog and their other known properties suggest that they contribute directly to the ATP regulatory sites and may, in fact, function as regulatory subunits.  相似文献   

6.
Thioglycollate elicited peritoneal (TG-M?s) but not resident peritoneal M?s (R-M?s) were found to bind the lectin Griffonia simplicifolia isotype I-B4 (GSI-B4). This was demonstrated by ultrastructural studies and FACS analyses. Membranes from TG-M?s were isolated, separated on SDS-PAGE, electrotransferred onto nitrocellulose, and exposed to peroxidase-labeled GSI-B4. These procedures revealed two major membrane glycoproteins of molecular weights 180,000 and 94,000 daltons that bound the lectin GSI-B4 which has a specificity for recognizing terminal α-galactosyl residues. The presence of these epitopes on the two membrane glycoproteins was further substantiated by the fact that treatment of the membranes with α-galactosidase destroyed their capacity to bind GSI-B4 and that α-D-galactopyranoside but not N-acetyl-D-glucosamine competitively inhibited GSI-B4 from binding to the glycoproteins. Treatment of TG-M?s with GSI-B4 reduced the capacity of interferon (IFN) and lipopolysaccharide (LPS), or IFN alone, to induce M? mediated cytotoxicity towards tumor cells by as much as 40%. GSI-B4 also caused alterations in the pattern of biosynthetically 35S-methionine labeled secreted proteins as early as 2 hours after contact with TG-M?s. Out of 35 discernible proteins on fluorograms of SDS-PAGE separated proteins, 5 were down-regulated and 9 were enhanced. It is suggested that the two novel M? membrane proteins may play a role in regulating the response of M? subpopulations to their humoral and cellular environments.  相似文献   

7.
Glyoxysomes were isolated from etiolated cotyledons of cucumber seedlings. After separation of matrix proteins from the glyoxysomal membranes, enzymes were solubilized from the membranes by 100 mm MgCl2 and purified by sedimentation velocity centrifugation, ion exchange chromatography, and separation on hydroxylapatite. Malate synthase, citrate synthase, and malate dehydrogenase the three enzymes of the glyoxylate cycle which were primarily membrane bound in this type of microbody-were thus obtained in a homogeneous form, as judged by sodium dodecyl sulfate-gel electrophoresis. Enzymatically active malate synthase, as obtained by solubilization of membrane proteins, behaved on Sepharose 6B columns as a protein with a molecular weight of about 70,000 and is characterized by an acidic isoelectric point. Malate synthase aggregates in the presence of Mg2+ and glyoxylate, yielding an active octamer with an alkaline isoelectric point and a molecular weight of about 540,000. Upon sodium dodecyl sulfate-gel electrophoresis, a subunit molecular weight of 63,000 was estimated. Citrate synthase exists as a dimer (molecular weight of 100,000) and tetramer (molecular weight of 200,000) and exhibits the same subunit molecular weight as the liver enzyme (46,000). Malate dehydrogenase was found to have a molecular weight similar to the microbody catalase (about 225,000), while for the single peptide chain a value of approximately 34,000 was determined.  相似文献   

8.
Low molecular weight heparin of low-anticoagulant activity and high molecular weight heparin of correspondingly high activity were prepared by chromatography on protamine-Sepharose; preparations subjected to limited N-desulfation (5–10% free amino groups) by solvolysis were labeled with 5-dimethylaminonaphthalene-1-sulfonyl chloride (dansyl chloride) or rhodamine B isothiocyanate (RITC). The fluorescent heparins retained approximately 50% of the original anticoagulant activities. Dansyl-heparin on binding to antithrombin III (ATIII) exhibited a 2.5-fold enhancement of dansyl fluorescence intensity. This effect could be prevented by excess unlabeled heparin. A 7900 molecular weight dansyl-heparin preparation bound to ATIII with a stoichiometry of close to 2:1 and with an apparent association constant for binding (Ka) of 4.9 × 105, m?1, whereas a 21,600 molecular weight fraction bound at 0.7:1 with the protein and with an apparent Ka = 7.9 × 105, m?1. When ATIII reacted with a mixture of low molecular weight dansyl-heparin and low molecular weight RITC-heparin, there was enhancement of RITC fluorescence emission when excited at the dansyl excitation maximum; this effect was not observed when either of the labeled heparin species was prepared from high molecular weight material. The results are consistent with the proposal that a single molecule of high molecular weight, high-activity heparin occupies two sites when it binds to ATIII, whereas low molecular weight, low-activity heparin binds to the two sites separately.  相似文献   

