首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Respiration parameters of liver mitochondria (MCh) in rats fed with amaranth seed oil for 3 weeks have been evaluated. Thirty minutes before decapitation, adrenaline was injected intraperitoneally at a low dose (350 μg/kg body weight) to both control and experimental animals. It was shown that in animals that were injected with adrenaline and did not receive oil, the rate of phosphorylating respiration increased by 32% and phosphorylation time decreased by 22% upon oxidation of succinate; upon oxidation of α-ketoglutarate in the presence of the succinate dehydrogenase inhibitor malonate, phosphorylating respiration was activated by 23%. The respiration of MCh upon oxidation of succinate + glutamate and α-ketoglutarate in the absence of malonate was not affected by adrenaline. The intake of oil markedly activated almost all parameters of mitochondrial respiration in experimental rats upon oxidation of all above-listed substrates in both coupled and uncoupled MCh. However, phosphorylation time was close to the control value (upon oxidation of succinate) or increased (upon oxidation of α-ketoglutarate in the presence and absence of malonate). The injection of adrenaline to animals receiving oil did not affect the oil-activated respiration of MCh oxidizing the substrates used; however, phosphorylation time in all groups of animals decreased. Ca2+ capacity of MCh in rats receiving amaranth oil did not change. Thus, our data show that feeding of rats with amaranth oil activates mitochondrial respiration and prevents MCh hyperactivation induced by adrenaline.  相似文献   

2.
Substrate-level phosphorylation was observed under the conditions optimal for this process and opposite to those for oxidative phosphorylation. Polarographic registration of Ca2+ stimulated alpha-ketoglutarate oxidation and self-inhibition of uncoupled alpha-ketoglutarate (KG) oxidation was used. Acetylcholine (ACh) administration stimulated KG oxidation and substrate-level phosphorylation in isolated mitochondria. These effects are stronger in tissues with a higher level of endogenous acetylcholine, such as guinea pig liver vs rat liver and pancreas vs liver. The specific stimulation of KG oxidation by ACh is related to a decrease of succinate oxidation and is contrary to the specific stimulating effect of adrenaline on succinate oxidation. Therefore the existence of reciprocal hormone-substrate-nucleotide systems is suggested. The described set of conditions optimal for substrate-level phosphorylation observation by polarographic registration of respiration is as convenient as the ADP test for the investigation of oxidative phosphorylation.  相似文献   

3.
Using a polarographic technique, we studied the peculiarities of energy metabolism in neurons of the rat brainstem structures related to normal physiological aging. Experiments were carried out under in vitro conditions on mitochondrial (MCh) suspensions prepared from the brainstem cells of young and old rats. In addition, we examined, using the same technique, the parameters of oxidative phosphorylation in analogous MCh suspension under conditions of experimental MCh dysfunction induced by single systemic injection of rotenone into young animals. In the case where we used a succinate + rotenone mixture as the substrate for oxidation, the intensity of ADP-stimulated respiration (V3) in preparations from brainstem neurons of old animals was significantly smaller (against the background of a decrease in the efficacy of respiration control, V3/V4). If a mixture glutamate + malate was used as the substrate for oxidation, the V3 and the efficacy of phosphorylation (ADP/O) decreased significantly. The experimental MCh dysfunction resulted in the lowering of practically all parameters of oxidation and phosphorylation under conditions of oxidation of glutamate + malate, as well as V3, V3/V4, and ADP/O, in the case where we used succinate + rotenone as the substrate for oxidation. Less expressed changes in the recorded indices upon oxidation of succinate + rotenone were indicative of activation of the succinate oxidase pathway; this preserved the electrotransport function of the respiratory chain in the MCh on a certain level and the ability of the latter to provide oxidative phosphorylation.  相似文献   

