首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis and cell cycle progression in HL60 cells irradiated in an acidic environment were investigated. Apoptosis was determined by TUNEL staining, PARP cleavage, DNA fragmentation, and flow cytometry. The majority of the apoptosis that occurred in HL60 cells after 4 Gy irradiation took place after G(2)/M-phase arrest. When irradiated with 12 Gy, a fraction of the cells underwent apoptosis in G(1) and S phases while the rest of the cells underwent apoptosis in G(2)/M phase. The apoptosis caused by 4 and 12 Gy irradiation was transiently suppressed in medium at pH 7.1 or lower. An acidic environment was found to perturb progression of irradiated cells through the cell cycle, including progression through G(2)/ M phase. Thus it was concluded that the suppression of apoptosis in the cells after 4-12 Gy irradiation in acidic medium was due at least in part to a delay in cell cycle progression, particularly the prolongation of G(2)/M-phase arrest. Irradiation with 20 Gy indiscriminately caused apoptosis in all cell cycle phases, i.e. G(1), S and G(2)/M phases, rapidly in neutral pH medium and relatively slowly in acidic pH medium. The delay in apoptosis in acidic medium after 20 Gy irradiation appeared to result from mechanisms other than prolonged G(2)/ M-phase arrest.  相似文献   

2.
Following introduction of DNA interstrand cross-links (ICLs), mammalian cells display chromosome breakage or cell cycle delay with a 4N DNA content. To further understand the nature of the delay, previously described as a G(2)/M arrest, we developed a protocol to generate ICLs during specific intervals of the cell cycle. Synchronous populations of G(1), S, and G(2) cells were treated with photoactivated 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and scored for normal passage into mitosis. In contrast to what was found for ionizing radiation, ICLs introduced during G(2) did not result in a G(2)/M arrest, mitotic arrest, or chromosome breakage. Rather, subsequent passage through S phase was required to trigger both chromosome breakage and arrest in the next cell cycle. Similarly, ICLs introduced during G(1) did not cause a G(1)/S arrest. We conclude that DNA replication is required to elicit the cellular responses of cell cycle arrest and genomic instability after psoralen-induced ICLs. In primary human fibroblasts, the 4N DNA content cell cycle arrest triggered by ICLs was long lasting but reversible. Kinetic analysis suggested that these cells could remove up to approximately 2,500 ICLs/genome at an average rate of 11 ICLs/genome/h.  相似文献   

3.
Vpr of human immunodeficiency virus type 1 causes cell cycle arrest at the G(2)/M phase and induces apoptosis after G(2)/M arrest in primate cells. We have reported previously that Vpr also induces apoptosis independently of G(2)/M arrest in human HeLa cells. By contrast, Vpr does not induce G(2)/M arrest in rodent cells, but it retards cell growth. To clarify the relationship between cell cycle arrest and apoptosis, we expressed Vpr endogenously in rodent cells and investigated cell cycle profiles and apoptosis. We show here that Vpr induces cell cycle arrest at the G(1) phase and apoptosis in rodent cells. Vpr increased the activity of caspase-3 and caspase-9, but not of caspase-8. Moreover, Vpr-induced apoptosis could be inhibited by inhibitors of caspase-3 and caspase-9, but not by inhibitor of caspase-8. We also showed that Vpr induces the release of cytochrome c from mitochondria into the cytosol and disrupts the mitochondrial transmembrane potential. Finally, we showed that apoptosis occurred in HeLa cells through an identical pathway. These results suggest that disruption of mitochondrial functions by Vpr induces apoptosis via cell cycle arrest at G(1), but that apoptosis is independent of G(2)/M arrest. Furthermore, it appears that Vpr acts species-specifically with respect to induction of cell cycle arrest but not of apoptosis.  相似文献   

