首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
We use terahertz imaging to measure four human skin scars in vivo. Clear contrast between the refractive index of the scar and surrounding tissue was observed for all of the scars, despite some being difficult to see with the naked eye. Additionally, we monitored the healing process of a hypertrophic scar. We found that the contrast in the absorption coefficient became less prominent after a few months post‐injury, but that the contrast in the refractive index was still significant even months post‐injury. Our results demonstrate the capability of terahertz imaging to quantitatively measure subtle changes in skin properties and this may be useful for improving scar treatment and management.

  相似文献   


4.
For several decades, a multitude of studies have documented the ability of Raman spectroscopy (RS) to differentiate between tissue types and identify pathological changes to tissues in a range of diseases. Furthermore, spectroscopists have illustrated that the technique is capable of detecting disease‐specific alterations to tissue before morphological changes become apparent to the pathologist. This study draws comparisons between the information that is obtainable using RS alongside immunohistochemistry (IHC), since histological examination is the current GOLD standard for diagnosing a wide range of diseases. Here, Raman spectral maps were generated using formalin‐fixed, paraffin‐embedded colonic tissue sections from healthy patients and spectral signatures from principal components analysis (PCA) were compared with several IHC markers to confirm the validity of their localizations. PCA loadings identified a number of signatures that could be assigned to muscle, DNA and mucin glycoproteins and their distributions were confirmed with antibodies raised against anti‐Desmin, anti‐Ki67 and anti‐MUC2, respectively. The comparison confirms that there is excellent correlation between RS and the IHC markers used, demonstrating that the technique is capable of detecting compositional changes in tissue in a label‐free manner, eliminating the need for antibodies.   相似文献   

5.
6.
Carbonaceous particle exposure and air pollution in general lead to a multitude of adverse human health effects and pose multiple challenges in terms of exposure, risk and safety assessment. Highly desirable for fast screening are label‐free approaches for detecting these particle types in biological or medical context. We report a powerful approach for detecting carbonaceous particles using photothermal pump‐probe microscopy, which directly probes their strong light absorption. The principle and reliability of this approach is demonstrated by examining 4 different carbon black (CB) species modeling soot with diameters ranging from 13 to 500 nm. Our results show that the proposed approach is applicable to a large number of CB types as well as black carbon. As the particles show a strong absorption over a wide spectral range as compared to other absorbing species, we can image CB particles almost background free. Our pump‐probe approach allows label‐free optical detection and unambiguous localization of CB particles in (bio)fluids and 3D cellular environments. In combination with fluorescence microscopy, this method allows for simultaneous colocalization of CB with different cellular components using fluorophores as shown here for human lung fibroblasts. We further demonstrate the versatility of pump‐probe detection in a flow cell.   相似文献   

7.
Early diagnosis of cervical cancer is essential for a good prognosis. Terahertz wave detection technology is a nondestructive and label-free physical detection technology, which can detect and monitor the cancer cells in real time, especially for patients with deep or inaccessible tumors. In this study, a single-cell-layer microfluidic device was developed. After replacing the optical clearing agent, the characteristics of H8, HeLa and SiHa cell lines in adherent and suspended states were detected. Additionally, the absorption increased with increasing cell density. For the mixed suspension cell samples, principal component analysis–support vector machine method was used to identify benign and malignant cell component. After living cells formaldehyde, changes in cell membrane permeability were evaluated to identify the cell survival status (i.e., dead or living) based on terahertz spectroscopy amplitude differences. Therefore, extending the terahertz spectrum detection to the molecular level can characterize the life essence of cells and tissues.  相似文献   

8.
Label‐free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label‐free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho‐molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr‐path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi‐wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label‐free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future.   相似文献   

