首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many pharmacologically important receptors, including all cytokine receptors, signal via tyrosine (auto)phosphorylation, followed by resetting to their original state through the action of protein tyrosine phosphatases (PTPs). Establishing the specificity of PTPs for receptor substrates is critical both for understanding how signaling is regulated and for the development of specific PTP inhibitors that act as ligand mimetics. We have set up a systematic approach for finding PTPs that are specific for a receptor and have validated this approach with the insulin receptor kinase. We have tested nearly all known human PTPs (45) in a membrane binding assay, using "substrate-trapping" PTP mutants. These results, combined with secondary dephosphorylation tests, confirm and extend earlier findings that PTP-1b and T-cell PTP are physiological enzymes for the insulin receptor kinase. We demonstrate that this approach can rapidly reduce the number of PTPs that have a particular receptor or other phosphoprotein as their substrate.  相似文献   

2.
The dynamics of interaction of the insulin receptor (IR) with Grb14 was monitored, in real time, in living human embryonic kidney cells, using bioluminescence resonance energy transfer (BRET). We observed that insulin rapidly and dose-dependently stimulated this interaction. We also observed that insulin-induced BRET between the IR and protein tyrosine phosphatase 1B (PTP1B) was markedly reduced by Grb14, suggesting that Grb14 regulated this interaction in living cells. Using site-specific antibodies against phosphorylated tyrosines of the IR, we showed that Grb14 protected the three tyrosines of the kinase loop from dephosphorylation by PTP1B, while favouring dephosphorylation of tyrosine 972. This resulted in decreased IRS-1 binding to the IR and decreased activation of the extracellular signal-regulated kinase pathway. Increased Grb14 expression in human liver-derived HuH7 cells also seemed to specifically decrease the phosphorylation of Y972. Our work therefore suggests that Grb14 may regulate signalling through the IR by controlling its tyrosine dephosphorylation in a site-specific manner.  相似文献   

3.
Protein tyrosine phosphatases (PTPs) play a critical role in regulating insulin action in part through dephosphorylation of the active (autophosphorylated) form of the insulin receptor (IRK) and attenuation of its tyrosine kinase activity. Following insulin binding the activated IRK is rapidly internalized into the endosomal apparatus, a major site at which the IRK is dephosphorylated in vivo. Studies in rat liver suggest a complex regulatory process whereby PTPs may act, via selective IRK tyrosine dephosphorylation, to modulate IRK activity in both a positive and negative manner. Use of peroxovanadium (pV) compounds, shown to be powerful PTP inhibitors, has been critical in delineating a close relationship between the IRK and its associated PTP(s) in vivo. Indeed the in vivo administration of pV compounds effected activation of IRK in parallel with an inhibition of IRK-associated PTP activity. This process was accompanied by a lowering of blood glucose levels in both normal and diabetic rats thus implicating the IRK-associated PTP(s) as a suitable target for defining a novel class of insulin mimetic agents. Identification of the physiologically relevant IRK-associated PTP(s) should facilitate the development of drugs suitable for managing diabetes mellitus.  相似文献   

4.
The tyrosine phosphorylated epidermal growth factor receptor (EGFR) initiates numerous cell signaling pathways. Although EGFR phosphorylation levels are ultimately determined by the balance of receptor kinase and protein tyrosine phosphatase (PTP) activities, the kinetics of EGFR dephosphorylation are not well understood. Previous models of EGFR signaling have generally neglected PTP activity or computed PTP activity by considering data that do not fully reveal the kinetics and compartmentalization of EGFR dephosphorylation. We developed a compartmentalized, mechanistic model to elucidate the kinetics of EGFR dephosphorylation and the coupling of this process to phosphorylation-dependent EGFR endocytosis. Model regression against data from HeLa cells for EGFR phosphorylation response to EGFR activation, PTP inhibition, and EGFR kinase inhibition led to the conclusion that EGFR dephosphorylation occurs at the plasma membrane and in the cell interior with a timescale that is smaller than that for ligand-mediated EGFR endocytosis. The model further predicted that sufficiently rapid dephosphorylation of EGFR at the plasma membrane could potentially impede EGFR endocytosis, consistent with recent experimental findings. Overall, our results suggest that PTPs regulate multiple receptor-level phenomena via their action at the plasma membrane and cell interior and point to new possibilities for targeting PTPs for modulation of EGFR dynamics.  相似文献   