4.
The effects of conditioned medium (CM) and passage number on Spodoptera frugiperda Sf9 cell physiology and productivity have been studied. Low passage (LP) cells at passages 20-45 were compared to high passage (HP) cells at passages >100. Addition of 20% CM or 10 kDa filtrated CM to LP cells promoted growth. LP cells passed a switch in growth kinetics, characterized by a shorter lag phase and a higher growth rate, after 30-40 passages. After this point, CM lost its stimulating effect on proliferation. HP cells displayed a still shorter lag phase and reached the maximum cell density 24-48 earlier than LP cells. HP cells also exhibited higher specific productivity of recombinant protein compared to LP cells, when infected with baculovirus during the initial 48 h of culture. The specific productivity of LP cells was decreased by 30-50% by addition of 20% CM or 10 kDa filtrated CM, whereas addition of CM to cells having passed the switch in growth kinetics had no negative effect on productivity. Cell cycle analysis showed that a large proportion of HP cells, >60%, was transiently arrested in G2/M after inoculation. In LP cultures this proportion was lower, 40-45%, and addition of CM decreased the arrested population further. This correlated to the cell size, the HP cells being the largest: HP cells > LP > LP + 20% CM > LP + 20% 10 kDa filtrated CM. Since the degree of synchronization in G2/M correlated to the productivity, yeastolate limitation was used to achieve 85% G2/M synchronized cells. In this culture the specific productivity was maintained during a prolonged production phase and a 69% higher volumetric yield was obtained. The results suggest that a decreasing degree of synchronization during the course of culture partly explains the cell-density-dependent drop in productivity in Sf9 cells.  相似文献   

5.
2-Methoxyestradiol (2-ME) is an endogenous metabolite of 17β-estradiol. In this study, we determined the antitumour activities of 2-ME on the well-differentiated EC9706 esophageal carcinoma cells in vitro. 2-ME had a strong antiproliferative effect on EC9706 cells and caused an increase in the population of apoptotic cells, detected by flow cytometry. A significant number of cells were blocked in the G(2)/M phase of the cell cycle. 2-ME-treated cells demonstrated an increase in cyclin B1 and c-Myc protein levels, as well as an increase in the percentage of G(2)/M phase. Their up-regulation may be involved in 2-ME-induced apoptosis and G(2)/M cell cycle arrest of the EC9706 cells, and it precedes the onset of apoptosis.  相似文献   

6.
Etoposide is a specific inhibitor of topoisomerase II, which is an enzyme that enables double-stranded DNA to pass through another double-stranded DNA. Topoisomerase II is a major constituent of chromosome scaffold, existing at appreciable amounts in cells. To examine the effects of etoposide on the cell cycle, hexaploid H1 (ES) cells (6H1 cells) were used with diploid H1 (ES) cells (2H1 cells) as a control. Exponentially growing 2H1 and 6H1 cells were exposed to etoposide at various concentrations, and cultured for about 60 days in L15F10 medium with leukemia inhibitory factor. With a high concentration of etoposide (1 μM), the DNA histograms showed G(2)/M accumulation, suggesting that etoposide arrested the cell cycle at the G(2)/M phase. With a low concentration of etoposide (50 nM), the cell proliferation was suppressed with a doubling time of 98.4 h for 2H1 cells and 51.6 h for 6H1 cells, and without significant alteration in DNA histograms. Time-lapse videography revealed that 6H1 cells survived in the medium containing 50 nM etoposide had a cell cycle time of 18.8 h, which was equivalent to 19.2 h of the doubling time for the 6H1 cell population in drug-free medium, suggesting that a part of the cell population died and was excluded from the cell system. It was concluded that etoposide affected the cell cycle at a wide range of concentrations.  相似文献   

7.
We studied the effects of apigenin on the cell cycle distribution and apoptosis of human breast cancer cells and explored the mechanisms underlying these effects. We first investigated the antiproliferative effects in SK-BR-3 cells exposed to between 1 and 100 microM apigenin for 24, 48 and 72 h. Apigenin significantly inhibited cell proliferation at concentrations over 50 microM, regardless of exposure time (P<.05), and resulted in significant cell cycle arrest in the G(2)/M phase after 48 h of treatment at high concentrations (50 and 100 microM; P<.05). To investigate the regulatory proteins of cell cycle arrest affected by apigenin, we treated cells with 50 and 100 microM apigenin for 72 h. Apigenin caused a slight decrease in cyclin D and cyclin E expression, with no change in CDK2 and CDK4. In addition, the apigenin-induced accumulation of the cell population in the G(2)/M phase resulted in a decrease in CDK1 together with cyclin A and cyclin B. In an additional study, apigenin also increased the accumulation of p53 and further enhanced the level of p21(Cip1), with no change in p27(Kip1). The expression of Bax and cytochrome c of p53 downstream target was increased markedly at high concentration treatment over 50 microM apigenin. Based on our findings, the mechanism by which apigenin causes cell cycle arrest via the regulation of CDK1 and p21(Cip1) and induction of apoptosis seems to be involved in the p53-dependent pathway.  相似文献   