4.
Activation of alpha-ketoglutarate oxidation in the rat liver mitochondria takes place 15 and 30 min after intraperitoneal injection of acetyl choline. This mediator in doses of 25, 50 and 100 micrograms per 100 g of body weight causes a pronounced stimulation of phosphorylation respiration rate and calcium capacity of mitochondria with alpha-ketoglutarate oxidation. Acetyl choline is found to have a moderate inhibitory action on oxidation of lower (physiological) concentrations of succinate. Its stimulating action on alpha-ketoglutarate oxidation is associated with activation of M-cholinoreceptors; atropine, a choline-blocker, removes completely this effect. It is supposed that alpha-ketoglutarate and succinate are included into the composition of two reciprocal hormonal-substrate nucleotide systems.  相似文献   

5.
The influence of L-arginine (600 mg/kg) and NO-synthase blocator N omega-nitro-L-arginine L-NNA (35 mg/kg) on processes of ADP-stimulated respiration (under using 0.35 mM succinate, 1 mM alpha-ketoglutarate, 2 mM pyruvate, 2 mM glutamate, 2 Mm malate and succinate dehydrohenase blocator--2 mM malonate as substrates of oxidation), lipid peroxidation (concentration of DK and MDA), activities of succinate dehydrohenase and aminotransferases in rats tissues with different resistance to hypoxia under stress conditions have been investigated. It have been shown that the energy metabolism indices (respiration rate and efficiency of phosphorilation ADP/O) are higher in high resistent (HR) animals in the control group. Stress causes the increase of ADP-stimulated respiration in low resistent (LR) under succinate oxidation and decrease of NADPH-dependent utilization, indicative of more effort of energy system in LR animals. Stress conditions are connected with the increase of lipid peroxidation products in blood both in LR and in HR animals, though in hepar their concentration change unimportantly. Injection of L-arginine decreases aerobic component of energy metabolism on the background decreasing aminotransferases ways of oxidation and succinate dehydrohenase activity. L-arginine causes decrease of lipid peroxidation products in LR, in HR the same effect reaches by L-NNA injection. The has been made conclusion about tight correlation between energy metabolism, processes of lipid peroxidation with resistance to hypoxia and functioning of nitric oxide cycle under stress conditions.  相似文献   

6.
The experiment, on Wistar male rats was carried out to investigate influence of endurance training (swimming with load 7.0 +/- 1.3% body weight, 30 min a day, during 4 weeks) and additional intermittent hypoxic training (12% O2 in N2 - 15 min, 21% O2 - 15 min, 5 sessions a day, during the first 2 weeks) on the following parameters: ADF-stimulated mitochondrial respiration, lactate/pyruvate ratio, succinate dehydrogenase activity, and lipid peroxidation in skeletal muscle. The next oxidation substrates were used: 1 mmol/l succinate and 1 mmol/l alpha-ketoglutarate as well as the next inhibitor succinate dehydrogenase 2 mmol/l malonate. It was shown that physical work combined with intermittent hypoxic training led to the increase of mitochondrial respiration effectiveness in muscle energy supply under alpha-ketoglutarate oxidation in comparison with succinate oxidation as well as to the decrease of succinate dehydrogenase activity and lipid peroxidation. The study suggested that these changes may correct mitochondrial dysfunction under intensive muscular work.  相似文献   

7.
The effect of L-arginine and blockator of nitric oxide synthase L-NNA on processes of calcium mitochondrial capacity in liver with different resistance to hypoxia in the experiments with Wistar rats has been studied using the followrng substrates of energy support: succinic, alpha-ketoglutaric acids, alpha-ketolutarate and inhibitor succinatedehydrogenase malonate. As well we used substrates mixtures combination providing for activation of aminotransferase mechanism: glutamate and piruvate, glutamate and malate. It has been shown that L-arginine injection increases calcium mitochondrial capacity of low resistant rats using as substrates the succinate and alpha-ketoglutarate to control meanings of high resistance rats. Effects of donors nitric oxide on this processes limit NO-synthase inhibitor L-NNA.  相似文献   