9.
Stroke is a significant cause of morbidity and long‐term disability globally. Detection of injured neuron is a prerequisite for defining the degree of focal ischemic brain injury, which can be used to guide further therapy. Here, we demonstrate the capability of two‐photon microscopy (TPM) to label‐freely identify injured neurons on unstained thin section and fresh tissue of rat cerebral ischemia‐reperfusion model, revealing definite diagnostic features compared with conventional staining images. Moreover, a deep learning model based on convolutional neural network is developed to automatically detect the location of injured neurons on TPM images. We then apply deep learning‐assisted TPM to evaluate the ischemic regions based on tissue edema, two‐photon excited fluorescence signal intensity, as well as neuronal injury, presenting a novel manner for identifying the infarct core, peri‐infarct area, and remote area. These results propose an automated and label‐free method that could provide supplementary information to augment the diagnostic accuracy, as well as hold the potential to be used as an intravital diagnostic tool for evaluating the effectiveness of drug interventions and predicting potential therapeutics.  相似文献   

10.
The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time‐resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β‐sheet structure. Under constant pressure there is an optimum amount of D2O in the wet film (D2O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β‐sheet structure. Under constant amount of D2O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α‐helix, and β‐turn were quickly transformed into β‐sheet. In the second stage, random coil and β‐turn were relatively slowly transformed into β‐sheet and α‐helix, and the content of α‐helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure.  相似文献   

11.
Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistence of plasma cells in the bone marrow. The role that extracellular vesicles (EVs), microvesicles and exosomes, released by MM cells have in cell‐to‐cell communication and signaling in the bone marrow is currently unknown. This paper describes the proteomic content of EVs derived from MM.1S and U266 MM cell lines. First, we compared the protein identifications between the vesicles and cellular lysates of each cell line finding a large overlap in protein identifications. Next, we applied label‐free spectral count quantitation to determine proteins with differential abundance between the groups. Finally, we used bioinformatics to categorize proteins with significantly different abundances into functional groups. The results illustrate the first use of label‐free spectral counting applied to determine relative protein abundances in EVs.  相似文献   

12.
A rapid, simple and sensitive label‐free fluorescence method was developed for the determination of trace amounts of an important drug, heparin. This new method was based on water‐soluble glutathione‐capped CdTe quantum dots (CdTe QDs) as the luminescent probe. CdTe QDs were prepared according to the published protocol and the sizes of these nanoparticles were verified through transmission electron microscopy (TEM), X‐ray diffraction (XRD) and dynamic light scattering (DLS) with an average particle size of about 7 nm. The fluorescence intensity of glutathione‐capped CdTe QDs increased with increasing heparin concentration. These changes were followed as the analytical signal. Effective variables such as pH, QD concentration and incubation time were optimized. At the optimum conditions, with this optical method, heparin could be measured within the range 10.0–200.0 ng mL?1 with a low limit of detection, 2.0 ng mL?1. The constructed fluorescence sensor was also applied successfully for the determination of heparin in human serum. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The label‐free imaging and spectroscopy method was studied on cervical unstained tissue sections obtained from 36 patients. The native fluorescence spectra of tissues are analyzed by the optical redox ratio (ORR), which is defined as fluorescence intensity ratio between NADH and FAD, and indicates the metabolism change with the cancer development. The ORRs of normal tissues are consistently higher than those of precancer or cancerous tissues. A criterion line of ORR at 5.0 can be used to discriminate cervical precancer/cancer from normal tissues. The sensitivity and specificity of the native fluorescence spectroscopy method for cervical cancer diagnosis are determined as 100% and 91%. Moreover, the native fluorescence spectroscopy study is much more sensitive on the healthy region of cervical precancer/cancer patients compared with the traditional clinical staining method. The results suggest label‐free imaging and spectroscopy is a fast, highly sensitive and specific method on the detection of cervical cancer.   相似文献   

14.
Human mesenchymal stem/stromal cells (MSCs) have received considerable attention in the field of cell‐based therapies due to their high differentiation potential and ability to modulate immune responses. However, since these cells can only be isolated in very low quantities, successful realization of these therapies requires MSCs ex‐vivo expansion to achieve relevant cell doses. The metabolic activity is one of the parameters often monitored during MSCs cultivation by using expensive multi‐analytical methods, some of them time‐consuming. The present work evaluates the use of mid‐infrared (MIR) spectroscopy, through rapid and economic high‐throughput analyses associated to multivariate data analysis, to monitor three different MSCs cultivation runs conducted in spinner flasks, under xeno‐free culture conditions, which differ in the type of microcarriers used and the culture feeding strategy applied. After evaluating diverse spectral preprocessing techniques, the optimized partial least square (PLS) regression models based on the MIR spectra to estimate the glucose, lactate and ammonia concentrations yielded high coefficients of determination (R2 ≥ 0.98, ≥0.98, and ≥0.94, respectively) and low prediction errors (RMSECV ≤ 4.7%, ≤4.4% and ≤5.7%, respectively). Besides PLS models valid for specific expansion protocols, a robust model simultaneously valid for the three processes was also built for predicting glucose, lactate and ammonia, yielding a R2 of 0.95, 0.97 and 0.86, and a RMSECV of 0.33, 0.57, and 0.09 mM, respectively. Therefore, MIR spectroscopy combined with multivariate data analysis represents a promising tool for both optimization and control of MSCs expansion processes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:447–455, 2016  相似文献   

