首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Near‐infrared (NIR) radiation has been employed using one‐ and two‐photon excitation of fluorescence imaging at wavelengths 650–950 nm (optical window I) for deep brain imaging; however, longer wavelengths in NIR have been overlooked due to a lack of suitable NIR‐low band gap semiconductor imaging detectors and/or femtosecond laser sources. This research introduces three new optical windows in NIR and demonstrates their potential for deep brain tissue imaging. The transmittances are measured in rat brain tissue in the second (II, 1,100–1,350 nm), third (III, 1,600–1,870 nm), and fourth (IV, centered at 2,200 nm) NIR optical tissue windows. The relationship between transmission and tissue thickness is measured and compared with the theory. Due to a reduction in scattering and minimal absorption, window III is shown to be the best for deep brain imaging, and windows II and IV show similar but better potential for deep imaging than window I.

  相似文献   


2.
We report the enhancement in imaging performance of a spectral‐domain optical coherence microscope (OCM) in turbid media by incorporating an optical parametric amplifier (OPA). The OPA provides a high level of optical gain to the sample arm, thereby improving the signal‐to‐noise ratio of the OCM by a factor of up to 15 dB. A unique nonlinear confocal gate is automatically formed in the OPA, which enables selective amplification of singly scattered (ballistic) photons against the multiply‐scattered light background. Simultaneous enhancement in both imaging depth and spatial resolution in imaging microstructures in highly light‐scattering media are demonstrated with the combined OPA‐OCM setup.

Typical OCM inteferograms (left) and images (right) without and with OPA.  相似文献   


3.
Photodamage, induced by femtosecond laser radiation, was studied in thick samples of human skin tissue (healthy skin and neoplastic lesions). Photobleaching, photoionization, and thermomechanical damage effects were characterized comparatively. The laser power dependence of the damage rates allowed to connect macroscopic effects to underlying molecular processes. Optical effects were correlated to histopathological changes. Tissue alterations were found only from thermomechanical cavitation and limited to superficial layers of the epidermis. From the depth‐dependencies of all damage thresholds a depth‐dependent power‐compensation scheme was defined allowing for damage‐free deep tissue optical biopsy.

Damage‐induced luminescence pattern for different excitation powers and a corresponding threshold analysis.  相似文献   


4.
A study of polarized light transport in scattering media exhibiting directional anisotropy or linear birefringence is presented in this paper. Novel theoretical and experimental methodologies for the quantification of birefringent alignment based on out‐of‐plane polarized light transport are presented here. A polarized Monte Carlo model and a polarimetric imaging system were devised to predict and measure the impact of birefringence on an impinging linearly polarized light beam. Ex‐vivo experiments conducted on bovine tendon, a biological sample consisting of highly packed type I collagen fibers with birefringent property, showed good agreement with the analytical results.

Top view geometry of the in‐plane ( a ) and the out‐of‐plane ( b ) detection. Letter C indicates the location of the detection arm.  相似文献   


5.
Biological tissues are very strong light‐scattering media. As a consequence, current medical imaging devices do not allow deep optical imaging unless invasive techniques are used. Acousto‐optic imaging is a light‐ultrasound coupling technique that takes advantage of the ballistic propagation of ultrasound in biological tissues to access optical contrast with a millimeter resolution. We have developed a photorefractive‐crystal‐based system that performs self‐adaptive wavefront holography and works within the optical therapeutic window. As it works at an appropriate wavelength range for biological tissues imaging, it was tested on ex vivo liver samples containing tumors as a pre‐clinical study. Optical contrast was obtained even if acoustical one was not significant.

Ultrasound image (left) and acousto‐optic image (right) of a liver biopsy with tumors. Acousto‐optic imaging exhibits tumors that are not detected through ultrasound.  相似文献   


6.
The secondary structure change of the Abeta peptide to beta‐sheet was proposed as an early event in Alzheimer's disease. The transition may be used for diagnostics of this disease in an early state. We present an Attenuated Total Reflection (ATR) sensor modified with a specific antibody to extract minute amounts of Abeta peptide out of a complex fluid. Thereby, the Abeta peptide secondary structure was determined in its physiological aqueous environment by FTIR‐difference‐spectroscopy. The presented results open the door for label‐free Alzheimer diagnostics in cerebrospinal fluid or blood. It can be extended to further neurodegenerative diseases.

An immunologic ATR‐FTIR sensor for Abeta peptide secondary structure analysis in complex fluids is presented.  相似文献   


7.
In this study, sensor surface functionalization allowing the repetitive use of a sensing device was evaluated for antibody‐based detection of living bacteria using an optical planar Bragg grating sensor. To achieve regenerable immobilization of bacteria specific antibodies, the heterobifunctional cross‐linker N‐succinimidyl 3‐(2‐pyridyldithio) propionate (SPDP) was linked to an aminosilanized sensor surface and subsequently reduced to expose sulfhydryl groups enabling the covalent conjugation of SPDP‐activated antibodies via disulfide bonds. The immobilization of a capture antibody specific for Staphylococcus aureus on the sensor surface as well as specific binding of S. aureus could be monitored, highlighting the applicability of optical sensors for the specific detection of large biological structures. Reusability of bacteria saturated sensors was successfully demonstrated by cleaving the antibody along with bound bacteria through reduction of disulfide bonds and subsequent re‐functionalization with activated antibody, resulting in comparable sensitivity towards S. aureus.