9.
Ten new proteins from rice (Oryza saliva L. cv. Bahia) including four protein-synthesis inhibitors and two immunoglobulin E (IgE)-binding proteins have been isolated and characterized. These proteins as well as one previously known component, -globulin, were purified from a 0.5 M NaCl extract of rice endosperm by a new, apparently non-denaturing, isolation procedure developed for rice proteins. The method is based on extractions of this complex protein mixture with a diluted volatile salt solution and an aqueous solution of ethanol. This preliminary step results in an improvement in the separation of these proteins, thus facilitating their subsequent purification by reversed-phased high-performance liquid chromatography. These new proteins have similar relative molecular masses (Mrs) from 11000 to 17000. The purity of the proteins was analyzed by micro two-dimensional gel electrophoresis. Four of these components were found to be in-vitro protein-synthesis inhibitors in a cell-free system from rat brain. The NH2-terminal amino-acid sequences of these four inhibitors were determined from 12 to 26 cycles after direct blotting of the separated proteins from electrophoresis gels. Three of these proteins with Mrs between 16000 and 17000 showed a high degree of homology ranging from 57% to 75% but seem to be unrelated to the fourth inhibitor. In addition, the -globulin and one of the new low-molecular-weight proteins of Mr 12500 seemed to show allergenic properties since they bound IgE antibodies from the sera of hypersensitive patients. Boths proteins have blocked NH2-terminal amino acids.Abbreviations HMW high molecular weight - IgE immunoglobulin E - LMW low molecular weight - Mr relative molecular mass - PAGE polyacrylamide gel electrophoresis - RP-HPLC reversed-phase high-performance liquid chromatography - SDS sodium dodecyl sulphate We thank F. Soriano and F. Colillia for technical assistance, and Shirley McGrath for secretarial work. We also appreciate the cheerful assistance of the members of Instituto Nacional de Semillas, specially Mr. L. Solaices, who provided samples of rice. This work was supported by a grant from Comision Asesora de Investigación Ciéntifica y Técnica.  相似文献   

10.
The 70 membrane proteins of the T lymphoblast cell line CCRF-CEM were characterized by
1. 1. [35S]methionine internal radiolabeling;
2. 2. [125I]iodine labeling by a lactoperoxidase-mediated method;
3. 3. [3H]fucose internal labeling;
4. 4. binding to a lentil lectin adsorbant column;
5. 5. susceptibility to digestion with limited amounts of papain.
Of the three methods of radiolabeling membrane proteins, [35S]methionine best displayed all proteins although some individual proteins were heavily iodinated or fucosylated. Thirty proteins were externally exposed as defined by susceptibility to lactoperoxidase-mediated radio-iodination and to digestion with minute amounts of papain. Thirtyfive proteins were bound to a lentil lectin absorbant column. p44 (HLA-A and -B antigens) were iodinated, fucosylated, susceptible to papain digestion and bound to the lectin column. β2-Microglobulin was iodinated and bound to the lectin column. The identifications and functions of other membrane proteins were not known. In general, proteins of high molecular weight (100 000 to 250 000 D) were more heavily radio-iodinated and fucosylated than were proteins of lower molecular weights. p95 was the most heavily fucosylated protein, p110, which had been identified only on T lymphoblasts, was fucosylated and was iodinated. p65, which was found only on the T lymphoblast line CCRF-CEM and could represent a lymphocyte subpopulation-specific molecule, was iodinated and fucosylated. p15 and p18 were equally and densely labeled with [35S]methionine but only p18 was fucosylated and it was heavily radio-iodinated. These experiments help to define the external membrane proteins of a T lymphoblast cell line in part for the selection of proteins for isolation in order to raise antisera for immunodiagnostic and functional studies.  相似文献   

