首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on transient membrane perforation of living cancer cells using plasmonic gold nanoparticles (AuNPs) enhanced single near infrared (NIR) femtosecond (fs) laser pulse. Under optimized laser energy fluence, single pulse treatment (τ = 45 fs, λ = 800 nm) resulted in 77% cell perforation efficiency and 90% cell viability. Using dark field and ultrafast imaging, we demonstrated that the generation of submicron bubbles around the AuNPs is the necessary condition for the cell membrane perforation. AuNP clustering increased drastically the bubble generation efficiency, thus enabling an effective laser treatment using low energy dose in the NIR optical therapeutical window.

Schematic representation of single femtosecond laser pulse plasmonic bubble generation in the vicinity of a cell.  相似文献   


2.
Biological tissues are very strong light‐scattering media. As a consequence, current medical imaging devices do not allow deep optical imaging unless invasive techniques are used. Acousto‐optic imaging is a light‐ultrasound coupling technique that takes advantage of the ballistic propagation of ultrasound in biological tissues to access optical contrast with a millimeter resolution. We have developed a photorefractive‐crystal‐based system that performs self‐adaptive wavefront holography and works within the optical therapeutic window. As it works at an appropriate wavelength range for biological tissues imaging, it was tested on ex vivo liver samples containing tumors as a pre‐clinical study. Optical contrast was obtained even if acoustical one was not significant.

Ultrasound image (left) and acousto‐optic image (right) of a liver biopsy with tumors. Acousto‐optic imaging exhibits tumors that are not detected through ultrasound.  相似文献   


3.
This study provides a simple method to detect human distal radius bone density based on near infrared (NIR) imaging. The information of bone mineral density can be measured by transluminational optical bone densitometric system. Compared to dual‐energy x‐ray absorptiometry (DXA) results in clinical trial, NIR images show a strong correlation to DXA. Further details can be found in the article by Chun Chung, Yu‐Pin Chen, Tsai‐Hsueh Leu, and Chia‐Wei Sun ( e201700342 ).

  相似文献   


4.
Despite the great promise behind the recent introduction of optoacoustic technology into the arsenal of small‐animal neuroimaging methods, a variety of acoustic and light‐related effects introduced by adult murine skull severely compromise the performance of optoacoustics in transcranial imaging. As a result, high‐resolution noninvasive optoacoustic microscopy studies are still limited to a thin layer of pial microvasculature, which can be effectively resolved by tight focusing of the excitation light. We examined a range of distortions introduced by an adult murine skull in transcranial optoacoustic imaging under both acoustically‐ and optically‐determined resolution scenarios. It is shown that strong low‐pass filtering characteristics of the skull may significantly deteriorate the achievable spatial resolution in deep brain imaging where no light focusing is possible. While only brain vasculature with a diameter larger than 60 µm was effectively resolved via transcranial measurements with acoustic resolution, significant improvements are seen through cranial windows and thinned skull experiments.

(a) Experimental setup for hybrid acoustic and optical resolution optoacoustic microscopy. (b) Transcranial scan of an adult mouse brain using the optical resolution mode. Scale bar is 375 µm.  相似文献   


5.
A novel 3D imaging system based on single‐molecule localization microscopy is presented to allow high‐accuracy drift‐free (<0.7 nm lateral; 2.5 nm axial) imaging many microns deep into a cell. When imaging deep within the cell, distortions of the point‐spread function result in an inaccurate and very compressed Z distribution. For the system to accurately represent the position of each blink, a series of depth‐dependent calibrations are required. The system and its allied methodology are applied to image the ryanodine receptor in the cardiac myocyte. Using the depth‐dependent calibration, the receptors deep within the cell are spread over a Z range that is many hundreds of nanometers greater than implied by conventional analysis. We implemented a time domain filter to detect overlapping blinks that were not filtered by a stringent goodness of fit criterion. This filter enabled us to resolve the structure of the individual (30 nm square) receptors giving a result similar to that obtained with electron tomography.

