首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Percoll density gradients were used to separate sheep erythrocytes according to cell age. Erythrocytes with low intracellular levels of glutathione (GSH) caused by an inherited deficiency of the System C amino acid transporter exhibited large age-realted decreases in GSH and K+ content. In contrast, there was no age-related loss of intracellular GSH in normal sheep erythrocytes or in sheep erythrocytes with low GSH resulting from a diminished activity of γ-glutamylcysteine synthetase. Loss of GSH from amino acid transport-deficient erythrocytes was parallel by the progressive appearance of Heinz bodies in the cells, indicating an increased susceptibility to oxidative damage.  相似文献   

2.
Normal sheep erythrocytes as well as glutathione- (GSH-) deficient and arginase-deficient sheep erythrocytes have been characterized by 1H nuclear magnetic resonance spectroscopy. The GSH deficiency is a result of defective amino acid transport (lesion 1), diminished gamma-glutamylcysteine synthetase activity (lesion 2), or both (lesions (1 + 2)). 1H-NMR spectra of normal sheep erythrocytes are similar to those for human erythrocytes, and consist of resonances from a number of small intracellular molecules, including GSH. In contrast, the resonances for GSH in the GSH-deficient erythrocytes are much weaker, and strong resonances are observed for lysine, threonine and ornithine or arginine, depending on the arginase activity, in erythrocytes with lesion 1 and lesions (1 + 2). A comparison of the intensity of GSH resonances in spectra for normal and GSH-deficient erythrocytes with GSH levels determined spectrophotometrically following reaction with the nonspecific thiol reagent 5,5'-dithiobis(2-nitrobenzoate) (DTNB) indicates that either not all of the GSH determined with Ellman's reagent is free and observable by 1H-NMR or that not all of the thiol determined by Ellman's reagent is GSH. If the latter is the case, the GSH levels determined with Ellman's reagent for erythrocytes with lesions (1 + 2) are most affected, which might account for their high susceptibility to oxidative stress.  相似文献   

3.
1. The maximum activities of the enzymes for the biosynthesis of GSH (gamma-glutamyl-cysteine synthetase and GSH synthetase) have been assayed in high GSH and low GSH erythrocytes from Tasmanian Merino and Finnish Landrace sheep. 2. For the Merinos, the activities (mumol product/g haemoglobin per min +/- S.E.M. (n)) in the high and low GSH erythrocytes respectively were: gamma-glutamyl-cysteine synthetase: 0.776 +/- 0.065 (11) and 0.375 +/- 0.063 (13); and GSH synthetase: 0.069 +/- 0.003 (11) and 0.066 +/- 0.002 (13). 3. For the Finnish Landrace sheep the activities in the high and low GSH erythrocytes respectively were: gamma-glutamyl-cysteine synthetase: 0.595 +/- 0.063 (12) and 0.555 +/- 0.033 (10) and gamma-glutamyl-cysteine synthetase: 0.073 +/- 0.002 (12) and 0.070 +/- 0.002 (10). 4. gamma-Glutamyl-cysteine synthetase was markedly inhibited by physiological GSH concentrations. No evidence was found for the presence of an inhibitor of GSH biosynthesis (other than GSH) in low GSH erythrocytes from Finnish Landrace sheep. 5. Although for the Merinos the low GSH trait can be explained in terms of a diminished activity of gamma-glutamyl-cysteine synthetase, no such explanation is tenable for the Finnish Landrace sheep.  相似文献   

4.
Recycling of ascorbic acid from its oxidized forms helps to maintain the vitamin in human erythrocytes. To determine the relative contributions of recycling from the ascorbate radical and dehydroascorbic acid, we studied erythrocytes exposed to a trans-membrane oxidant stress from ferricyanide. Ferricyanide was used both to induce oxidant stress across the cell membrane and to quantify ascorbate recycling. Erythrocytes reduced ferricyanide with generation of intracellular ascorbate radical, the concentrations of which saturated with increasing intracellular ascorbate and which were sustained over time in cells incubated with glucose. Ferricyanide also generated dehydroascorbic acid that accumulated in the cells and incubation medium to concentrations much higher than those of the radical, especially in the absence of glucose. Ferricyanide-stimulated ascorbate recycling from dehydroascorbic acid depended on intracellular GSH but was well maintained at the expense of intracellular ascorbate when GSH was severely depleted by diethylmaleate. This likely reflects continued radical reduction, which is not dependent on GSH. Erythrocyte hemolysates showed both NAD- and NADPH-dependent ascorbate radical reduction. The latter was partially due to thioredoxin reductase. GSH-dependent dehydroascorbate reduction in hemolysates, which was both direct and enzyme-dependent, was greater than that of the radical reductase activity but of lower apparent affinity. Together, these results suggest an efficient two-tiered system in which high affinity reduction of the ascorbate radical is sufficient to remove low concentrations of the radical that might be encountered by cells not under oxidant stress, with back-up by a high capacity system for reducing dehydroascorbate under conditions of more severe oxidant stress.  相似文献   