5.
The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP-/- and PTP1B-/- immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR beta-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B-/- MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP-/- MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B-/- MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell.  相似文献   

6.
Protein phosphorylation plays critical roles in the regulation of protein activity and cell signaling. The level of protein phosphorylation is controlled by protein kinases and protein tyrosine phosphatases (PTPs). Disturbance of the equilibrium between protein kinase and PTP activities results in abnormal protein phosphorylation, which has been linked to the etiology of several diseases, including cancer. In this study, we screened protein tyrosine phosphatases (PTPs) by in vitro phosphatase assays to identify PTPs that are inhibited by bis (4-trifluoromethyl-sulfonamidophenyl, TFMS)-1,4-diisopropylbenzene (PTP inhibitor IV). PTP inhibitor IV inhibited DUSP14 phosphatase activity. Kinetic studies with PTP inhibitor IV and DUSP14 revealed a competitive inhibition, suggesting that PTP inhibitor IV binds to the catalytic site of DUSP14. PTP inhibitor IV effectively and specifically inhibited DUSP14-mediated dephosphorylation of JNK, a member of the mitogen-activated protein kinase (MAPK) family.  相似文献   

7.
Type 2 diabetes is increasing at an alarming rate worldwide, and there has been a considerable effort in several laboratories to identify suitable targets for the design of drugs against the disease. To this end, the protein tyrosine phosphatases that attenuate insulin signaling by dephosphorylating the insulin receptor (IR) have been actively pursued. This is because inhibiting the phosphatases would be expected to prolong insulin signaling and thereby facilitate glucose uptake and, presumably, result in a lowering of blood glucose. Targeting the IR protein tyrosine phosphatase, therefore, has the potential to be a significant disease-modifying strategy. Several protein tyrosine phosphatases (PTPs) have been implicated in the dephosphorylation of the IR. These phosphatases include PTPalpha, LAR, CD45, PTPepsilon, SHP2, and PTP1B. In most cases, there is evidence for and against the involvement of the phosphatases in insulin signaling. The most convincing data, however, support a critical role for PTP1B in insulin action. PTP1B knockout mice are not only insulin sensitive but also maintain euglycemia (in the fed state), with one-half the level of insulin observed in wild-type littermates. Interestingly, these mice are also resistant to diet-induced obesity when fed a high-fat diet. The insulin-sensitive phenotype of the PTP1B knockout mouse is reproduced when the phosphatase is also knocked down with an antisense oligonucleotide in obese mice. Thus PTP1B appears to be a very attractive candidate for the design of drugs for type 2 diabetes and obesity.  相似文献   

8.
Free fatty acid (FFA) is believed to be a major environmental factor linking obesity to Type II diabetes. We have recently reported that FFA can induce gluconeogenesis in hepatocytes through p38 mitogen-activated protein kinase (p38). In this study, we have investigated the role of p38 in oleate-induced hepatic insulin resistance. Our results show that a prolonged treatment of primary hepatocytes with oleate blunted insulin suppression of hepatic gluconeogenesis, and decreased insulin-induced phosphorylation of Akt in a p38-dependent manner. Reduction of the insulin-induced Akt phosphorylation by oleate correlated with activation of p38. In the presence of p38 inhibition, prolonged exposure of hepatocytes to oleate failed to reduce insulin-stimulated phosphorylation of Akt. An siRNA against p38alpha prevented oleate suppression of the insulin-induced phosphorylation of Akt. Furthermore, a prolonged exposure of hepatocytes to oleate decreased insulin-induced tyrosine phosphorylation of IRS1/2, while slightly increasing serine phosphorylation of IRS. The decrease of insulin-stimulated tyrosine phosphorylation of IRS1/2 in hepatocytes by oleate was reversed by the inhibition of p38. We further show that a prolonged exposure of primary hepatocytes to oleate elevated the protein level of the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene in a p38-dependent manner, but had no effect on the mRNA level of PTEN. Knocking down the PTEN gene prevented oleate to inhibit insulin activation of Akt and insulin suppression of gluconeogenesis. Together, results from this study demonstrate a critical role for p38 in oleate-induced hepatic insulin resistance.  相似文献   