High‐accuracy deep imaging of the ryanodine receptor in the cardiac myocyte, using single‐molecule localization microscopy. Depth‐dependent calibrations are performed for accurate depth localization. The optical design featuring two independent and variable focal planes allows real‐time feedback for drift‐free deep imaging.  相似文献   


6.
TIRF and STORM microscopy are super‐resolving fluorescence imaging modalities for which current implementations on standard microscopes can present significant complexity and cost. We present a straightforward and low‐cost approach to implement STORM and TIRF taking advantage of multimode optical fibres and multimode diode lasers to provide the required excitation light. Combined with open source software and relatively simple protocols to prepare samples for STORM, including the use of Vectashield for non‐TIRF imaging, this approach enables TIRF and STORM imaging of cells labelled with appropriate dyes or expressing suitable fluorescent proteins to become widely accessible at low cost.

  相似文献   


7.
Optical coherence tomography through an implanted dorsal imaging window allows for prolonged in vivo structural and functional assessment of the mouse oviduct (Fallopian tube), including threedimensional structural imaging, quantitative measurements of the smooth muscle contraction, and mapping of cilia beat frequency. This method brings new opportunities for live studies and longitudinal analyses of mouse reproductive events in the native context. Further details can be found in the article by Shang Wang et al. ( e201700316 ).

  相似文献   


8.
Mechanisms of renal autoregulation generate oscillations in arterial blood flow at several characteristic frequencies. Full‐field laser speckle flowmetry provides a real‐time imaging of superficial blood microcirculation. The possibility to detect changes in oscillatory dynamics is an important issue in biomedical applications. In this paper we show how laser power density affects quality of the recorded signal and improves detectability of temporal changes in microvascular perfusion.

  相似文献   


9.
Unintentional surgical damage to nerves is mainly due to poor visualization of nerve tissue relative to adjacent structures. Multispectral photoacoustic tomography can provide chemical information with specificity and ultrasonic spatial resolution with centimeter imaging depth, making it a potential tool for noninvasive neural imaging. To implement this label‐free imaging approach, a multispectral photoacoustic tomography platform was built. Imaging depth and spatial resolution were characterized. In vivo imaging of the femoral nerve that is 2 mm deep in a nude mouse was performed. Through multivariate curve resolution analysis, the femoral nerve was discriminated from the femoral artery and chemical maps of their spatial distributions were generated.

The femoral nerve was discriminated from the femoral artery by multivariate curve resolution analysis.  相似文献   


10.
Raman spectral imaging is gaining more and more attention in biological studies because of its label‐free characteristic. However, the discrimination of overlapping chemical contrasts has been a major challenge. In this study, we introduce an optical method to simultaneously obtain two orthogonally polarized Raman images from a single scan of the sample. We demonstrate how this technique can improve the quality and quantity of the hyperspectral Raman dataset and how the technique is expected to further extend the horizons of Raman spectral imaging in biological studies by providing more detailed chemical information.

The dual‐polarization Raman images of a HeLa cell.  相似文献   


11.
Photodamage, induced by femtosecond laser radiation, was studied in thick samples of human skin tissue (healthy skin and neoplastic lesions). Photobleaching, photoionization, and thermomechanical damage effects were characterized comparatively. The laser power dependence of the damage rates allowed to connect macroscopic effects to underlying molecular processes. Optical effects were correlated to histopathological changes. Tissue alterations were found only from thermomechanical cavitation and limited to superficial layers of the epidermis. From the depth‐dependencies of all damage thresholds a depth‐dependent power‐compensation scheme was defined allowing for damage‐free deep tissue optical biopsy.

Damage‐induced luminescence pattern for different excitation powers and a corresponding threshold analysis.  相似文献   


12.
Brillouin microspectroscopy is a powerful technique for noninvasive optical imaging. In particular, Brillouin microspectroscopy uniquely allows assessing a sample's mechanical properties with microscopic spatial resolution. Recent advances in background‐free Brillouin microspectroscopy make it possible to image scattering samples without substantial degradation of the data quality. However, measurements at the cellular‐ and subcellular‐level have never been performed to date due to the limited signal strength. In this report, by adopting our recently optimized VIPA‐based Brillouin spectrometer, we probed the microscopic viscoelasticity of individual red blood cells. These measurements were supplemented by chemically specific measurements using Raman microspectroscopy.

  相似文献   


13.
A study of polarized light transport in scattering media exhibiting directional anisotropy or linear birefringence is presented in this paper. Novel theoretical and experimental methodologies for the quantification of birefringent alignment based on out‐of‐plane polarized light transport are presented here. A polarized Monte Carlo model and a polarimetric imaging system were devised to predict and measure the impact of birefringence on an impinging linearly polarized light beam. Ex‐vivo experiments conducted on bovine tendon, a biological sample consisting of highly packed type I collagen fibers with birefringent property, showed good agreement with the analytical results.