8.
We investigated the role of the ATP-sensitive potassium channel opener pinacidil and blocker glibenclamide on guinea pig liver mitochondrial function, and a possible significance of pinacidil in the pharmacological treatment during myocardium dystrophy. First, a series of experiments was performed to determine the effect of pinacidil and glibenclamide on mitochondrial oxygen consumption. We found that pinacidil increased the rate of mitochondrial respiration for FAD-generated substrate (succinate oxidation), but was most effective for α-ketoglutarate oxidation with enhancement of respiratory control ratio. Oxidation of FAD-generated substrate inhibited efficiency of phosphorylation for α-ketoglutarate oxidation in pinacidil-treated animals. Glibenclamide decreased the rate of respiration with the lowest value of efficiency of phosphorylation, especially for α-ketoglutarate oxidation. A second series of experiments was performed to determine the effects of pinacidil and glibenclamide on oxidative phosphorylation during adrenaline-induced myocardium dystrophy. The increase in respiratory control ratio and efficiency of phosphorylation for α-ketoglutarate oxidation was greater than for succinate oxidation in mitochondria of pinacidil-pretreated animals during myocardium dystrophy. Inhibitory analysis with malonate suggested that endogenous succinate increased oxidation of NADH-generated substrates in mitochondria. Pinacidil is mainly involved in the adrenaline-induced alterations of mitochondrial function due to elevation of phosphorylation efficiency for α-ketoglutarate oxidation and a decreased level of lipid peroxidation.  相似文献   

9.
R N Akhmerov 《Ontogenez》1986,17(5):516-524
A marked increase in the rate of mitochondrial respiration, not coupled with ADP phosphorylation, was noted during the transformation of newborn poikilothermic animals into homoeothermic ones in the experiment on the rat tissue homogenates. Uncoupled respiration, as well as coupled one, is realized by the mitochondrial respiration chain, is observed upon oxidation of NADH, succinate, ascorbate and is expressed by a high rate of O2 consumption in the absence of added ADP. During ontogenesis, uncoupled respiration is activated to a greater extent in the heart and skeletal muscle and to a lesser extent in the liver and brown fat. The rates of phosphorylating oxidation of different substrates in tissue homogenates of animals from various age groups differ insignificantly. It is supposed that the postnatal development of homoeothermism in rats is ensured by the formation in many tissues of a system of uncoupled respiration, which takes part in heat production without preliminary ATP synthesis.  相似文献   

10.
Acetylcholine has been studied for its effect on respiration and oxidative phosphorylation in mitochondria from the heart of a rat and guinea pig. Acetylcholine in doses of 25, 50 and 100 mg per 100 g of the body weight 5, 15 and 30 min after intraperitoneal injection intensifies the rate of phosphorylative respiration at ketoglutarate oxidation and moderately lowers it at succinate oxidation. Malonate increases the activating influence of acetylcholine on oxidation of alpha-ketoglutarate in the heart mitochondria and aminooxyacetate decreases it. Phosphorylative respiration with oxidation of pyruvate and isocitrate is not changed essentially under the action of acetylcholine. Introduction of acetylcholine stimulated most strongly the aminooxyacetate-sensitive portion of respiration, a mixture of aminotransferases in the activation of alpha-ketoglutarate oxidation under effect of acetylcholine. The stimulating action of acetylcholine on alpha-ketoglutarate oxidation is mediated by M- and H-cholinoreceptors, since it is abolished by their blockers: atropine and benzohexonium. Stimulation of alpha-ketoglutarate oxidation by acetylcholine is mostly expressed under introduction of beta-adrenoblocker obsidan which provides prevalence of the parasympathetic nervous system. This stimulation is more intensive in the guinea pig as a more cholinergic animal in comparison with a rat.  相似文献   

11.
R N Akhmerov 《Biofizika》1987,32(4):606-608
Isolated heart mitochondria possessing a high phosphorylation efficiency with pyruvate and malate as substrates oxidize NADH and ascorbate unassociated with ADP phosphorylation. This uncoupled pathway is expressed partially when succinate or NAD-linked substrates are oxidized. The uncoupled oxidation is likely to be the result of the presence of a mitochondrial population with the high-permeable inner membrane in intact tissues. The nature and origin of a uncoupled respiratory system and its role in the thermoproduction of endotherms are discussed.  相似文献   