11.
T J Mueller  M Morrison 《Biochemistry》1975,14(25):5512-5516
The molecular architecture of the human erythrocyte membrane has been probed using lactoperoxidase-catalyzed iodination in conjunction with Pronase hydrolysis. Resealed, hemoglobin-free ghosts were labeled at the cytoplasmic surface and the external membrane surface was subsequently digested with Pronase. Changes in size of the components labeled at the cytoplasmic surface were readily detected by sodium dodecyl sulfate gel electrophoresis. The protein 3 molecular weight class labeled at the cytoplasmic surface was extensively hydrolyzed at the external surface to produce a major 65000 molecular weight fragment and a minor 45000 molecular weight fragment. When resealed membranes were labeled on the external surface the same 65000 molecular weight labeled component is produced. These results unequivocally demonstrate that the same polypeptides in the protein 3 molecular weight class that can be labeled by lactoperoxidase at the cytoplasmic membrane surface are digested by Pronase at the external surface and are, therefore, transmembrane components. Where it is possible to label one surface of a membrane with lactoperoxidase and reseal the membrane this procedure represents an alternate method for establishing transmembrane configuration of membrane proteins.  相似文献   

12.
Murine monoclonal antibodies to protoplast membrne antigens were generated using mouse myelomas and spleen cells from mice immunized with Nicotiana tabacum L. leaf protoplasts. For selecting antibody-secreting clones, a sensitive and rapid enzyme-linked immunosorbent assay (ELISA) for monoclonal antibody binding to immobilized cellular membrane preparations or immobilized protoplasts was developed. With intact protoplasts as immobilized antigen, the ELISA is selective for antibodies that bind to plasma-membrane epitopes present on the external surface of protoplasts. Using the membrane ELISA, a total of 24 hybridoma lines were identified that secreted antibodies to plant membrane epitopes. The protoplast ELISA and subsequent immunofluorescence studies identified four hybridoma lines as secreting antibodies which bound to the external surface of protoplasts and cells. The corresponding antigens were not species- or tissue-specific, were periodatesensitive, and were located in membranes which equilibrated broadly throughout a linear sucrose gradient. When protein blots of electrophoretically separated membrane proteins were probed with these antibodies, a band of Mr 14 kilodaltons (kDa) and a smear of bands of Mr 45–120 kDa were labeled. An additional set of three antibodies appeared by immunofluorescence to bind to the plasma membrane of broken but not intact protoplasts and labeled membranes equilibrating at a density of approx. 1.12 kg·l-1 in a linear sucrose density gradient. These classes of monoclonal antibodies enlarge the library of monoclonal antibodies (Norman et al. 1986, Planta 167, 452–459) available for the study of plant plasma-membrane structure and function.Abbreviations ELISA Enzyme-linked immunosorbent assay - Ig immunoglobulin - kDa kilodalton - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

13.
Lectins localized in the plasma membranes seem to be of special importance for the intercellular interaction mechanisms. We describe the isolation of mannose-binding proteins by Triton X-100 extraction and affinity chromatography on agarose-bound mannose. The isolation procedure was performed with whole GH3 cells as well as with isolated plasma membranes. For the isolation of plasma membranes of GH3 cells a mechanical pump was used for the disruption. After differential centrifugation an enriched plasma membrane fraction was achieved by discontinuous sucrose gradient centrifugation. The whole fractionation procedure was controlled by total balance sheets for the marker enzymes of the different cell organelles. The plasma membrane fraction was further characterized by gel electrophoresis and electron microscopy. The SDS gel electrophoresis patterns of the proteins, resulting from the Triton X-100 extraction and the affinity chromatography, are nearly identical for whole cells as well as for the enriched plasma membrane fraction. Therefore we presume these mannose-specific proteins to be plasma membrane bound, showing the molecular properties of integral proteins and having a molecular weight of Mr 67 000, 57 000, 47 000.  相似文献   

14.
Oat (Avena sativa L.) groats were labeled with radioactive leucine and salt-soluble proteins were extracted and analyzed. Polyacrylamide gel electrophoresis followed by fluorography indicated two radioactive polypeptides with molecular weight 58 to 62 kilodaltons which were similar in size to unreduced globulin α-β dimers. The role of endoplasmic reticulum in the synthesis of these globulin polypeptides was investigated by in vivo and in vitro protein synthesis studies. Labeled tissue was fractionated by centrifugation and rough endoplasmic reticulum was isolated. Two polypeptides which had molecular weights of 58 to 62 kilodaltons and were immunoprecipitable with antiglobulin immunoglobulin G were found to be transiently associated with the endoplasmic reticulum. Rough endoplasmic reticulum, as well as membrane-bound polysomes, directed the in vitro synthesis of two polypeptides with molecular weight 58 to 62 kilodaltons corresponding in size to unreduced α-β dimers and could be immunoprecipitated with antiglobulin immunoglobulin G. The translation products of free polysomes did not show this. In pulse-labeling, globulin polypeptides with molecular weight 58 to 62 kilodaltons, as well as the α + β subunits, were labeled in protein bodies.

