首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Full‐field functional optical hemocytometer (FFOH), based on the absorption intensity fluctuation modulation (AIFM) effect, is in vivo label‐free image method for capillaries of near‐transparent live biological specimens. FFOH can provide a flow video, flow velocity measurement and RBC count, simultaneously. The zebrafish experimental result shows the potential to study the physiological mechanisms of the blood circulation systems. Further details can be found in the article by Fuli Zhang et al. ( e201700039 )

  相似文献   


2.
We report the enhancement in imaging performance of a spectral‐domain optical coherence microscope (OCM) in turbid media by incorporating an optical parametric amplifier (OPA). The OPA provides a high level of optical gain to the sample arm, thereby improving the signal‐to‐noise ratio of the OCM by a factor of up to 15 dB. A unique nonlinear confocal gate is automatically formed in the OPA, which enables selective amplification of singly scattered (ballistic) photons against the multiply‐scattered light background. Simultaneous enhancement in both imaging depth and spatial resolution in imaging microstructures in highly light‐scattering media are demonstrated with the combined OPA‐OCM setup.

Typical OCM inteferograms (left) and images (right) without and with OPA.  相似文献   


3.
Near‐infrared (NIR) radiation has been employed using one‐ and two‐photon excitation of fluorescence imaging at wavelengths 650–950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR‐low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100–1,350 nm), third (III, 1,600–1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I.

  相似文献   


4.
This paper examines the recent emergence of miniaturized optical fiber based sensing and actuating devices that have been successfully integrated into fluidic microchannels that are part of microfluidic and lab‐on‐chip systems. Fluidic microsystems possess the advantages of reduced sample volumes, faster and more sensitive biological assays, multi‐sample and parallel analysis, and are seen as the de facto bioanalytical platform of the future. This paper considers the cases where the optical fiber is not merely used as a simple light guide delivering light across a microchannel, but where the fiber itself is engineered to create a new sensor or tool for use within the environment of the fluidic microchannel.

Detection and trapping of molecules can be achieved with optical fibers directly located within the fluidic microchannel.  相似文献   


5.
In this study, sensor surface functionalization allowing the repetitive use of a sensing device was evaluated for antibody‐based detection of living bacteria using an optical planar Bragg grating sensor. To achieve regenerable immobilization of bacteria specific antibodies, the heterobifunctional cross‐linker N‐succinimidyl 3‐(2‐pyridyldithio) propionate (SPDP) was linked to an aminosilanized sensor surface and subsequently reduced to expose sulfhydryl groups enabling the covalent conjugation of SPDP‐activated antibodies via disulfide bonds. The immobilization of a capture antibody specific for Staphylococcus aureus on the sensor surface as well as specific binding of S. aureus could be monitored, highlighting the applicability of optical sensors for the specific detection of large biological structures. Reusability of bacteria saturated sensors was successfully demonstrated by cleaving the antibody along with bound bacteria through reduction of disulfide bonds and subsequent re‐functionalization with activated antibody, resulting in comparable sensitivity towards S. aureus.

  相似文献   


6.
In this work, an optofluidic flow analyzer, which can be used to perform malaria diagnosis at the point‐of‐care is demonstrated. The presented technique is based on quantitative optical absorption measurements carried out on a single cell level for a given population of Human Red Blood Cells (RBCs). By measuring the optical absorption of each RBC, the decrease in the Hemoglobin (Hb) concentration in the cytoplasm of the cell due to the invasion of malarial parasite is detected. Cells are assessed on a single cell basis, as they pass through a microfluidic channel. The proposed technique has been implemented with inexpensive off‐the‐shelf components like laser diode, photo‐detector and a micro‐controller. The ability of the optofluidic flow analyzer to asses about 308,049 cells within 3 minutes has been demonstrated. The presented technique is capable of detecting very low parasitemia levels with high sensitivity.

  相似文献   


7.
We report the development of an intravascular magnetomotive optical coherence tomography (IV‐MM‐OCT) system used with targeted protein microspheres to detect early‐stage atherosclerotic fatty streaks/plaques. Magnetic microspheres (MSs) were injected in vivo in rabbits, and after 30 minutes of in vivo circulation, excised ex vivo rabbit aorta samples specimens were then imaged ex vivo with our prototype IV‐MM‐OCT system. The alternating magnetic field gradient was provided by a unique pair of external custom‐built electromagnetic coils that modulated the targeted magnetic MSs. The results showed a statistically significant MM‐OCT signal from the aorta samples specimens injected with targeted MSs.

Representative magnetomotive signal (green) using targeted and non‐targeted magnetomotive microspheres in atherosclerotic diseased rabbit aortas.  相似文献   


8.
Collagen ultrastructure plays a central role in the function of a wide range of connective tissues. Studying collagen structure at the microscopic scale is therefore of considerable interest to understand the mechanisms of tissue pathologies. Here, we use second harmonic generation microscopy to characterize collagen structure within bone and articular cartilage in human knees. We analyze the intensity dependence on polarization and discuss the differences between Forward and Backward images in both tissues. Focusing on articular cartilage, we observe an increase in Forward/Backward ratio from the cartilage surface to the bone. Coupling these results to numerical simulations reveals the evolution of collagen fibril diameter and spatial organization as a function of depth within cartilage.