5.
Data from 838 Finnish Landrace or Finnish Landrace crossbred sheep showed a highly significant correlation between phenotypes of the C blood group system and erythrocyte amino acid transport variants. Erythrocytes with normal amino acid transport properties (GSH high, Ly- type) were Cb-positive or Cb-negative. Erythrocytes with the amino acid transport lesion (GSH low, Ly +) were never Cb-negative. Sheep erythrocytes homozygous for Cbshowed stronger lysis reactions with anti-Cb than heterozygous cells. Ly + sheep were nearly always homozygous for Cb, whereas most Ly- sheep were heterozygous or Cb-negative. Inheritance studies provided strong evidence that this association is due to close genetic linkage.  相似文献   

6.
1. Two automated colorimetric methods have been developed for assaying the GSH and total thiol in protein-free extracts of erythrocytes. They employ as chromogens 5,5'-dithiobis-(2-nitrobenzoate) (DTNB) and alloxan. 2. The concentrations of GSH, GSSG and total non-protein thiol have been estimated in high and low GSH erythrocytes from Finnish Landrace and Tasmanian Merino sheep. 3. In both breeds of sheep low GSH cells were found to have low concentrations of total non-protein thiol and GSSG as well as of GSH. 4. Nevertheless high and low GSH cells have similar values for the oxidation-reduction potential of the GSH : GSSG couple.  相似文献   

7.
8.
In the present study, we report that polyphenols present in red wine obtained by a controlled microvinification process are able to protect human erythrocytes from oxidative stress and to activate Plasma Membrane Redox System (PMRS). Human plasma obtained from healthy subjects was incubated in the presence of whole red wine at a concentration corresponding to 9.13–73?μg/ml gallic acid equivalents to verify the capacity to protect against hypochlorous acid (HOCl)-induced plasma oxidation and to minimize chloramine formation. Red wine reduced hemolysis and chloramine formation induced by HOCl of 40 and 35%, respectively. PMRS present on human erythrocytes transfers electrons from intracellular molecules to extracellular electron acceptors. We demonstrated that whole red wine activated PMRS activity in human erythrocytes isolated from donors in a dose-dependent manner with a maximum at about 70–100?μg/ml gallic acid equivalents. We also showed that red wine increased glutathione (GSH) levels and erythrocytic antioxidant capacity, measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) quenching assay. Furthermore, we reported that GSH played a crucial role in regulating PMRS activity in erythrocytes. In fact, the effect of iodoacetamide, an alkylating agent that induces depletion of intracellular GSH, was completely counteracted by red wine. Bioactive compounds present in red wine, such as gallic acid, resveratrol, catechin, and quercetin were unable to activate PMRS when tested at the concentrations normally present in aged red wines. On the contrary, the increase of PMRS activity was associated with the anthocyanin fraction, suggesting the capacity of this class of compounds to positively modulate PMRS enzymatic activity.  相似文献   

9.
An inherited amino acid transport deficiency results in low concentrations of glutathione (GSH) in the erythrocytes of certain sheep. Earlier studies based on phenotyping according to GSH concentrations indicated that the gene Tr H, which controls normal levels of GSH, behaves as if dominant or incompletely dominant to the allele Tr h, which controls the GSH deficiency. The present paper shows that when sheep are classified according to amino acid transport activity, the Tr H gene behaves as if codominant to Tr h. Erythrocytes from sheep homozygous for the Tr H gene exhibit rapid saturable l-alanine influx (apparent K m ,21.6mm; V max, 22.4 mmol/liter cells/hr). Cells from sheep homozygous for the Tr h gene exhibit slow nonsaturable l-alanine uptake (0.55 mmol/liter cells/hr at 50mm extracellular l-alanine). Cells from heterozygous sheep show saturable l-alanine uptake with a diminished V max (apparent K m, 19.1mm; V max, 12.7 mmol/liter cells/hr). These erythrocytes have a significantly lower GSH concentration than cells from Tr H, TrH sheep but similar intracellular levels of dibasic amino acids.The authors are grateful to the M.R.C. for a Project Grant.  相似文献   

