首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents problems and solutions related to hyperspectral image pre‐processing. New methods of preliminary image analysis are proposed. The paper shows problems occurring in Matlab when trying to analyse this type of images. Moreover, new methods are discussed which provide the source code in Matlab that can be used in practice without any licensing restrictions.

The proposed application and sample result of hyperspectral image analysis.  相似文献   


2.
Traditional approaches to characterize stem cell differentiation are time‐consuming, lengthy and invasive. Here, Raman microspectroscopy (RM) and atomic force microscopy (AFM) – both considered as non‐invasive techniques – are applied to detect the biochemical and biophysical properties of trophoblast derived stem‐like cells incubated up to 10 days under conditions designed to induce differentiation. Significant biochemical and biophysical differences between control cells and differentiated cells were observed. Quantitative real time PCR was also applied to analyze gene expression. The relationship between cell differentiation and associated cellular biochemical and biomechanical changes were discussed.

Monitoring trophoblast cells differentiation  相似文献   


3.
Rather than simply acting as a photographic camera capturing two‐dimensional (x, y) intensity images or a spectrometer acquiring spectra (λ), a hyperspectral imager measures entire three‐dimensional (x, y, λ) datacubes for multivariate analysis, providing structural, molecular, and functional information about biological cells or tissue with unprecedented detail. Such data also gives clinical insights for disease diagnosis and treatment. We summarize the principles underpinning this technology, highlight its practical implementation, and discuss its recent applications at microscopic to macroscopic scales.

Datacube acquisition strategies in hyperspectral imaging x, y, spatial coordinates; λ, wavelength.  相似文献   


4.
Raman spectral imaging is gaining more and more attention in biological studies because of its label‐free characteristic. However, the discrimination of overlapping chemical contrasts has been a major challenge. In this study, we introduce an optical method to simultaneously obtain two orthogonally polarized Raman images from a single scan of the sample. We demonstrate how this technique can improve the quality and quantity of the hyperspectral Raman dataset and how the technique is expected to further extend the horizons of Raman spectral imaging in biological studies by providing more detailed chemical information.

The dual‐polarization Raman images of a HeLa cell.  相似文献   


5.
A fibre optic motion sensor has been developed for monitoring the proximity and direction of motion of a ferrous bead travelling axial to the sensor. By integrating an array of these sensors into our previously developed fibre optic manometry catheters we demonstrate simultaneous detection of peristaltic muscular activity and the associated motion of ferrous beads through a colonic lumen. This allows the motion of solid content to be temporally and spatially related to pressure variations generated by peristaltic contractions without resorting to videoflouroscopy to track the motion of a radio opaque bolus. The composite catheter has been tested in an in‐vitro animal preparation consisting of excised sections of rabbit colon.

Cut‐away image of the fibre optic motion sensor showing the location of the fibre Bragg gratings and the rare earth magnet.  相似文献   


6.
Near‐infrared (NIR) radiation has been employed using one‐ and two‐photon excitation of fluorescence imaging at wavelengths 650–950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR‐low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100–1,350 nm), third (III, 1,600–1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I.

  相似文献   


7.
Polarimetric measurements in multiphoton microscopy can reveal information about the local molecular order of a sample. However, the presence of a dichroic through which the excitation beam propagates will generally scramble its polarization. We propose a simple scheme whereby a second properly‐oriented compensation dichroic is used to negate any alteration regardless of the wavelength and the initial polarization. We demonstrate how this robust and rapid approach simplifies polarimetric measurements in second‐harmonic generation, two‐photon excited fluorescence and coherent anti‐Stokes Raman scattering.

Illustration of the polarization maintaining strategy with the compensating dichroic oriented such that its s‐ and p‐axes are interchanged with these of the primary dichroic.  相似文献   


8.
Precise multicolor single molecule localization‐based microscopy (SMLM) requires bright probes with compatible photo‐chemical and spectral properties to resolve distinct molecular species at the nanoscale. The accuracy of multicolor SMLM is further challenged by color channel crosstalk and chromatic alignment errors. These constrains limit the applicability of known reversibly switchable organic dyes for optimized multicolor SMLM. Here, we tested 28 commercially available dyes for their suitability to super‐resolve a known cellular nanostructure. We identified eight novel dyes in different spectral regimes that enable high quality dSTORM imaging. Among those, the spectrally close dyes CF647 and CF680 comprise an optimal dye pair for spectral demixing‐based, registration free multicolor dSTORM with low crosstalk. Combining this dye pair with the separately excited CF568 we performed 3‐color dSTORM to image the relative nanoscale distribution of components of the endocytic machinery and the cytoskeleton.