8.
Cell cycle checkpoints are among the multiple mechanisms that eukaryotic cells possess to maintain genomic integrity and minimize tumorigenesis. Ionizing irradiation (IR) induces measurable arrests in the G(1), S, and G(2) phases of the mammalian cell cycle, and the ATM (ataxia telangiectasia mutated) protein plays a role in initiating checkpoint pathways in all three of these cell cycle phases. However, cells lacking ATM function exhibit both a defective G(2) checkpoint and a prolonged G(2) arrest after IR, suggesting the existence of different types of G(2) arrest. Two molecularly distinct G(2)/M checkpoints were identified, and the critical importance of the choice of G(2)/M checkpoint assay was demonstrated. The first of these G(2)/M checkpoints occurs early after IR, is very transient, is ATM dependent and dose independent (between 1 and 10 Gy), and represents the failure of cells which had been in G(2) at the time of irradiation to progress into mitosis. Cell cycle assays that can distinguish mitotic cells from G(2) cells must be used to assess this arrest. In contrast, G(2)/M accumulation, typically assessed by propidium iodide staining, begins to be measurable only several hours after IR, is ATM independent, is dose dependent, and represents the accumulation of cells that had been in earlier phases of the cell cycle at the time of exposure to radiation. G(2)/M accumulation after IR is not affected by the early G(2)/M checkpoint and is enhanced in cells lacking the IR-induced S-phase checkpoint, such as those lacking Nbs1 or Brca1 function, because of a prolonged G(2) arrest of cells that had been in S phase at the time of irradiation. Finally, neither the S-phase checkpoint nor the G(2) checkpoints appear to affect survival following irradiation. Thus, two different G(2) arrest mechanisms are present in mammalian cells, and the type of cell cycle checkpoint assay to be used in experimental investigation must be thoughtfully selected.  相似文献   

9.
Oxaline and neoxaline, fungal alkaloids, were found to inhibit cell proliferation and to induce cell cycle arrest at the G(2)/M phase in Jurkat cells. CBP501 (a peptide corresponding to amino acids 211-221 of Cdc25C phosphatase), which inhibits the G(2) checkpoint, did not affect the G(2)/M arrest caused by oxaline, suggesting that oxaline causes M phase arrest but not G(2) phase arrest. The Cdc2 phosphorylation level of oxaline-treated cell lysate was lower than that of the control cells, indicating that oxaline arrests the M phase. Oxaline disrupted cytoplasmic microtubule assembly in 3T3 cells. Furthermore, oxaline inhibited polymerization of microtubule protein and purified tubulin dose-dependently in vitro. In a binding competition assay, oxaline inhibited the binding of [(3)H]colchicine to tubulin, but not that of [(3)H]vinblastine. These results indicate that oxaline inhibits tubulin polymerization, resulting in cell cycle arrest at the M phase.  相似文献   

10.
The purpose of the present study was to investigate the effects of a combination of docetaxel and irradiation in vivo with special reference to docetaxel-arrested G(2)/M-phase cells. At 24 and 48 h after intraperitoneal administration of docetaxel (90 mg/kg), tumor-bearing mice were irradiated with (60)Co gamma rays. Cell cycle distribution was analyzed by a DNA-Ki-67 double staining method using flow cytometry. An accumulation of cells in the G(2)/M phase of up to approximately 40% was observed 24 h after administration of docetaxel. Between 24 and 72 h, the percentage of cells arrested in G(2)/M phase that expressed Ki-67 decreased from 37.2% to 13.8%, in accordance with the increase in the Ki-67-negative G(2)/M-phase fraction. More than half of the cells arrested in G(2)/M phase lost their expression of Ki-67 protein between 24 and 72 h. The G(1)-phase fraction decreased from 28.4% to 8.6% at 24 h after docetaxel treatment; this remained unchanged at 72 h. These flow cytometry data suggested that docetaxel-arrested G(2)/M-phase cells did not enter the next cell cycle and were killed by docetaxel alone. Our data showed that arrest of cells in G(2)/M phase does not contribute to the synergism that has been reported for combinations of docetaxel and radiation in in vivo tumor models.  相似文献   