9.
The activity of protein tyrosine phosphatases (PTPs) is restricted by their substrate specificities. The analysis of PTP specificity was greatly helped by the discovery that "substrate-trapping" PTP mutants, such as PTP-1B D181A, stably and specifically bind their substrates. We have set up a PTP substrate specificity assay based on the SPOT technique, which involves the microsynthesis of (phospho)peptides on membranes. To validate this approach, substrate trapping PTP-1B was tested on its cognate ligand, the autophosphorylated insulin receptor (IR). On SPOT membranes, IR peptides with phosphotyrosine 1163 were efficiently bound by PTP1B D181A, and dephosphorylated by PTP-1B. Phosphotyrosine 1163 was preferred over the neighboring 1158 and 1162 phosphotyrosines. PTP-1B also recognized IR-like motifs in Trk autophosphorylation domains, and STAT 5 phosphopeptides. Using a gridded 20-by-20 SPOT library, we show that peptides with the YZM motif (Z: phosphotyrosine) are the strongest ligands for PTP-1B D181A, but not the optimal substrates for dephosphorylation by wild-type PTP1B. In addition we show that PTP-1B and PTP-beta dephosphorylation efficiency is strongly modulated by the introduction of phospho-serine or phospho-threonine in their cognate phospho-tyrosine substrates. Altogether our data illustrate that the SPOT technique is a highly efficient tool for the study of PTP substrate specificity.  相似文献   

10.
BACKGROUND/AIMS: The role of bile acids for insulin resistance in cholestatic liver disease is unknown. METHODS: The effect of taurolithocholic acid-3 sulfate (TLCS) on insulin signaling was studied in cultured rat hepatocytes and perfused rat liver. RESULTS: TLCS induced insulin resistance at the level of insulin receptor (IR) beta Tyr(1158) phosphorylation, phosphoinositide (PI) 3-kinase activity and protein kinase (PK)B Ser(473) phosphorylation in cultured hepatocytes. Consistently, the insulin stimulation of the PI 3-kinase-dependent K(+) uptake, hepatocyte swelling and proteolysis inhibition was blunted by TLCS in perfused rat liver. The PKC inhibitor Go6850 and tauroursodeoxycholate (TUDC) counteracted the suppression of insulin-induced IRbeta and PKB phosphorylation by TLCS. Rapamycin and dibutyryl-cAMP, which inhibited basal signaling via mammalian target of rapamycin (mTOR), restored insulin-induced PKB- but not IRbeta phosphorylation. In livers from 7 day bile duct-ligated rats PKB Ser(473) phosphorylation was decreased by about 50%. CONCLUSION: TLCS induces insulin resistance by a PKC-dependent suppression of insulin-induced IRbeta phosphorylation and the PI 3-kinase/PKB path. This can in part be compensated by a decrease of mTOR activity, which may release insulin-sensitive components downstream of the insulin receptor from tonic inhibition. The data suggest that retention of hydrophobic bile acids confers insulin resistance on the cholestatic liver.  相似文献   