A major limitation of multicolor single molecule localization based super‐resolution microscopy (SMLM) is the availability of suitable photo‐switchable fluorescent dyes. By screening 28 commercially available dyes, novel dyes in different spectral regimes were identified that are well suited for dual and triple color SMLM with low crosstalk. These novel dyes are employed to image the relative nanoscale distribution of sub‐cellular components.  相似文献   


9.
Mechanisms of renal autoregulation generate oscillations in arterial blood flow at several characteristic frequencies. Full‐field laser speckle flowmetry provides a real‐time imaging of superficial blood microcirculation. The possibility to detect changes in oscillatory dynamics is an important issue in biomedical applications. In this paper we show how laser power density affects quality of the recorded signal and improves detectability of temporal changes in microvascular perfusion.

  相似文献   


10.
We report the enhancement in imaging performance of a spectral‐domain optical coherence microscope (OCM) in turbid media by incorporating an optical parametric amplifier (OPA). The OPA provides a high level of optical gain to the sample arm, thereby improving the signal‐to‐noise ratio of the OCM by a factor of up to 15 dB. A unique nonlinear confocal gate is automatically formed in the OPA, which enables selective amplification of singly scattered (ballistic) photons against the multiply‐scattered light background. Simultaneous enhancement in both imaging depth and spatial resolution in imaging microstructures in highly light‐scattering media are demonstrated with the combined OPA‐OCM setup.

Typical OCM inteferograms (left) and images (right) without and with OPA.  相似文献   


11.
The understanding of transdermal substance penetration pathways remains an important field for the development of future topical drugs and cosmetics. Laser Doppler flowmetry is a well‐established method for evaluating cutaneous perfusion. In a study on 6 healthy male volunteers, we topically applied the vasoactive substance benzyl nicotinate on two test areas with open and obturated hair follicles and measured changes in the blood flow by Doppler flowmetry. Contrary to occluded follicles, the application onto the test area with open follicles led to a statistically significant perfusion increase within the first 5 minutes, emphasizing the importance of the follicular pathway for epidermal penetration.

  相似文献   


12.
Male reproductive health in both humans and animals is an important research field in biological study. In order to characterize the morphology, the motility and the concentration of the sperm cells, which are the most important parameters to feature them, digital holography demonstrated to be an attractive technique. Indeed, it is a label‐free, non‐invasive and high‐resolution method that enables the characterization of live specimen. The review is intended both for summarizing the state‐of‐art on the semen analysis and recent achievement obtained by means of digital holography and for exploring new possible applications of digital holography in this field.

Quantitative phase maps of living swimming spermatozoa.  相似文献   


13.
Low‐level laser therapy (LLLT) has been extensively employed to improve epithelial wound healing, though the exact response of epithelium maturation and stratification after LLLT is unknown. Thus, this study aimed to assess the in vitro growth and differentiation of keratinocytes (KCs) and in vivo wound healing response when treated with LLLT. Human KCs (HaCaT cells) showed an enhanced proliferation with all the employed laser energy densities (3, 6 and 12 J/cm2, 660 nm, 100 mW), together with an increased expression of Cyclin D1. Moreover, the immunoexpression of proteins related to epithelial proliferation and maturation (p63, CK10, CK14) all indicated a faster maturation of the migrating KCs in the LLLT‐treated wounds. In that way, an improved epithelial healing was promoted by LLLT with the employed parameters; this improvement was confirmed by changes in the expression of several proteins related to epithelial proliferation and maturation.

Immunofluorescent expression of cytokeratin 10 (red) and Cyclin D1 (green) in ( A ) Control keratinocytes and ( B ) Low‐level laser irradiated cells. Blue color illustrates the nuclei of the cells (DAPI staining).  相似文献   


14.
Photodamage, induced by femtosecond laser radiation, was studied in thick samples of human skin tissue (healthy skin and neoplastic lesions). Photobleaching, photoionization, and thermomechanical damage effects were characterized comparatively. The laser power dependence of the damage rates allowed to connect macroscopic effects to underlying molecular processes. Optical effects were correlated to histopathological changes. Tissue alterations were found only from thermomechanical cavitation and limited to superficial layers of the epidermis. From the depth‐dependencies of all damage thresholds a depth‐dependent power‐compensation scheme was defined allowing for damage‐free deep tissue optical biopsy.