Top view geometry of the in‐plane ( a ) and the out‐of‐plane ( b ) detection. Letter C indicates the location of the detection arm.  相似文献   


14.
Both acute nephritis and chronic nephritis account for substantial morbidity and mortality worldwide, partly due to the lack of reliable tools for detecting disease early and monitoring its progression non‐invasively. In this work, Raman spectroscopy coupled with multivariate analysis are employed for the first time to study the accelerated progression of nephritis in anti‐GBM mouse model. Preliminary results show up to 98% discriminant accuracy for the severe and midly diseased and the healthy among two strains of mice with different susceptibility to acute glomerulonephritis. This technique has the potential for non‐invasive or minimally‐invasive early diagnosis, prognosis, and monitoring of renal disease progression.

  相似文献   


15.
Common perception regards the nucleus as a densely packed object with higher refractive index (RI) and mass density than the surrounding cytoplasm. Here, the volume of isolated nuclei is systematically varied by electrostatic and osmotic conditions as well as drug treatments that modify chromatin conformation. The refractive index and dry mass of isolated nuclei is derived from quantitative phase measurements using digital holographic microscopy (DHM). Surprisingly, the cell nucleus is found to have a lower RI and mass density than the cytoplasm in four different cell lines and throughout the cell cycle. This result has important implications for conceptualizing light tissue interactions as well as biological processes in cells.

  相似文献   


16.
Small animal deep‐tissue fluorescence imaging in the second Biological Window (II‐BW, 1000–1350 nm) is limited by the presence of undesirable infrared‐excited, infrared‐emitted (900–1700 nm) autofluorescence whose origin, spectral properties and dependence on strains is still unknown. In this work, the infrared autofluorescence and laser‐induced whole body heating of five different mouse strains with distinct coat colors (black, grey, agouti, white and nude) has been systematically investigated. While neither the spectral properties nor the magnitude of organ autofluorescence vary significantly between mouse strains, the coat color has been found to strongly determine both the autofluorescence intensity as well as the laser‐induced whole body heating. Results included in this work reveal mouse strain as a critical parameter that has to be seriously considered in the design and performance of small animal imaging experiments based on infrared‐emitting fluorescent markers.

  相似文献   


17.
Optical brain stimulation gained a lot of attention in neuroscience due to its superior cell‐type specificity. In the design of illumination strategies, predicting the light propagation in a specific tissue is essential and requires knowledge of the optical properties of that tissue. We present the estimated absorption and reduced scattering in rodent brain tissue using non‐destructive contact spatially resolved spectroscopy (cSRS). The obtained absorption and scattering in the cortex, hippocampus and striatum are similar, but lower than in the thalamus, leading to a less deep but broader light penetration profile in the thalamus. Next, the light distribution was investigated for different stimulation protocols relevant for fiber‐optic based optogenetic experiments, using Monte Carlo simulation. A protocol specific analysis is proposed to evaluate the potential of thermally induced side effects.

  相似文献   


18.
Eu3+integrated photoluminescence intensity ratio (PLIR) approach for optical detection of lactates in blood serum, plasma and confocal imaging of brain tissues has very high potential for exploitation of this technique in both in vitro monitoring and in vivo bioimaging applications for the detection of biomarkers in various diseases states. This image is diagrammatic representation of fact that the overall PLIR is higher with more lactates conjugated with Eu3+ ions. Further details can be found in the article by Tarun Kakkar et al. ( e201700199 ).

  相似文献   


19.
In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide‐based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in‐suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample.

  相似文献   


20.
Gold nanoparticles serve as imaging contrast agents useful for two‐photon nonlinear microscopy of biological cells and tissues. In this study, 100‐nm‐sized gold particles with a multitude of nanopores embedded inside have been physically synthesized and investigated for the plasmonic enhancement in two‐photon luminescence. Exhibiting remarkable potential for two‐photon imaging, the porous gold nanoparticles boost near‐infrared light absorption substantially and allow emission signals 20 times brighter than gold nanorods being currently used as typical imaging agents. Further details can be found in the article by Joo H. Park et al. ( e201700174 )

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号