The data suggest that oat globulin polypeptides are synthesized as higher molecular weight precursors on ER-associated polysomes. These precursors are probably transported into protein bodies and cleaved into smaller α and β subunits.

  相似文献   

15.
Dog kidney cytosol contains a high molecular weight (50 000–70 000) and a low molecular weight (approx. 6000) thyronine-binding protein. Low molecular weight cytosol thyronine-binding protein has not been previously recognized in cytoplasm. Binding of thyroxine (tetraiodothyronine, T4) by the low molecular weight protein has a half-time of association of more than 24 h and accounts for 32% of bound cytoplasmic tetraiodothyronine after 48 h of incubation. Binding of labeled tetraiodothyronine and triiodothyronine by this moiety is non-dissociable in the presence of 1 · 10?5 M unlabeled tetra- or triiodothyronine. The low molecular weight protein exists in a dispersed and apparently aggregated form; the latter elutes in the void volume on Sephadex G-100 and its generation is minimized by 2 mM Ca2+. This binding protein elutes in a fraction which has a high A260nm : A280nm ratio, is pentose enriched (orcinol method) and which, because of these characteristics and low susceptibility to digestion by nuclease, is postulated to be a ribosylated cytoplasmic protein or polypeptide.Binding of tetra- and triiodothyronine by the high molecular weight protein has a half-time of association of 2 h and is saturable. Displacement of labeled triiodothyronine from this cytosol thyronine-binding protein is more readily effected with excess unlabeled tetra- than with triiodothyronine, indicating the absence of a triiodothyronine-specific cytosol thyronine-binding protein site. 3,3′,5′-Triiodothyronine (reverse triiodothyronine) is bound with low avidity. Uptake of high molecular weight protein by isolated kidney cell nuclei cannot be demonstrated.Binding of tetraiodothyronine by cytosol proteins is independent of pH in the pH range 6.8–8.9, but binding of triiodothyronine is minimized at pH 7.4 and enhanced at alkaline pH to the point of equivalency of tetra- and triiodothyronine binding at pH 8.9.At concentrations of tetraiodothyronine calculated to exist intracellularly, essentially all soluble fraction tetraiodothyronine is bound to cytosol thyronine-binding protein, restricting access of this iodothyronine to binding sites in nucleus and mitochondria. Cytosol removes labeled tetra- and triiodothyronine previously reacted in vitro with isolated cell nuclei; such removal is a linear function of cytosol protein concentration and is blocked by saturation of cytosol thyronine-binding protein with unlabeled iodothyronines. Only the high molecular weight protein accounts for unbinding by cytosol of nuclear hormone.  相似文献   

16.
The labile iron pool (LIP) plays a role in generation of free radicals and is thus the target of chelators used for the treatment of iron overload. We have previously shown that the LIP is bound mostly to high molecular weight carriers (MW>5000). However, the iron does not remain associated with these proteins during native gel electrophoresis. In this study we describe a new method to reconstruct the interaction of iron with iron-binding proteins. Proteins were separated by native gradient polyacrylamide gel electrophoresis and transfered to polyvinilidene difluoride membrane under native conditions. The immobilized iron-binding proteins are then labeled by 59Fe using a 'titrational blotting' technique and visualized by storage phosphorimaging. At least six proteins, in addition to ferritin and transferrin, are specifically labeled in cellular lysates of human erythroleukemic cells. This technique enables separation and detection of iron-binding proteins or other metal-protein complexes under near-physiological conditions and facilitates identification of weak iron-protein complexes. Using a new native metal blotting method, we have confirmed that specific high molecular weight proteins bind the labile iron pool.  相似文献   

17.
Endogenous proteins of cell-free preparations of hen oviduct labeled from GDP-[14C]Man or from [Man-14C]oligosaccharide-lipid have been compared by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Under the conditions tested, a polypeptide chain of molecular weight about 25,000 was the principle acceptor for the oligosaccharide moiety of exogenous [Man-14C]oligosaccharide-lipid. The product labeled by [Man-14C]oligosaccharide-lipid appeared identical with one of three glycoproteins formed when GDP-[14C]Man was incubated with a crude membrane fraction. These three proteins (apparent molecular weight of 75,000, 55,000, and 25,000) accounted for nearly two-thirds of the [14C]mannose-labeled glycoprotein products using GDP-[14C]Man and either the crude membrane fraction or a total oviduct homogenate. Thus, all of the mannose acceptor proteins present in the oviduct homogenate appear to be membrane-bound. Analyses of the [Man-14C]glycoproteins labeled from GDP-[14C]Man in membrane fractions from hen kidney, liver, brain, and oviduct indicated that a labeled polypeptide of apparent molecular weight 25,000 was the only major protein product common to the four preparations.  相似文献   