Damage‐induced luminescence pattern for different excitation powers and a corresponding threshold analysis.  相似文献   


15.
We report the development of an intravascular magnetomotive optical coherence tomography (IV‐MM‐OCT) system used with targeted protein microspheres to detect early‐stage atherosclerotic fatty streaks/plaques. Magnetic microspheres (MSs) were injected in vivo in rabbits, and after 30 minutes of in vivo circulation, excised ex vivo rabbit aorta samples specimens were then imaged ex vivo with our prototype IV‐MM‐OCT system. The alternating magnetic field gradient was provided by a unique pair of external custom‐built electromagnetic coils that modulated the targeted magnetic MSs. The results showed a statistically significant MM‐OCT signal from the aorta samples specimens injected with targeted MSs.

Representative magnetomotive signal (green) using targeted and non‐targeted magnetomotive microspheres in atherosclerotic diseased rabbit aortas.  相似文献   


16.
Bacterial meningitis is a disease of pronounced clinical significance, especially in the developing world. Immediate treatment with antibiotics is essential, and no single test can provide a conclusive diagnosis. It is well established that elevated total protein in cerebrospinal fluid (CSF) is associated with bacterial meningitis. Brillouin spectroscopy is a widely used optical technique for noninvasive determination of the elastic moduli of materials. We found that elevated protein levels in CSF alter the fluid elasticity sufficiently to be measurable by Brillouin spectroscopy, with model healthy and diseased fluids distinguishable to marked significance (P = 0.014), which increases with sample concentration by dialysis.

Typical raw output of a 2‐stage VIPA Brillouin spectrometer: inelastically scattered Brillouin peaks (arrows) and elastically scattered incident radiation (center cross).  相似文献   


17.
Common perception regards the nucleus as a densely packed object with higher refractive index (RI) and mass density than the surrounding cytoplasm. Here, the volume of isolated nuclei is systematically varied by electrostatic and osmotic conditions as well as drug treatments that modify chromatin conformation. The refractive index and dry mass of isolated nuclei is derived from quantitative phase measurements using digital holographic microscopy (DHM). Surprisingly, the cell nucleus is found to have a lower RI and mass density than the cytoplasm in four different cell lines and throughout the cell cycle. This result has important implications for conceptualizing light tissue interactions as well as biological processes in cells.

  相似文献   


18.
Brillouin microspectroscopy is a powerful technique for noninvasive optical imaging. In particular, Brillouin microspectroscopy uniquely allows assessing a sample's mechanical properties with microscopic spatial resolution. Recent advances in background‐free Brillouin microspectroscopy make it possible to image scattering samples without substantial degradation of the data quality. However, measurements at the cellular‐ and subcellular‐level have never been performed to date due to the limited signal strength. In this report, by adopting our recently optimized VIPA‐based Brillouin spectrometer, we probed the microscopic viscoelasticity of individual red blood cells. These measurements were supplemented by chemically specific measurements using Raman microspectroscopy.

  相似文献   


19.
Measuring blood flow speed in the optical diffusive regime in humans has been a long standing challenge for photoacoustic tomography. In this work, we proposed a cuffing‐based method to quantify blood flow speed in humans with a handheld photoacoustic probe. By cuffing and releasing the blood vessel, we can measure the blood flow speed downstream. In phantom experiments, we demonstrated that the minimum and maximum measurable flow speeds were 0.035 mm/s and 42 mm/s, respectively. In human experiments, flow speeds were measured in three different blood vessels: a radial artery in the right forearm, a radial artery in the index finger of the right hand, and a radial vein in the right forearm. Taking advantage of the handheld probe, our method can potentially be used to monitor blood flow speed in the clinic and at the bedside.

  相似文献   


20.
Early detection of cutaneous squamous cell carcinoma (cSCC) can enable timely therapeutic and preventive interventions for patients. In this study, in vivo nonlinear optical imaging (NLOI) based on two‐photon excitation fluorescence (TPEF) and second harmonic generation (SHG), was used to non‐invasively detect microscopic changes occurring in murine skin treated topically with 7,12‐dimethylbenz(a)anthracene (DMBA). The optical microscopic findings and the measured TPEF‐SHG index show that NLOI was able to clearly detect early cytostructural changes in DMBA treated skin that appeared clinically normal. This suggests that in vivo NLOI could be a non‐invasive tool to monitor early signs of cSCC.

In vivo axial NLOI scans of normal murine skin (upper left), murine skin with preclinical hyperplasia (upper right), early clinical murine skin lesion (lower left) and late or advanced murine skin lesion (lower right).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号