  相似文献   


8.
We report the development of an intravascular magnetomotive optical coherence tomography (IV‐MM‐OCT) system used with targeted protein microspheres to detect early‐stage atherosclerotic fatty streaks/plaques. Magnetic microspheres (MSs) were injected in vivo in rabbits, and after 30 minutes of in vivo circulation, excised ex vivo rabbit aorta samples specimens were then imaged ex vivo with our prototype IV‐MM‐OCT system. The alternating magnetic field gradient was provided by a unique pair of external custom‐built electromagnetic coils that modulated the targeted magnetic MSs. The results showed a statistically significant MM‐OCT signal from the aorta samples specimens injected with targeted MSs.

Representative magnetomotive signal (green) using targeted and non‐targeted magnetomotive microspheres in atherosclerotic diseased rabbit aortas.  相似文献   


9.
Eu3+integrated photoluminescence intensity ratio (PLIR) approach for optical detection of lactates in blood serum, plasma and confocal imaging of brain tissues has very high potential for exploitation of this technique in both in vitro monitoring and in vivo bioimaging applications for the detection of biomarkers in various diseases states. This image is diagrammatic representation of fact that the overall PLIR is higher with more lactates conjugated with Eu3+ ions. Further details can be found in the article by Tarun Kakkar et al. ( e201700199 ).

  相似文献   


10.
An in vitro study of morphological alterations between sound dental structure and artificially induced white spot lesions in human teeth, was performed through the loss of fluorescence by Quantitative Light‐Induced Fluorescence (QLF) and the alterations of the light attenuation coefficient by Optical Coherence Tomography (OCT). To analyze the OCT images using a commercially available system, a special algorithm was applied, whereas the QLF images were analyzed using the software available in the commercial system employed. When analyzing the sound region against white spot lesions region by QLF, a reduction in the fluorescence intensity was observed, whilst an increase of light attenuation by the OCT system occurred. Comparison of the percentage of alteration between optical properties of sound and artificial enamel caries regions showed that OCT processed images through the attenuation of light enhanced the tooth optical alterations more than fluorescence detected by QLF System.

QLF versus OCT imaging of enamel caries: a photonics assessment  相似文献   


11.
The aim of this study is to identify changes in scattering with optical coherence tomography (OCT) and relate these measurements with mitochondrial changes during the initiation of apoptosis. Human retinal pigment epithelial cells were cultured and apoptosis was induced using 10% alcohol. Using the attenuation coefficient and backscattering, changes were measured during cell death in a cell‐pellet and monolayer respectively. To confirm apoptosis, fluorescent activated cell sorting was used. Mitochondrial activity during apoptosis was assessed using an oxidative stress assay and fluorescent confocal microscopy. Pelleted apoptotic cells measured with OCT showed a clear rise while untreated cells showed a very small increase in attenuation coefficient. Monolayered apoptotic cells displayed a distinct increase, while untreated cells showed a small increase in the backscattering. Apoptosis was confirmed by FACS experiments. Mitochondrial changes during the onset of apoptosis were also measured. The results demonstrate that apoptotic cell death could be monitored in real‐time by OCT. Changes in the scattering after induction of apoptosis are likely to be related to changes in the intracellular morphology. Oxidative stress‐induced mitochondrial swelling could be responsible for the initial increase, while cell blebbing and secondary necrosis subsequently for the observed decrease in scattering.

  相似文献   


12.
Cold atmospheric‐pressure plasmas have become of increasing importance in sterilization processes especially with the growing prevalence of multi‐resistant bacteria. Albeit the potential for technological application is obvious, much less is known about the molecular mechanisms underlying bacterial inactivation. X‐jet technology separates plasma‐generated reactive particles and photons, thus allowing the investigation of their individual and joint effects on DNA. Raman spectroscopy shows that particles and photons cause different modifications in DNA single and double strands. The treatment with the combination of particles and photons does not only result in cumulative, but in synergistic effects. Profilometry confirms that etching is a minor contributor to the observed DNA damage in vitro.

Schematics of DNA oligomer treatment with cold atmospheric‐pressure plasma.  相似文献   


13.
The understanding of transdermal substance penetration pathways remains an important field for the development of future topical drugs and cosmetics. Laser Doppler flowmetry is a well‐established method for evaluating cutaneous perfusion. In a study on 6 healthy male volunteers, we topically applied the vasoactive substance benzyl nicotinate on two test areas with open and obturated hair follicles and measured changes in the blood flow by Doppler flowmetry. Contrary to occluded follicles, the application onto the test area with open follicles led to a statistically significant perfusion increase within the first 5 minutes, emphasizing the importance of the follicular pathway for epidermal penetration.