11.
The influence of conditioned medium (CM) on cell physiology and recombinant protein production in Trichoplusia ni insect cells (T. ni, BTI-Tn-5B1-4) has been investigated. Cell cycle analysis showed that a high proportion of the cell population (80-90%) was in G1 during the whole culture, indicating that the S and G2/M phases are short relative to the G1 phase. Directly after inoculation, a rapid decrease of the S-phase population occurred, which could be observed as a lag-phase. The following increase in the number of cells in S occurred after 7 h of culture for cells in fresh medium, whereas for cells with the addition of CM it occurred at an earlier time point (5 h) and these cells had therefore a shorter lag-phase. The initial changes in the S-phase population were also affected by the inoculum cell density, as higher seeding cell densities resulted in a more rapid increase in the S-phase population after inoculation. These changes in cell cycle distribution were reflected in the cell size, and the CM-cells were smaller than the cells in fresh medium. Recombinant protein production in T. ni cells was improved by the addition of CM. The specific productivity was increased by 30% compared to cells in fresh medium. This beneficial effect was seen between 20 and 72 h of culture. In contrast, the highest specific productivity was obtained already at 7 h for the cells in fresh medium and then decreased rapidly. The total product concentration was around 30% higher in the culture with CM compared to the culture in fresh medium, and the maximum product concentration was obtained on day 2 compared to day 3 for the cells in fresh medium. Our results indicate that the positive effect on productivity by CM is related to its growth-promoting effect, suggesting that the proliferation potential of the culture determines the productivity.  相似文献   

12.
Effect of cadmium on cell cycle progression in Chinese hamster ovary cells   总被引:4,自引:0,他引:4  
Chinese hamster ovary K1 (CHO K1) cells are very sensitive to cadmium (Cd) toxicity. They were used to investigate the effect of Cd on cell cycle progression. Cells were cultured with 0.1, 0.4, 1 or 4 microM Cd for various time intervals. There was no difference in growth rate when less than 0.4 microM Cd was given within 24 h. A dose-dependent reduction of cell proliferation was observed when more than 0.4 microM of Cd was given. The cells were pulse-labeled with 5-bromodeoxyuridine (BrdU), and the labeled cells were cultured in the presence of increasing concentrations of Cd. Cell cycle progression was retarded as a function of Cd concentration. G2/M arrest was observed when the BrdU-labeled cells were treated with 1 microM Cd for 8h, whereas cells receiving 4 microM Cd stopped at the S phase within 4 h. Cell cycle analysis of cells treated with Cd for 24 h showed that G2/M arrest occurred only when cells received 0.8 to 2 microM Cd. Despite the occurrence of G2/M arrest in the Cd treatment, only a limited proportion of the cells were blocked in the M phase. However, the increase in M phase cells coincided with an elevation in the cyclin-dependent kinase 1 activity. To examine whether Cd acts on cells at a specific cell stage, they were synchronized at the G1 or G2/M phase then treated with 1 microM Cd for 12 h. The cells were blocked at the G2/M and G1/S phase, respectively. This finding indicates that Cd toxicity is global and not cell phase specific. We also investigated the involvement of Cd-induced reactive oxygen species (ROS) with the occurrence of G2/M block and found a lack of correlation between cell cycle arrest and ROS production. We measured the Cd content that caused G2/M arrest from a series of Cd treatments and determined the ranges of cumulative Cd concentrations that could result in cell cycle arrest.  相似文献   