18.
Hybridomas secreting monoclonal antibodies reactive with murine spermatozoa were produced by fusion of myeloma cells with spleen cells from C57BL/6J mice immunized with spermatozoa from mice of the same strain. All antisperm antibodies were of the mu (mu) immunoglobulin heavy chain class; only one (MS-1) bound S. aureus protein A. Antibody MS-1 recognized an antigen present on the sperm acrosomal cap, on the surface of cells from liver and kidney and from some cultured cell lines. The subunit molecular weight (69000) of the polypeptide reactive with MS-1 was determined by SDS-PAGE analysis of sperm membrane proteins followed by their electrophoretic transfer to nitrocellulose.  相似文献   

19.
Abstract— Proteins undergoing rapid axonal transport in the garfish olfactory nerve were examined by sodium dodecyl sulphate gel electrophoresis. The distribution of polypeptides and the extent of their labeling by transported molecules was determined in several nerve subfractions including: total particulate, total membrane, mitochondrial and two membrane subfractions rich in axolemma. The polypeptide composition of the various fractions was found to be relatively similar, with each showing a major protein with an estimated MW of 58,000. Specific differences in the concentrations of certain proteins were noted between fractions, including differences between the lower and higher density axolemma rich subfractions. Axonally transported radioactivity was predominantly localized among high molecular weight proteins, with all fractions, except mitochondrial pellet, displaying a major peak of radioactivity centered at 126,000-MW. Several major proteins including the 58,000-MW band were labeled by rapid transport to a much smaller extent. Certain labeled peaks were found to be concentrated in individual fractions, particularly a polypeptide (MW 35,000) more predominantly found in the lower density axolemma rich fraction.
Systemic labeling of the nerve is found to give a general distribution of radioactivity on gels, which is clearly different from the pattern obtained after axonal transport labeling.  相似文献   

20.
Rat liver mitochondria were incubated in vitro with radioactive leucine, and submitochondrial particles prepared by several methods. Analysis of the labeled mitochondrial membrane fractions by sodium dodecylsulfate gel electrophoresis revealed three labeled bands of molecular weights corresponding to 40,000; 27,000; and 20,000 daltons. Electrophoresis for longer times at higher concentrations of acrylamide revealed eight labeled bands, ranging in molecular weights from 48,000 to 12,000.Mitochondria were incubated for 5 min with [3H]leucine followed by a chase of unlabeled leucine. Gel electrophoresis of the membranes obtained after labeling for 5 min indicated significant synthesis of polypeptides in the 40,000 Mr, range and very little labeling of low molecular-weight polypeptides. After addition of the chase, increased synthesis of the high molecular-weight polypeptides was observed; however, no significant increase or decrease of radioactivity in the bands of low molecular-weight was observed, suggesting that rat liver mitochondria have the ability to synthesize complete proteins in the Mr 27,000–40,000 range.Approximately 16% of the total leucine incorporated into protein by isolated rat liver mitochondria in vitro could be extracted by chloroform: methanol. Gel electrophoresis of the chloroform: methanol extract revealed several bands containing radioactivity with the majority of counts in a band of 40,000 molecular weight. Gel electrophoresis of the chloroform: methanol extract of lyophilized submitochondrial particles indicated label in two broad bands in the low molecular-weight region of 14,000-10,000 with insignificant counts in the higher molecular-weight regions of the gel.Yeast cells were pulse labeled in vivo with [3H]leucine in the presence of cycloheximide and the submitochondrial particles extracted with chloroform:methanol. The extract separated after gel electrophoresis into four labeled bands ranging in molecular weight from 52,000 to 10,000. Preincubation of the yeast cells with chloramphenicol prior to the pulse labeling caused a 6-fold stimulation of labeling into the band of lowest molecular weight of the chloroform: methanol extract. These results suggest that the accumulation of mitochondrial proteins synthesized in the cytoplasm, when chloramphenicol is present in the medium, may stimulate the synthesis of certain specific mitochondrial proteins which are soluble in chloroform: methanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号