11.
Insulin has pleiotropic effects on the regulation of cell physiology through binding to its receptor. The wide variety of tyrosine phosphorylation motifs of insulin receptor substrate 1 (IRS-1), a substrate for the activated insulin receptor tyrosine kinase, may account for the multiple functions of insulin. Recent studies have shown that activation of the insulin receptor leads to the regulation of focal adhesion proteins, such as a dephosphorylation of focal adhesion kinase (pp125FAK). We show here that C-terminal Src kinase (Csk), which phosphorylates C-terminal tyrosine residues of Src family protein tyrosine kinases and suppresses their kinase activities, is involved in this insulin-stimulated dephosphorylation of focal adhesion proteins. We demonstrated that the overexpression of Csk enhanced and prolonged the insulin-induced dephosphorylation of pp125FAK. Another focal adhesion protein, paxillin, was also dephosphorylated upon insulin stimulation, and a kinase-negative mutant of Csk was able to inhibit the insulin-induced dephosphorylation of pp125FAK and paxillin. Although we have shown that the Csk Src homology 2 domain can bind to several tyrosine-phosphorylated proteins, including pp125FAK and paxillin, a majority of protein which bound to Csk was IRS-1 when cells were stimulated by insulin. Our data also indicated that tyrosine phosphorylation levels of IRS-1 appear to be paralleled by the dephosphorylation of the focal adhesion proteins. We therefore propose that the kinase activity of Csk, through the insulin-induced complex formation of Csk with IRS-1, is involved in insulin's regulation of the phosphorylation levels of the focal adhesion proteins, possibly through inactivation of the kinase activity of c-Src family kinases.  相似文献   

12.
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme that plays a critical role in down-regulating insulin signaling through dephosphorylation of the insulin receptor. Studies have shown that PTP1B knock-out mice showed increased insulin sensitivity in muscle and liver as well as resistance to obesity. A series of functionalized acetophenones were synthesized and evaluated for their PTP1B inhibitory activity. Some of the screened compounds displayed good inhibitory activity.  相似文献   

13.
PTP1B (protein tyrosine phosphatase 1B) is a negative regulator of IR (insulin receptor) activation and glucose homoeostasis, but the precise molecular mechanisms governing PTP1B substrate selectivity and the regulation of insulin signalling remain unclear. In the present study we have taken advantage of Drosophila as a model organism to establish the role of the SH3 (Src homology 3)/SH2 adaptor protein Dock (Dreadlocks) and its mammalian counterpart Nck in IR regulation by PTPs. We demonstrate that the PTP1B orthologue PTP61F dephosphorylates the Drosophila IR in S2 cells in vitro and attenuates IR-induced eye overgrowth in vivo. Our studies indicate that Dock forms a stable complex with PTP61F and that Dock/PTP61F associate with the IR in response to insulin. We report that Dock is required for effective IR dephosphorylation and inactivation by PTP61F in vitro and in vivo. Furthermore, we demonstrate that Nck interacts with PTP1B and that the Nck/PTP1B complex inducibly associates with the IR for the attenuation of IR activation in mammalian cells. Our studies reveal for the first time that the adaptor protein Dock/Nck attenuates insulin signalling by recruiting PTP61F/PTP1B to its substrate, the IR.  相似文献   

14.
Insulin stimulation of skeletal muscle results in rapid activation of protein kinase Cdelta (PKCdelta), which is associated with its tyrosine phosphorylation and physical association with insulin receptor (IR). The mechanisms underlying tyrosine phosphorylation of PKCdelta have not been determined. In this study, we investigated the possibility that the Src family of nonreceptor tyrosine kinases may be involved upstream insulin signaling. Studies were done on differentiated rat skeletal myotubes in primary culture. Insulin caused an immediate stimulation of Src and induced its physical association with both IR and PKCdelta. Inhibition of Src by treatment with the Src family inhibitor PP2 reduced insulin-stimulated Src-PKCdelta association, PKCdelta tyrosine phosphorylation and PKCdelta activation. PP2 inhibition of Src also decreased insulin-induced IR tyrosine phosphorylation, IR-PKCdelta association and association of Src with both PKCdelta and IR. Finally, inhibition of Src decreased insulin-induced glucose uptake. We conclude that insulin activates Src tyrosine kinase, which regulates PKCdelta activity. Thus, Src tyrosine kinase may play an important role in insulin-induced tyrosine phosphorylation of both IR and PKCdelta. Moreover, both Src and PKCdelta appear to be involved in IR activation and subsequent downstream signaling.  相似文献   