13.
Serotype-specific differences in the capacity of reovirus strains to inhibit proliferation of murine L929 cells correlate with the capacity to induce apoptosis. The prototype serotype 3 reovirus strains Abney (T3A) and Dearing (T3D) inhibit cellular proliferation and induce apoptosis to a greater extent than the prototype serotype 1 reovirus strain Lang (T1L). We now show that reovirus-induced inhibition of cellular proliferation results from a G(2)/M cell cycle arrest. Using T1L x T3D reassortant viruses, we found that strain-specific differences in the capacity to induce G(2)/M arrest, like the differences in the capacity to induce apoptosis, are determined by the viral S1 gene. The S1 gene is bicistronic, encoding the viral attachment protein sigma1 and the nonstructural protein sigma1s. A sigma1s-deficient reovirus strain, T3C84-MA, fails to induce G(2)/M arrest, yet retains the capacity to induce apoptosis, indicating that sigma1s is required for reovirus-induced G(2)/M arrest. Expression of sigma1s in C127 cells increases the percentage of cells in the G(2)/M phase of the cell cycle, supporting a role for this protein in reovirus-induced G(2)/M arrest. Inhibition of reovirus-induced apoptosis failed to prevent virus-induced G(2)/M arrest, indicating that G(2)/M arrest is not the result of apoptosis related DNA damage and suggests that these two processes occur through distinct pathways.  相似文献   

14.
Previous studies have shown that tumor necrosis factor alpha (TNFalpha) is involved in the pathogenic events following exposure to fumonisin B(1) (FB(1)), a potent inhibitor of ceramide synthase and sphingolipid biosynthesis. The intimate role of sphingolipid mediators in TNFalpha signaling and cellular death suggests that FB(1) may alter the sensitivity of cells to TNFalpha-induced apoptosis. We tested the hypothesis that FB(1) treatment will increase the sensitivity of porcine renal epithelial cells to TNFalpha. Porcine renal epithelial cells (LLC-PK(1)) were treated with FB(1) for 48 h prior to treatment with TNFalpha. A dose-dependent increase in TNFalpha-induced apoptosis was observed in cells pretreated with FB(1). Cells treated with FB(1) showed increased DNA fragmentation and terminal uridine nucleotide end labeling in response to TNFalpha treatment. FB(1) increased DNA synthesis and resulted in cell cycle arrest in the G(2)/M phase of the cell cycle. Flow cytometric analysis of the cell cycle indicated that TNFalpha predominantly killed cells in the G(2)/M phase. The activation of JNK, a mitogen-activated protein kinase (MAPK), was increased following 48 h exposure to FB(1). Phosphorylation of p38 and ERK remained unchanged following treatment with FB(1). FB(1) also increased free sphingoid base levels under identical treatment conditions. Results suggest that FB(1) increased free sphingoid base levels and the population of cells in the G(2)/M phase. This population was shown to be most susceptible to TNFalpha-induced apoptosis. Phosphorylation of pro-apoptotic JNK may play an important role in these effects.  相似文献   

15.
Malachite green (MG), consisting of green crystals with a metallic lustre, is highly soluble in water, cytotoxic to various mammalian cells and also acts as a liver tumour promoter. In view of its industrial importance and possible exposure to human beings, MG poses a potential environmental health hazard. We have earlier reported the malignant transformation of Syrian hamster embryo (SHE) cells by MG. In this study, we have studied the effects of MG on cell cycle phase distribution of normal and MG transformed Syrian hamster embryo cells in asynchronous and synchronous cell population. DNA flow cytometric analysis indicated that culturing cells for 48 h in medium containing MG at different concentrations induced dose-dependent G2/M arrest in normal cells. Malignantly transformed cells showed no such dose-responsive accumulation of cells at the G2/M phase of the cell cycle in response to MG. Synchronization studies indicated that in the control, both in the presence and absence of MG, cells followed a normal cell cycle pattern up to 16 h. After 16 h in the absence of MG, cells continued a normal cell cycle, whereas in the presence of MG they accumulated at G2/M phase of the cell cycle. This pattern of accumulation of cells at the G2/M checkpoint control was not observed in either untreated or MG-treated transformed cells. The present study indicates efficient operation of G2/M checkpoint control in control SHE cells and its abrogation in transformed SHE cells.  相似文献   

16.
病毒的感染导致细胞内部发生一系列变化。应用流式细胞仪FACS的荧光检测 ,测出Sf9细胞完成整个周期循环大约需要 18h ,G1、S、G2 /M各时相的时间间隔约为 6h ;AcNPV感染Sf9细胞 12 18h ,细胞被抑制于G2 /M期 ;Sf9细胞同步于G1/S期后释放细胞并用AcNPV感染 ,12h后 ,2 / 3的细胞处于G2 /M期 ,1/ 3的细胞处于S期  相似文献   