10.
Vitamin C, or ascorbic acid, is efficiently recycled from its oxidized forms by human erythrocytes. In this work the dependence of this recycling on reduced glutathione (GSH) was evaluated with regard to activation of the pentose cycle and to changes in pyridine nucleotide concentrations. The two-electron-oxidized form of ascorbic acid, dehydroascorbic acid (DHA) was rapidly taken up by erythrocytes and reduced to ascorbate, which reached intracellular concentrations as high as 2 mM. In the absence of D-glucose, DHA caused dose-dependent decreases in erythrocyte GSH, NADPH, and NADH concentrations. In the presence of 5 mM D-glucose, GSH and NADH concentrations were maintained, but those of NADPH decreased. Reduction of extracellular ferricyanide by erythrocytes, which reflects intracellular ascorbate recycling, was also enhanced by D-glucose, and ferricyanide activated the pentose cycle. Diethylmaleate at concentrations up to 1 mM was found to specifically deplete erythrocyte GSH by 75-90% without causing oxidant stress in the cells. Such GSH-depleted erythrocytes showed parallel decreases in their ability to take up and reduce DHA to ascorbate, and to reduce extracellular ferricyanide. These results show that DHA reduction involves GSH-dependent activation of D-glucose metabolism in the pentose cycle, but that in the absence of D-glucose DHA reduction can also utilize NADH.  相似文献   

11.
Production of hydrogen peroxide and secretion of myeloperoxidase by stimulated neutrophils resulted in myeloperoxidase-catalyzed oxidation of chloride to hypochlorous acid (HOCl), the reaction of HOCl with taurine to yield taurine monochloramine (TauNHCl), and accumulation of TauNHCl in the extracellular medium. When erythrocytes were present, the yield of TauNHCl was lower as the result of uptake of TauNHCl into erythrocytes. The zwitterion taurine was not taken up, but the anion TauNHCl and other anionic oxidants including taurine dichloramine (TauNCl2) and L-alanine chloramines were transported into erythrocytes by the anion-transport system. Oxidation of intracellular components such as glutathione (GSH) by taurine chloramines resulted in reduction of the chloramines and trapping of taurine within erythrocytes. At high oxidant:erythrocyte ratios, TauNHCl also oxidized hemoglobin (Hb) and depleted ATP, but caused little lysis. TauNCl2 was much more effective as a lytic agent. At low oxidant:erythrocyte ratios, the chloramines caused net loss of GSH when no glucose was provided, but Hb was not oxidized and GSH content returned to normal when glucose was added. Therefore, anionic chloramines may mediate oxidative toxicity when the neutrophil:erythrocyte ratio is high. Under more physiologic conditions, chlorination of taurine by neutrophils and the uptake and reduction of TauNHCl by erythrocytes prevents accumulation of oxidants and may protect blood cells, plasma components, and tissues against oxidative toxicity.  相似文献   

12.
The effects of experimental anaemia on the levels of reduced glutathione (GSH) and the activity of glycolytic enzymes in the erythrocytes of normal and GSH-deficient Merino sheep were investigated. There was a rise in red cell GSH levels in both groups of sheep; the magnitude of this response was, however, quite different. When expressed as a percentage of the initial value, the rise in GSH level was 18% in normal and 263% in GSH-deficient animals. There was also an increase in the activities of various enzymes following phlebotomy but this increase was similar in the two groups of sheep.  相似文献   

13.
The concentration of GSSG was determined in the erythrocytes of Merino sheep. These sheep were grouped according to erythrocyte potassium type, haemoglobin type, and GSH type. It was found that haemoglobin and potassium type were not correlated with GSSG concentration; however, GSSG concentration was found to be significantly correlated with GSH concentration. This relationship may explain previously reported differences in ATPase activity and may reflect further metabolic differences in the erythrocytes of GSH-high and GSH-low type Merino sheep.  相似文献   

14.
The effect of adding either reduced (GSH) or oxidized (GSSG) glutathione to intact human erythrocytes was investigated by 1H-spin echo NMR, which allows direct observation of relatively concentrated low molecular weight compounds within intact cells. A specific region of the spectrum was affected by addition of GSH, with the appearance of new peaks that were diagnostic of an increase of intracellular GSH. These changes did not occur in hemolysates, and did not involve extra-cytosol GSH either free or membrane-bound. These results indicate that the intracellular redox balance of glutathione is shifted toward the reduced state by exogenous glutathione, possibly via a signal transferring system of the cell membrane.  相似文献   