15.
Protein-tyrosine phosphatases (PTPs) play a major role in regulating insulin signaling. Among the PTPs that regulate this signaling pathway, PTP1B plays an especially prominent role. PTP1B inhibits insulin signaling and has previously been shown to bind to the activated insulin receptor (IR), but neither the mechanism nor the physiological importance of such binding have been established. Here, we show that a previously undefined region in the N-terminal, catalytic half of PTP1B contributes to IR binding. Point mutations within this region of PTP1B disrupt IR binding but do not affect the catalytic activity of this phosphatase. This binding-defective mutant of PTP1B does not efficiently dephosphorylate the IR in cells, nor does it effectively inhibit IR signaling. These results suggest that PTP1B targets the IR through a novel binding element and that binding is required for the physiological effects of PTP1B on IR signal transduction.  相似文献   

16.
The cell growth, survival, and migration of vascular endothelial cells (ECs) are positively regulated by several protein tyrosine kinase receptors. Therefore, protein tyrosine phosphatases (PTPs) must also be important for these processes. The present study found that transmembranal PTPepsilonM, but not cytoplasmic PTPepsilonC, is expressed in porcine ECs and in rat smooth muscle cells, both of which were prepared from the aorta. The overexpression of wild-type PTPepsilonM promoted cell survival and migration in porcine aortic ECs even in medium without and with 1% serum, respectively. A catalytically inactive, substrate-trapping mutant of PTPepsilonM, respectively, did not affect and conversely suppressed cell survival and migration. Interestingly, the forced expression of wild-type PTPepsilonC reduced cell viability in contrast to PTPepsilonM in ECs lacking endogenous PTPepsilonC, indicating the biological significance of selective expression of PTPepsilon isoforms in the vasculature. PTPepsilonM activated c-Src kinase probably by directly dephosphorylating phospho-Tyr527, a negative regulatory site of c-Src. The increases in cell survival and migration induced by overexpressed PTPepsilonM were suppressed by the c-Src inhibitor SU6656. Considering the behaviors of vascular ECs in the pathogenesis of atherosclerosis, these data suggest that PTPepsilonM negatively regulates the development of this disease by activating c-Src.  相似文献   

17.
When used alone, both vanadate and hydrogen peroxide (H2O2) are weakly insulin-mimetic, while in combination they are strongly synergistic due to the formation of aqueous peroxovanadium species pV(aq). Administration of these pV(aq) species leads to activation of the insulin receptor tyrosine kinase (IRK), autophosphorylation at tyrosine residues and inhibition of phosphotyrosine phosphatases (PTPs). We therefore undertook to synthesize a series of peroxovanadium (pV) compounds containing one or two peroxo anions, an oxo anion and an ancillary ligand in the inner co-ordination sphere of vanadium, whose properties and insulin-mimetic potencies could be assessed. These pV compounds were shown to be the most potent inhibitors of PTPs yet described. Their PTP inhibitory potency correlated with their capacity to stimulate IRK activity. Some pV compounds showed much greater potency as inhibitors of insulin receptor (IR) dephosphorylation than epidermal growth factor receptor (EGFR) dephosphorylation, implying relative specificity as PTP inhibitors. Replacement of vanadium with either molybdenum or tungsten resulted in equally potent inhibition of IR dephosphorylation. However IRK activation was reduced by greater than 80% suggesting that these compounds did not access intracellular PTPs. The insulin-like activity of these pV compounds were demonstrablein vivo. Intra venous (i.v.) administration of bpV(pic) and bpV(phen) resulted in the lowaring of plasma glucose concentrations in normal rats in a dose dependent manner. The greater potency of bpV(pic) compared to bpV(phen) was explicable, in part, by the capacity of the former but not the latter to act on skeletal muscle as well as liver. Finally administration of bpV(phen) and insulin led to a synergism, where tyrosine phosphorylation of the IR -subunit increased by 20-fold and led to the appearance of four insulin-dependentin vivo substrates. The insulin-mimetic properties of they pV compounds raises the possibility for their use as insulin replacements in the management of diabetes mellitus.  相似文献   