17.
The effects of cell cycle on recombinant protein production and infection yield in the baculovirus-insect cell expression system (BES) were investigated. When, at any cell cycle phase, the host cell was infected by baculovirus, the cell cycle was finally arrested at the S or G(2)/M phase with 4n DNA. In the case of G(1) or S phase-infection, cell cycle of virus-infected cells began to be arrested at S phase from 8 h post-infection or at G(2)/M phase from 4 h post-infection, respectively; while, in the case of M phase-infection, cell cycle was arrested at S phase after 12 h post-infection. When the host cell was infected at the G(1) phase, average intracellular GFPuv fluorescence intensity was 1.3-fold higher than that at G(2)/M phase at 24 h post-infection. The GFPuv expression corresponded to the profile of the G(1) cell cycle in the BES. Infection yield was measured by detection of intracellular DNA binding protein using immunohistochemical method within 7 h post-infection. The infection yield at G(1) or S phase-infection was 1.5-1.8-fold higher than that at G(2)/M phase-infection.  相似文献   

18.
Hajnal A  Berset T 《The EMBO journal》2002,21(16):4317-4326
In the Caenorhabditis elegans hermaphrodite germline, spatially restricted mitogen-activated protein kinase (MAPK) signalling controls the meiotic cell cycle. First, the MAPK signal is necessary for the germ cells to progress through pachytene of meiotic prophase I. As the germ cells exit pachytene and enter diplotene/diakinesis, MAPK is inactivated and the developing oocytes arrest in diakinesis (G(2)/M arrest). During oocyte maturation, a signal from the sperm reactivates MAPK to promote M phase entry. Here, we show that the MAPK phosphatase LIP-1 dephosphorylates MAPK as germ cells exit pachytene in order to maintain MAPK in an inactive state during oocyte development. Germ cells lacking LIP-1 fail to arrest the cell cycle at the G(2)/M boundary, and they enter a mitotic cell cycle without fertilization. LIP-1 thus coordinates oocyte cell cycle progression and maturation with ovulation and fertilization.  相似文献   

19.
In contrast to extracellular signals, the mechanisms utilized to transduce nuclear apoptotic signals are not well understood. Characterizing these mechanisms is important for predicting how tumors will respond to genotoxic radiation or chemotherapy. The retinoblastoma (Rb) tumor suppressor protein can regulate apoptosis triggered by DNA damage through an unknown mechanism. The nuclear death domain-containing protein p84N5 can induce apoptosis that is inhibited by association with Rb. The pattern of caspase and NF-kappaB activation during p84N5-induced apoptosis is similar to p53-independent cellular responses to DNA damage. One hallmark of this response is the activation of a G(2)/M cell cycle checkpoint. In this report, we characterize the effects of p84N5 on the cell cycle. Expression of p84N5 induces changes in cell cycle distribution and kinetics that are consistent with the activation of a G(2)/M cell cycle checkpoint. Like the radiation-induced checkpoint, caffeine blocks p84N5-induced G(2)/M arrest but not subsequent apoptotic cell death. The p84N5-induced checkpoint is functional in ataxia telangiectasia-mutated kinase-deficient cells. We conclude that p84N5 induces an ataxia telangiectasia-mutated kinase (ATM)-independent, caffeine-sensitive G(2)/M cell cycle arrest prior to the onset of apoptosis. This conclusion is consistent with the hypotheses that p84N5 functions in an Rb-regulated cellular response that is similar to that triggered by DNA damage.  相似文献   

20.
The purpose of this study was to explore the connection between radiation-induced apoptosis and progression of cells through the phases of the cell cycle. Cells of the human T-cell line Jurkat were separated by centrifugal elutriation into populations enriched in G(1)-, S- and G(2)/M-phase cells before irradiation. After a dose of 20 Gy, the onset of massive apoptosis occurred at about 6 h in all populations regardless of the phase of the cell cycle in which they were irradiated. In contrast, after 2 Gy, cells died at various times after a pronounced G(2)/M-phase arrest. These results indicate that radiation-induced apoptosis can occur independently of cell cycle arrest and that the time for onset of apoptosis may be dependent on the radiation dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号