  相似文献   


9.
Mechanisms of renal autoregulation generate oscillations in arterial blood flow at several characteristic frequencies. Full‐field laser speckle flowmetry provides a real‐time imaging of superficial blood microcirculation. The possibility to detect changes in oscillatory dynamics is an important issue in biomedical applications. In this paper we show how laser power density affects quality of the recorded signal and improves detectability of temporal changes in microvascular perfusion.

  相似文献   


10.
Early detection of cutaneous squamous cell carcinoma (cSCC) can enable timely therapeutic and preventive interventions for patients. In this study, in vivo nonlinear optical imaging (NLOI) based on two‐photon excitation fluorescence (TPEF) and second harmonic generation (SHG), was used to non‐invasively detect microscopic changes occurring in murine skin treated topically with 7,12‐dimethylbenz(a)anthracene (DMBA). The optical microscopic findings and the measured TPEF‐SHG index show that NLOI was able to clearly detect early cytostructural changes in DMBA treated skin that appeared clinically normal. This suggests that in vivo NLOI could be a non‐invasive tool to monitor early signs of cSCC.

In vivo axial NLOI scans of normal murine skin (upper left), murine skin with preclinical hyperplasia (upper right), early clinical murine skin lesion (lower left) and late or advanced murine skin lesion (lower right).  相似文献   


11.
High‐definition optical coherence tomography (HD‐OCT) scanners have recently been developed. We assessed micromorphological HD‐OCT correlates of benign naevi (BN) and malignant melanoma (MM). 28 BN and 20 MM were studied using HD‐OCT and histology. Epidermal honeycomb/cobblestone pattern, regular junctional cell nests, and edged papillae are more often observed in BN, whereas fusion of rete ridges, pagetoid cells and junctional and/or dermal nests with atypical cells are more frequently seen in MM. A high overlap of HD‐OCT features in BN and MM was observed and in 20% of MM we did not find evidence for malignancy in OCT images at all. Using HD‐OCT it is possible to visualize architectural and cellular alterations of melanocytic skin lesions. The overlap of HD‐OCT features seen in BN and MM and the absence of suspicious HD‐OCT features in some MM represents an important limitation of HD‐OCT affecting the sensitivity of HD‐OCT in diagnosing MM.

High‐definition optical coherence tomography and the corresponding vertically sectioned histology of a compound naevus.  相似文献   


12.
The picture depicts the different 3d‐printed organs, thorax, lungs, heart and bone. Assembled it is used as an optical phantom of a preterm infant for performing percutaneous optical measurements of the gas content in the lungs. In order to simulate the optical properties of the tissue, the heart and thorax can be filled with liquid phantoms, a mixture of Intralipid and Indian Ink. Further details can be found in the article by Jim Larsson et al. ( e201700097 ).

  相似文献   


13.
A study of polarized light transport in scattering media exhibiting directional anisotropy or linear birefringence is presented in this paper. Novel theoretical and experimental methodologies for the quantification of birefringent alignment based on out‐of‐plane polarized light transport are presented here. A polarized Monte Carlo model and a polarimetric imaging system were devised to predict and measure the impact of birefringence on an impinging linearly polarized light beam. Ex‐vivo experiments conducted on bovine tendon, a biological sample consisting of highly packed type I collagen fibers with birefringent property, showed good agreement with the analytical results.

Top view geometry of the in‐plane ( a ) and the out‐of‐plane ( b ) detection. Letter C indicates the location of the detection arm.  相似文献   


14.
Mucosal surfaces are constantly exposed to pathogens and show high immunological activity. In a broad variety of ocular surface disorders inflammation is common, but underlying mechanisms are often not fully understood. However, the main clinical problem is that inflammatory processes are difficult to characterize and quantify due to the impossibility of repeated tissue probing of the delicate ocular surface. Therefore non‐invasive optical methods are thought to have the potential for intravital investigation of ocular surface inflammation. This study demonstrates the general potential of two‐photon microscopy to non‐invasively detect and discriminate key players of inflammation in the ocular surface by using intrinsic fluorescence‐based features without the necessity of tissue probing or the use of dyes. The use of wavelength dependent measurements of fluorescence lifetime, in addition to autofluorescence intensity enables a functional differentiation of isolated immune cells in vitro at excitation wavelengths between 710 to 830 nm. Mixed cell cultures and first in vivo results indicate the use of excitation wavelength of 710 to 750 nm for further experiments and future use in patients.