15.
A growing body of literature has suggested that video game playing can induce functional and structural plasticity of the brain. The underlying mechanisms, however, remain poorly understood. In this study, functional near‐infrared spectroscopy (fNIRS) was used to record prefrontal activities in 24 experienced game players when they played a massively multiplayer online battle arena video game, League of Legends (LOL), under naturalistic conditions. It was observed that game onset was associated with significant activations in the ventrolateral prefrontal cortex (VLPFC) and concomitant deactivations in the dorsolateral prefrontal cortex (DLPFC) and frontal pole area (FPA). Game events, such as slaying an enemy and being slain by an enemy evoked region‐specific time‐locked hemodynamic/oxygenation responses in the prefrontal cortex (PFC). It was proposed that the VLPFC activities during LOL playing are likely responses to visuo‐motor task load of the game, while the DLPFC/FPA activities may be involved in the constant shifts of attentional states and allocation of cognitive resources required by game playing. The present study demonstrated that it is feasible to use fNIRS to monitor real‐time prefrontal activity during online video game playing.   相似文献   

16.
The feasibility of using a polymerase chain reaction (PCR)‐based label‐free DNA sensor for the detection of Helicobacter pylori is investigated. In particular, H. pylori ureC gene, a specific H. pylori nucleic acid sequence, was selected as the target sequence. In the presence of ureC gene, the target DNA could be amplified to dsDNA with much higher detectable levels. After added the SYBR green I (SGI), the sensing system could show high fluorescence. Thus, the target DNA can be detected by monitoring the change of fluorescence intensity of sensing system. The clinical performance of this method was determined by comparing it with another conventional technique urea breath test (UBT). The result also showed good distinguishing ability between negative and positive patient, which was in good agreement with that obtained by the UBT. It suggests that the label‐free fluorescence‐based method is more suitable for infection confirmation test of H. pylori. This approach offers great potential for simple, sensitive and cost‐effective identification of H. pylori infection.  相似文献   

17.
A label‐free interferometric transducer showing a theoretical detection limit for homogeneous sensing of 5 × 10–8 RIU, being equivalent to a protein mass coverage resolution of 2.8 fg mm–2, is used to develop a high sensitive biosensor for protein detection. The extreme sensitivity of this transducer combined with a selective bioreceptor layer enables the direct evaluation of the human growth hormone (hGH) in undiluted urine matrix in the 10 pg mL–1 range.

  相似文献   


18.
Biological membranes define cells and cellular compartments and are essential in regulating bidirectional flow of chemicals and signals. Characterizing their protein content therefore is required to determine their function, nevertheless, the comprehensive determination of membrane‐embedded sub‐proteomes remains challenging. Here, we experimentally characterized the inner membrane proteome (IMP) of the model organism E. coli BL21(DE3). We took advantage of the recent extensive re‐annotation of the theoretical E. coli IMP regarding the sub‐cellular localization of all its proteins. Using surface proteolysis of IMVs with variable chemical treatments followed by nanoLC‐MS/MS analysis, we experimentally identified ~45% of the expressed IMP in wild type E. coli BL21(DE3) with 242 proteins reported here for the first time. Using modified label‐free approaches we quantified 220 IM proteins. Finally, we compared protein levels between wild type cells and those over‐synthesizing the membrane‐embedded translocation channel SecYEG proteins. We propose that this proteomics pipeline will be generally applicable to the determination of IMP from other bacteria.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号