15.
The concentration of GSSG was determined in the erythrocytes of Merino sheep. These sheep were grouped according to erythrocyte potassium type, haemoglobin type, and GSH type. It was found that haemoglobin and potassium type were not correlated with GSSG concentration; however, GSSG concentration was found to be significantly correlated with GSH concentration. This relationship may explain previously reported differences in ATPase activity and may reflect further metabolic differences in the erythrocytes of GSH-high and GSH-low type Merino sheep.  相似文献   

16.
Babesia bovis infections have only been observed in bovine species in contrast to Babesia divergens that also can infect humans, sheep and rodents. Using an in vitro assay that assesses invasion of erythrocytes by free merozoites after a 1-h incubation period, it was shown that specificity is not determined by host-specific interactions associated with invasion. Human erythrocytes were invaded more efficiently than bovine erythrocytes whereas erythrocytes of sheep, pigs and horses were invaded only slightly less efficiently. In contrast, goat erythrocytes were refractory to efficient invasion. Significant differences in invasion efficiency into erythrocytes from different individuals of the same species were observed. Erythrocytes from all species, except for goats, supported intracellular development of newly invaded merozoites and high numbers of duplicated parasites, located in a morphologically normal accole position, were present. Only in bovine erythrocytes did subsequent rounds of invasion, leading to increased parasitaemia, take place. This suggests that host specificity is determined by factors operating late in the erythrocytic stage of the B. bovis life cycle. Incubation of erythrocytes with neuraminidase prior to invasion led to a decrease in invasion efficiency of 80%. This effect was observed for several species. The removal of either (2-3)-linked or (2-6)-linked sialic acid residues gave similar levels of reduction whereas simultaneous removal did not show an additive effect. Pre-incubation of merozoites with N-acetylneuraminyl-lactose decreased invasion efficiency by 45% whereas addition just prior to invasion had no significant effect. The results demonstrate that invasion is dependent on the presence of sialic-acid containing membrane receptors on erythrocytes that interact with merozoite ligands that are probably already accessible during pre-incubation prior to invasion.  相似文献   

17.
The objective of this study was to investigate if erythrocytes play a role in the maintenance of redox homeostasis of the plasma. Thus, we studied L-cysteine efflux and influx in vitro in human erythrocytes. In the present study, we exposed the erythrocytes to different concentrations of L-cysteine and then measured the intracellular free -SH concentrations. Erythrocytes treated in the same manner were later utilized for the cysteine efflux studies. The effect of temperature on the influx and the efflux processes were also evaluated. Change in the free -SH content of the buffer was evaluated as a measure for the presence of an efflux process. The effects of free -SH depletion on L-cysteine transport is also investigated. We also determined the rate of L-cysteine efflux in the presence and absence of buthionine sulfoximine (BSO) in erythrocytes that are pretreated with 1-chloro-2,4-dinitro benzene, a glutathione (GSH) depletory. Our L-cysteine influx studies demonstrated that erythrocytes can respond to increases in L-cysteine concentration in the extracellular media and influx L-cysteine in a concentration-dependent manner. Free -SH concentrations in erythrocytes treated with 1 mM L-cysteine reached to 1.64 +/- 0.06 mM in 1 h whereas this concentration reached to 4.30 +/- 0.01 mM in 10 mM L-cysteine treated erythrocytes. The L-cysteine efflux is also determined to be time-and concentration-dependent. Erythrocytes that are pretreated with higher L-cysteine concentrations displayed a higher efflux process. Outside concentration of free -SH in 1 mM L-cysteine pretreated erythrocytes reached to 0.200 +/- 0.005 mM in 1 h whereas this concentration reached to 1.014 +/- 0.002 with 10 mM L-cysteine pretreated erythrocytes. Our results also indicate that the rate of inward and outward transport of L-cysteine is affected by the oxidative status of the erythrocytes. When GSH is depleted and GSH synthesis is blocked, the L-cysteine uptake and the efflux processes are significantly decreased. Depending on our results, it could be concluded that erythrocytes play a role in the regulation of the plasma redox status and intracellular level of GSH determines the rate of the L-cysteine efflux.  相似文献   