Two photon based autofluorescence features of immune cells enables non‐invasive differentiation.  相似文献   


15.
Brillouin microspectroscopy is a powerful technique for noninvasive optical imaging. In particular, Brillouin microspectroscopy uniquely allows assessing a sample's mechanical properties with microscopic spatial resolution. Recent advances in background‐free Brillouin microspectroscopy make it possible to image scattering samples without substantial degradation of the data quality. However, measurements at the cellular‐ and subcellular‐level have never been performed to date due to the limited signal strength. In this report, by adopting our recently optimized VIPA‐based Brillouin spectrometer, we probed the microscopic viscoelasticity of individual red blood cells. These measurements were supplemented by chemically specific measurements using Raman microspectroscopy.

  相似文献   


16.
In this study, we developed a dual‐modality tomographic system that integrated photoacoustic imaging (PAI) and diffuse optical tomography (DOT) into a single platform for imaging human finger joints with fine structures and associated optical properties. In PAI, spherical focused transducers were utilized to collect acoustic signals, and the concept of virtual detector was applied in a conventional back‐projection algorithm to improve the image quality. A finite‐element based reconstruction algorithm was employed to quantitatively recover optical property distribution in the objects for DOT. The phantom results indicate that PAI has a maximum lateral resolution of 70 µm in resolving structures of targets. DOT was able to recover both optical absorption and reduced scattering coefficients of targets accurately. To validate the potential of this system in clinical diagnosis of joint diseases, the distal interphalangeal (DIP) joints of 4 healthy female volunteers were imaged. We successfully obtained high‐resolution images of the phalanx and the surrounding soft tissue via PAI, and recovered both optical absorption and reduced scattering coefficients of phalanx using DOT. The in vivo results suggest that this dual‐modality system has the potential for the early diagnosis of joint diseases such as osteoarthritis (OA) and rheumatoid arthritis (RA).

Integrated PAI/DOT imaging interface (top) and typical reconstruction of structures and associated optical properties of a female finger joint via PAI and DOT (bottom).  相似文献   


17.
TIRF and STORM microscopy are super‐resolving fluorescence imaging modalities for which current implementations on standard microscopes can present significant complexity and cost. We present a straightforward and low‐cost approach to implement STORM and TIRF taking advantage of multimode optical fibres and multimode diode lasers to provide the required excitation light. Combined with open source software and relatively simple protocols to prepare samples for STORM, including the use of Vectashield for non‐TIRF imaging, this approach enables TIRF and STORM imaging of cells labelled with appropriate dyes or expressing suitable fluorescent proteins to become widely accessible at low cost.

  相似文献   


18.
Raman spectral imaging is gaining more and more attention in biological studies because of its label‐free characteristic. However, the discrimination of overlapping chemical contrasts has been a major challenge. In this study, we introduce an optical method to simultaneously obtain two orthogonally polarized Raman images from a single scan of the sample. We demonstrate how this technique can improve the quality and quantity of the hyperspectral Raman dataset and how the technique is expected to further extend the horizons of Raman spectral imaging in biological studies by providing more detailed chemical information.

The dual‐polarization Raman images of a HeLa cell.  相似文献   


19.
In vivo imaging of cerebral vasculature is highly vital for clinicians and medical researchers alike. For a number of years non‐invasive optical‐based imaging of brain vascular network by using standard fluorescence probes has been considered as impossible. In the current paper controverting this paradigm, we present a robust non‐invasive optical‐based imaging approach that allows visualize major cerebral vessels at the high temporal and spatial resolution. The developed technique is simple to use, utilizes standard fluorescent dyes, inexpensive micro‐imaging and computation procedures. The ability to clearly visualize middle cerebral artery and other major vessels of brain vascular network, as well as the measurements of dynamics of blood flow are presented. The developed imaging approach has a great potential in neuroimaging and can significantly expand the capabilities of preclinical functional studies of brain and notably contribute for analysis of cerebral blood circulation in disorder models.

An example of 1 × 1.5 cm color‐coded image of brain blood vessels of mouse obtained in vivo by transcranial optical vascular imaging (TOVI) approach through the intact cranium.  相似文献   


20.
We applied our multimodal nonlinear spectral imaging microscope to the measurement of rat cornea. We successfully obtained multiple nonlinear signals of coherent anti‐Stokes Raman scattering (CARS), third‐order sum frequency generation (TSFG), and second harmonic generation (SHG). Depending on the nonlinear optical processes, the cornea tissue was visualized with different image contrast mechanism simultaneously. Due to white‐light laser excitation, multiplex CARS and TSFG spectra were obtained. Combined multimodal and spectral analysis clearly elucidated the layered structure of rat cornea with molecular structural information. This study indicates that our multimodal nonlinear spectral microscope is a promising bioimaging method for tissue study.

Multimodal nonlinear spectral images of rat cornea at corneal epithelium and corneal stroma in the in‐plane (XY) direction. With use of the combinational analysis of different nonlinear optical processes, detailed molecular structural information is available without staining or labelling.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号