12.
The influence of activator of ATP-sensitive potassium channels (KATP) pinacidil and blocker glibenclamide after intermittent hypoxia in rats under stress condition on ADP-stimulated mitochondrial respiration by Chance and lipid peroxidation processes in liver have been investigated. We used next substrates of oxidation--0.35 mM succinate, 1 mM alpha-ketoglutarate, 3 mM glutamate, 3 mM pyruvate, 2.5 mM malate and inhibitor of the mitochondrial fermentative complex I (10 microM rotenone), succinate dehydrogenase inhibitor (2 mM malonate) and inhibitor of transamination (1 mM aminooxiacetate). We suggest that adaptation by intermittent hypoxia and application of a KATP opener pinacidil possess significant protective effect on mitochondrial energy support under stress condition. Combination of intermittent hypoxia with pinacidil causes more efficient consumption of oxygen and decrease of lipid peroxidation processes comparative to intermittent hypoxia or pinacidil injection used separately. We conclude about the existence of the functional link between nitric oxide which is being increased under intermittent hypoxia and KATP opener. Both intermittent hypoxia and pinacidil effectively decrease the negative results of mitochondrial dysfunction under stress condition.  相似文献   

13.
The products of the reactions of mitochondrial 2-oxo acids with hydrogen peroxide and tert-butyl hydroperoxide (tert-BuOOH) were studied in a chemical system and in rat liver mitochondria. It was found by HPLC that the decarboxylation of alpha-ketoglutarate (KGL), pyruvate (PYR), and oxaloacetate (OA) by both oxidants results in the formation of succinate, acetate, and malonate, respectively. The two latter products do not metabolize in rat liver mitochondria, whereas succinate is actively oxidized, and its nonenzymatic formation from KGL may shunt the tricarboxylic acid (TCA) cycle upon inactivation of alpha-ketoglutarate dehydrogenase (KGDH) under oxidative stress, which is inherent in many diseases and aging. The occurrence of nonenzymatic oxidation of KGL in mitochondria was established by an increase in the CO(2) and succinate levels in the presence of the oxidants and inhibitors of enzymatic oxidation. H(2)O(2) and menadione as an inductor of reactive oxygen species (ROS) caused the formation of CO(2) in the presence of sodium azide and the production of succinate, fumarate, and malate in the presence of rotenone. These substrates were also formed from KGL when mitochondria were incubated with tert-BuOOH at concentrations that completely inhibit KGDH. The nonenzymatic oxidation of KGL can support the TCA cycle under oxidative stress, provided that KGL is supplied via transamination. This is supported by the finding that the strong oxidant such as tert-BuOOH did not impair respiration and its sensitivity to the transaminase inhibitor aminooxyacetate when glutamate and malate were used as substrates. The appearance of two products, KGL and fumarate, also favors the involvement of transamination. Thus, upon oxidative stress, nonenzymatic decarboxylation of KGL and transamination switch the TCA cycle to the formation and oxidation of succinate.  相似文献   

14.
V A Kissel  W J Hartig 《In vitro》1983,19(7):529-537
Mitochondria have been isolated from the codling moth Laspeyresia pomonella, CP-1268 cell line. The mitochondrial fraction was isolated from pooled 4 d, exponential growth phase, cultures. The mitochondria were determined to be intact based on the demonstration of respiratory control, the effects of 2,4 dinitrophenol and oligomycin on respiration, the inability to oxidize NADH, and the inability of cytochrome c to enhance respiration. The isolated mitochondria were able to oxidize succinate, pyruvate, malate, alpha-ketoglutarate, and alpha-glycerophosphate efficiently. Of the substrates tested, the CP-1268 mitochondria oxidized succinate most efficiently. The respiratory control ratios ranged from a high of 4.6 for pyruvate to a low of 1.7 with alpha-glycerophosphate. These findings confirm that the mitochondria were tightly coupled. The data also confirm the presence of three sites of oxidative phosphorylation because NAD-linked substrates had ADP-to-O ratios approaching 3 and flavoprotein linked substrates had values approaching 2.  相似文献   