18.
Bordetella pertussis produces a calmodulin-activated adenylate cyclase (AC) that exists in several forms. Only one form of AC, of apparent 200 kDa, is a toxin that penetrates eukaryotic cells and generates uncontrolled levels of intracellular cAMP. Recombination studies in transposon Tn5-insertion mutants of B. pertussis and amino acid sequence homology with alpha-hemolysin of Escherichia coli suggested that AC toxin may also have a hemolytic activity. Here, we demonstrate that only the toxic form of B. pertussis AC possesses hemolytic activity. Immunoblotting of membranes from sheep erythrocytes throughout the process of cell lysis detects the presence and accumulation of only the 200-kDa form of B. pertussis AC. cAMP generation induced by AC toxin in sheep erythrocytes is immediate whereas appearance of hemolysis is delayed by about 1 h and requires a higher level of AC toxin activity. Addition of exogenous calmodulin to sheep erythrocyte incubation medium potentiates the hemolytic activity of AC toxin but blocks cAMP generation. Extracellular Ca2+ at mM concentrations is absolutely required for cAMP generation but not for hemolysis. However, binding of AC toxin to sheep erythrocytes in the absence of exogenous Ca2+ followed by reincubation of cells in a toxin-free buffer containing Ca2+ leads to an immediate rise in intracellular cAMP. Human erythrocytes bind AC toxin and generate cAMP but are resistant to lysis. These results show that binding of AC toxin to erythrocytes can cause both cAMP generation and hemolysis or only one of these depending on conditions applied and cell type used.  相似文献   

19.
Cysteamine and beta-mercaptoethanol supplementation of in vitro maturation (IVM) medium has been found to increase intracellular glutathione (GSH) content in oocytes and to improve embryo development and quality in several species. The objective of this experiment was to study the effect of cysteamine and beta-mercaptoethanol added during IVM of sheep oocytes on GSH synthesis and embryo development. Furthermore, we examined if cysteamine addition (hence GSH production) had an effect on the reduction of the intracellular peroxide content. We matured oocytes obtained from ovaries collected at a slaughterhouse in vitro in the presence of 0, 50, 100, and 200 microM cysteamine (Experiment 1) or with 0, 50, 100, and 200 microM beta-mercaptoethanol (Experiment 2). Following fertilization and embryo development, there was a increasing level of morula and blastocyst development in the presence of cysteamine, reaching significance in the presence of 200 microM (P < 0.05). However, beta-mercaptoethanol did not influence on the rate of embryo development. GSH levels were measured in oocytes matured in the presence or absence of 200 microM cysteamine (Experiment 3) or 50 microM beta-mercaptoethanol (Experiment 4), with or without buthionine sulfoximide (BSO), an inhibitor of GSH synthesis. Results demonstrated that for both cysteamine and beta-mercaptoethanol, intracellular GSH levels increased against control values (P < 0.01), which was abolished in the presence of BSO. Finally, we reduced intracellular peroxide levels, as measured by the relative fluorescence of the intracellular peroxide probe, carboxy-H2DCFDA, in the presence of either 200 microM cysteamine or 50 microM beta-mercaptoethanol (Experiment 5). These results demonstrate that cysteamine, but not beta-mercaptoethanol, when present during IVM, stimulates sheep embryo development; both cysteamine and beta-mercaptoethanol stimulate GSH synthesis; the increase in intracellular GSH is associated with a decrease in peroxide levels within oocytes.  相似文献   

20.
The objective of this study was to define the relationship between peroxyl radical-mediated cytotoxicity and lipid, protein and sulfhydryl oxidation using human erythrocytes as the target mammalian cell. We found that incubation of human erythrocytes with the peroxyl radical generator 2,2' azobis (2-amidinopropane) hydrochloride (AAPH) resulted in a time and dose-dependent increase in hemolysis such that at 50 mM AAPH maximum hemolysis was achieved at 120min. Hemolysis was inhibited by hypoxia and by the addition of certain water soluble free radical scavengers such as 5-aminosalicylic acid (5-ASA), 4-ASA, N-acetyl-5-ASA and dimethyl thiourea. Peroxyl radical-mediated hemolysis did not appear to involve significant peroxidation of erythrocyte lipids nor did they enhance protein oxidation at times preceding hemolysis. Peroxyl radicals did however, significantly reduce by approximately 80% the intracellular levels of GSH and inhibit by approximately 90% erythrocyte Ca2+ -Mg2+ ATPase activity at times preceding the hemolytic event. Our data as well as others suggest that extracellular oxidants promote the oxidation of intracellular compounds by interacting with certain redox active membrane components. Depletion of intracellular GSH stores using diamide did not result in hemolysis suggesting that oxidation of GSH alone does not promote hemolysis. Taken together, our data suggest that neither GSH oxidation, lipid peroxidation nor protein oxidation alone can account for peroxyl radical-mediated hemolysis. It remains to be determined whether free radical-mediated inactivation of Ca2+-Mg2+ ATPase is an important mechanism in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号