18.
Leptin has been shown to improve insulin sensitivity and glucose metabolism in obese diabetic ob/ob mice, yet the mechanisms remain poorly defined. We found that 2 d of leptin treatment improved fasting but not postprandial glucose homeostasis, suggesting enhanced hepatic insulin sensitivity. Consistent with this hypothesis, leptin improved in vivo insulin receptor (IR) activation in liver, but not in skeletal muscle or fat. To explore the cellular mechanism by which leptin up-regulates hepatic IR activation, we examined the expression of the protein tyrosine phosphatase PTP1B, recently implicated as an important negative regulator of insulin signaling. Unexpectedly, liver PTP1B protein abundance was increased by leptin to levels similar to lean controls, whereas levels in muscle and fat remained unchanged. The ability of leptin to augment liver IR activation and PTP1B expression was also observed in vitro in human hepatoma cells (HepG2). However, overexpression of PTP1B in HepG2 cells led to diminished insulin-induced IR phosphorylation, supporting the role of PTP1B as a negative regulator of IR activation in hepatocytes. Collectively, our results suggest that leptin acutely improves hepatic insulin sensitivity in vivo with concomitant increases in PTP1B expression possibly serving to counterregulate insulin action and to maintain insulin signaling in proper balance.  相似文献   

19.
Protein tyrosine phosphatase 1B (PTP1B) is implicated in a number of signaling pathways including those mediated by insulin, epidermal growth factor (EGF), and the Src family kinases. The scaffolding protein caveolin-1 is also a participant in these pathways and is specifically phosphorylated on tyrosine 14, when these pathways are activated. Here, we provide evidence that PTP1B can efficiently catalyze the removal of the phosphoryl group from phosphocaveolin-1. Overexpression of PTP1B decreases tyrosine 14 phosphorylation in caveolin-1, while expression of the substrate-trapping mutant PTP1B/D181A causes the accumulation of phosphocaveolin-1 and prevents its dephosphorylation by endogenous PTPs. We further demonstrate that PTP1B physically associates with caveolin-1. Finally, we show that inhibition of PTP1B activity with a potent and specific small molecule PTP1B inhibitor blocks the PTP1B-catalyzed caveolin-1 dephosphorylation both in vitro and in vivo. Taken together, the results strongly suggest that caveolin-1 is a specific substrate for PTP1B. Identification of caveolin-1 as a PTP1B substrate represents an important new step in further understanding the signaling pathways regulated by PTP1B.  相似文献   

20.
We have previously reported a direct in vivo interaction between the activated insulin receptor and protein-tyrosine phosphatase-1B (PTP1B), which leads to an increase in PTP1B tyrosine phosphorylation. In order to determine if PTP1B is a substrate for the insulin receptor tyrosine kinase, the phosphorylation of the Cys 215 Ser, catalytically inactive mutant PTP1B (CS-PTP1B) was measured in the presence of partially purified and activated insulin receptor. In vitro, the insulin receptor tyrosine kinase catalyzed the tyrosine phosphorylation of PTP1B. 53% of the total cellular PTP1B became tyrosine phosphorylated in response to insulin in vivo. Tyrosine phosphorylation of PTP1B by the insulin receptor was absolutely dependent upon insulin-stimulated receptor autophosphorylation and required an intact kinase domain, containing insulin receptor tyrosines 1146, 1150 and 1151. Tyrosine phosphorylation of wild type PTP1B by the insulin receptor kinase increased phosphatase activity of the protein. Intermolecular transdephosphorylation was demonstrated both in vitro and in vivo, by dephosphorylation of phosphorylated CS-PTP1B by the active wild type enzyme either in a cell-free system or via expression of the wild type PTP1B into Hirc-M cell line, which constitutively overexpress the human insulin receptor and CS-PTP1B. These results suggest that PTP1B is a target protein for the insulin receptor tyrosine kinase and PTP1B can regulate its own phosphatase activity by maintaining the balance between its phosphorylated (the active form) and dephosphorylated (the inactive form) state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号