15.
Respiration, oxidative phosphorylation, calcium uptake, and the mitochondrial membrane potential of trophozoites of the malaria parasite Plasmodium berghei were assayed in situ after permeabilization with digitonin. ADP promoted an oligomycin-sensitive transition from resting to phosphorylating respiration. Respiration was sensitive to antimycin A and cyanide. The capacity of trophozoites to sustain oxidative phosphorylation was additionally supported by the detection of an oligomycin-sensitive decrease in mitochondrial membrane potential induced by ADP. Phosphorylation of ADP could be obtained in permeabilized trophozoites in the presence of succinate, citrate, alpha-ketoglutarate, glutamate, malate, dihydroorotate, alpha-glycerophosphate, and N,N,N',N'-tetramethyl-p-phenylenediamine. Ca(2+) uptake caused membrane depolarization compatible with the existence of an electrogenically mediated Ca(2+) transport system in these mitochondria. An uncoupling effect of fatty acids was partly reversed by bovine serum albumin, ATP, or GTP and not affected by atractyloside, ADP, glutamate, or malonate. Evidence for the presence of a mitochondrial uncoupling protein in P. berghei was also obtained by using antibodies raised against plant uncoupling mitochondrial protein. Together these results provide the first direct biochemical evidence of mitochondrial function in ATP synthesis and Ca(2+) transport in a malaria parasite and suggest the presence of an H(+) conductance in trophozoites similar to that produced by a mitochondrial uncoupling protein.  相似文献   

16.
The effect of 5-n-alkyl(C19-C25) resorcinols isolated from Azotobacter chroococcum on the oxidation of succinate and NAD-dependent substrates (glutamate, alpha-ketoglutarate, malate, pyruvate) by rat liver mitochondria was studied, using the polarographic technique. With succinate, the above resorcinol lipids activated to some extent the 2,4-dinitrophenol-decoupled mitochondrial respiration, but markedly suppressed it (up to 95%) in the presence of NAD-dependent substrates. The activating and inhibiting effects correlated with the resorcinol lipid/mitochondrial proteins ratio and were observed, when the lipid concentration in the incubation mixture ranged from 2.4.10(-4) to 6.0.10(-4) M. The most striking inhibiting effect was observed with alpha-ketoglutarate as substrate. The results obtained suggest that 5-n-alkyl(C19-C25) resorcinols should be regarded as rotenone type regulators of cell respiration.  相似文献   

17.
The effect of acute respiratory hypoxia in rats on mitochondrial respiration, adenine nucleotides and some amino acids of the heart was studied. The decrease in the total (ATP + ADP + AMP) and exchangeable (ATP + ADP) adenine nucleotide pool of the mitochondria was accompanied by a pronounced loss of state 3 respiration with glutamate plus malate and a slight decrease with succinate plus rothenone. The uncoupled respiration of mitochondria with glutamate and malate was decreased in the same degree as in the absence of 2,4-dinitrophenol. State 4 respiration with substrates of both types was unaffected by hypoxia. These data point to a hypoxia-induced impairment of complex I of the respiratory chain. The decrease of tissue and mitochondrial glutamate was accompanied by the elevation of alanine content in the heart and an increase in intramitochondrial aspartate. The ADP-stimulated respiration of mitochondria was correlated with mitochondrial glutamate and ATP as well as with exchangeable adenine nucleotide pools during hypoxia. The experimental results suggest that mitochondrial dysfunction induced by hypoxia may also be attributed to the low level of mitochondrial glutamate.  相似文献   