  相似文献   


14.
The use of optical trap and microbeam for investigating mechanical and transport properties of inter cellular tunneling nanotubes (TnTs) in tumor spheroids has been demonstrated. TnTs in tumor spheroids have been visualized by manipulating TnT connected cells using optical tweezers. Functionality of the TnTs for transferring cytoplasmic vesicles and injected dye molecules by optoporation method has been studied. Further, the TnTs could be longitudinally stretched by manipulating the connected cells and their elastic response was studied.

Manipulation of cells at the surface of tumor spheroid using optical tweezers and injection of fluorescent dye into a trapped cell using optoporation technique.  相似文献   


15.
Routine infertility investigations in the male and female include imaging techniques such as ultrasonography and endoscopy (fertiloscopy). However, these techniques lack the resolution to localize vital sperm or to reveal detailed morphological analysis of the oviduct which is often the cause of infertility in females. Therefore we set out to evaluate the efficiency of optical coherence tomography (OCT) as a diagnostic imaging tool for micron‐scale visualization of the male and female genital tract. Using the bovine as a model, the optical features of the TelestoTM, GanymedeTM (both Thorlabs) and NirisTM (Imalux) OCT imaging systems were compared.

Comparative visualization of ex vivo bovine testicular tissue by the TelestoTM microscopic optical coherence tomography system (left) and corresponding H&E staining (right).  相似文献   


16.
Measuring blood flow speed in the optical diffusive regime in humans has been a long standing challenge for photoacoustic tomography. In this work, we proposed a cuffing‐based method to quantify blood flow speed in humans with a handheld photoacoustic probe. By cuffing and releasing the blood vessel, we can measure the blood flow speed downstream. In phantom experiments, we demonstrated that the minimum and maximum measurable flow speeds were 0.035 mm/s and 42 mm/s, respectively. In human experiments, flow speeds were measured in three different blood vessels: a radial artery in the right forearm, a radial artery in the index finger of the right hand, and a radial vein in the right forearm. Taking advantage of the handheld probe, our method can potentially be used to monitor blood flow speed in the clinic and at the bedside.

  相似文献   


17.
Risk of recurrence is a major problem in breast cancer management. Currently available prognostic markers have several disadvantages including low sensitivity and specificity, highlighting the need for new prognostic techniques. One of the candidate techniques is serum‐based Raman spectroscopy (RS). In this study, feasibility of using RS to distinguish ‘pre’ from ‘post’ breast tumor resection serum in rats was explored. Spectral analysis suggests change in proteins and amino acid profiles in ‘post’ compared to ‘pre‐surgical’ group. Principal‐Component‐Linear‐Discriminant‐Analysis shows 87% and 91% classification efficiency for ‘pre’ and ‘post‐surgical’ groups respectively. Thus, the study further supports efficacy of RS for theranostic applications.

  相似文献   


18.
This paper examines the recent emergence of miniaturized optical fiber based sensing and actuating devices that have been successfully integrated into fluidic microchannels that are part of microfluidic and lab‐on‐chip systems. Fluidic microsystems possess the advantages of reduced sample volumes, faster and more sensitive biological assays, multi‐sample and parallel analysis, and are seen as the de facto bioanalytical platform of the future. This paper considers the cases where the optical fiber is not merely used as a simple light guide delivering light across a microchannel, but where the fiber itself is engineered to create a new sensor or tool for use within the environment of the fluidic microchannel.

Detection and trapping of molecules can be achieved with optical fibers directly located within the fluidic microchannel.  相似文献   


19.
This study provides a simple method to detect human distal radius bone density based on near infrared (NIR) imaging. The information of bone mineral density can be measured by transluminational optical bone densitometric system. Compared to dual‐energy x‐ray absorptiometry (DXA) results in clinical trial, NIR images show a strong correlation to DXA. Further details can be found in the article by Chun Chung, Yu‐Pin Chen, Tsai‐Hsueh Leu, and Chia‐Wei Sun ( e201700342 ).

  相似文献   


20.
Osteoporosis is a major public health problem worldwide. Here, we present a quantitative multispectral photoacoustic method for the evaluation of bone pathologies which has significant advantages over pure ultrasonic or pure optical methods as it provides both molecular information and bone mechanical status. This is enabled via a simultaneous measurement of the bone's optical properties as well as the speed of sound and ultrasonic attenuation in the bone. To test the method's quantitative predictions, a combined ultrasonic and photoacoustic system was developed. Excitation was performed optically via a portable triple laser‐diode system and acoustically via a single element transducer. Additional dual transducers were used for detecting the acoustic waves that were generated by the two modalities. Both temporal and spectral parameters were compared between different excitation wavelengths and measurement modalities. Short photoacoustic excitation wavelengths allowed sensing of the cortical layer while longer wavelengths produced results which were compatible with the quantitative ultrasound measurements.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号