18.
Liver mitochondria isolated from rats immediately after exercise oxidize substrates more rapidly than do mitochondria from resting animals. In both fed and fasted rats, a 1-h period of exercise resulted in increased concentrations of malate in their livers and in the mitochondria isolated therefrom. This increase occurred in both untrained and exercise-trained rats. Because mitochondrial malate is known to facilitate mitochondrial uptake of other carboxylic substrates, it seems likely that the increased mitochondrial malate is responsible for the increased rate of oxidation. Rats injected with small amounts of malate (4.6 mumol/100 g body wt) yielded liver mitochondria with increased malate concentration and increased rates of oxidation of citrate, alpha-ketoglutarate, and succinate. The beta adrenergic antagonist propranolol (0.25 mg/100 g body wt) and the alpha 1 antagonist prazosin (same dose) did not abolish the effect of exercise on mitochondrial malate concentration or substrate oxidation.  相似文献   

19.
Studies of isolated rat liver mitochondria were undertaken in order to evaluate the importance of glutamate transport, oxidation reduction state, and product inhibition on the rates of formation of ammonia from glutamate. Uptake and efflux of glutamate across the mitochondrial membrane were measured isotopically in the presence of rotenone. Efflux was stimulated by H+ in the mitochondrial matrix and was found to be first order with respect to matrix glutamate except when the matrix pH was unphysiologically low. The data suggest that the Km of matrix glutamate for efflux is decreased by H+. Matrix H+ also appeared to stimulate glutamate uptake, but the effect was to increase both the Km of medium glutamates and Vmax. Mitochondria were incubated at 15 and 28 degrees C with glutamate and malonate. Under these conditions, glutamate was metabolized only by the deamination pathway. Flux was evaluated by assay of ammonia formation. Oxidation reduction state was varied with ADP and uncoupling agents. Matrix alpha-ketoglutarate was varied either by the omission of malonate from the incubation media or by adding alpha-ketoglutarate to the external media. Influx and efflux of glutamate could be calculated from previously determined transport parameters. The difference between calculated influx and efflux was found to be equal to ammonia formation under all conditions. It was, therefore, possible to evaluate the relative contributions of oxidation reduction state, transport, and product inhibition as effectors of ammonia formation. The contribution of transport was relatively small while oxidation reduction state exerted a large influence. alpha-Ketoglutarate was found to be a potent competitive inhibitor of ammonia production and glutamate dehydrogenase. Inhibition of glutamate dehydrogenase by alpha-ketoglutarate was judged to be a potentially important modulator of metabolic fluxes.  相似文献   

20.
Male Sprague-Dawley rats were pair-fed a liquid diet containing 36% of calories as ethanol for at least 31 days. Mitochondria were isolated from the livers and assayed for state 3, state 4 and uncoupled respiration at all three coupling sites. Assay conditions were established that maximized state 3 respiration with each substrate while maintaining a high respiratory control ratio. In mitochondria from ethanol-fed animals, state 3 respiratory rates were decreased at all three coupling sites. The decreased state 3 rate observed at site III was still significantly higher than the state 3 rates observed at site II in mitochondria from either ethanol-fed or control animals. Moreover, the maximal (FCCP-uncoupled) rates with succinate and alpha-ketoglutarate were the same in mitochondria from ethanol-fed and control animals, whereas with glutamate-malate as substrate it was lowered 23% by chronic ethanol consumption. To investigate the role of cytochrome oxidase in modulating the respiratory rate with site I and site II substrates, the effects of cyanide on state 3 and FCCP-uncoupled respiration were determined. When the mitochondria were uncoupled there was no decrease in the rate of succinate oxidation until the rates of ascorbate and succinate oxidation became equivalent. Conversely, parallel inhibition of ascorbate, succinate and glutamate-malate state 3 respiratory rates were observed at all concentrations (1-50 microM) of cyanide utilized. These observations suggest strongly that in coupled mitochondria ethanol-elicited decreases in cytochrome oxidase activity depress the state 3 respiratory rates with site I and II substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号