首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotic homogenization: a new research agenda for conservation biogeography   总被引:10,自引:0,他引:10  
Aim Biotic homogenization describes the process by which species invasions and extinctions increase the genetic, taxonomic or functional similarity of two or more biotas over a specified time interval. The study of biotic homogenization is a young and rapidly emerging research area in the budding field of conservation biogeography, and this paper aims to synthesize our current knowledge of this process and advocate a more systematic approach to its investigation. Methods Based on a comprehensive examination of the primary literature this paper reviews the process of biotic homogenization, including its definition, quantification, underlying ecological mechanisms, environmental drivers, the empirical evidence for different taxonomic groups, and the potential ecological and evolutionary implications. Important gaps in our knowledge are then identified, and areas of new research that show the greatest promise for advancing our current thinking on biotic homogenization are highlighted. Results Current knowledge of the patterns, mechanisms and implications of biotic homogenization is highly variable across taxonomic groups, but in general is incomplete. Quantitative estimates are almost exclusively limited to freshwater fishes and plants in the United States, and the principal mechanisms and drivers of homogenization remain elusive. To date research has focused on taxonomic homogenization, and genetic and functional homogenization has received inadequate attention. Trends over the past decade, however, suggest that biotic homogenization is emerging as a topic of greater research interest. Main conclusions My investigation revealed a number of important knowledge gaps and priority research needs in the science of biotic homogenization. Future studies should examine the homogenization process for different community properties (species occurrence and abundance) at multiple spatial and temporal scales, with careful attention paid to the various biological mechanisms (invasions vs. extinctions) and environmental drivers (environmental alteration vs. biotic interactions) involved. Perhaps most importantly, this research should recognize that there are multiple possible outcomes resulting from the accumulation of species invasions and extinctions, including biotic differentiation whereby genetic, taxonomic or functional similarity of biotas decreases over time.  相似文献   

2.
The majority of animal species are ontogenetic omnivores, that is, individuals of these species change or expand their diet during life. If small ontogenetic omnivores compete for a shared resource with their future prey, ecological persistence of ontogenetic omnivores can be hindered, although predation by large omnivores facilitates persistence. The coupling of developmental processes between different life stages might lead to a trade‐off between competition early in life and predation later in life, especially for ontogenetic omnivores that lack metamorphosis. By using bioenergetic modeling, we study how such an ontogenetic trade‐off affects ecological and evolutionary dynamics of ontogenetic omnivores. We find that selection toward increasing specialization of one life stage leads to evolutionary suicide of noncannibalistic ontogenetic omnivores, because it leads to a shift toward an alternative community state. Ontogenetic omnivores fail to re‐invade this new state due to the maladaptiveness of the other life stage. Cannibalism stabilizes selection on the ontogenetic trade‐off, prevents evolutionary suicide of ontogenetic omnivores, and promotes coexistence of omnivores with their prey. We outline how ecological and evolutionary persistence of ontogenetic omnivores depends on the type of diet change, cannibalism, and competitive hierarchy between omnivores and their prey.  相似文献   

3.
A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.  相似文献   

4.
Biotic homogenization reduces the regional distinctiveness of biotas with significant ecological and evolutionary consequences. The outcome of this process may depend on the spatial scale of inquiry (both resolution and extent), the selected taxon and dissimilarity index as well as on the contribution of species extinctions and introductions. In the present research, we try to disentangle the effects of these factors on homogenization patterns comparing six taxonomic groups (pteridophytes, spermatophytes, breeding birds, mammals, reptiles and non-marine molluscs) within and between five Atlantic archipelagos of the Macaronesian Region. Taxonomic homogenization was analyzed by partitioning β-diversity into spatial turnover of species composition and nestedness. Total compositional change was divided into changes related to extinctions/extirpations of native and to introductions of alien species. Analyses were carried out at two different spatial resolutions (island versus archipelago unit) and geographic extents (within each archipelago and across the whole Macaronesian Region). Pteridophytes and reptiles tended to taxonomic differentiation, while mammals and molluscs showed homogenization regardless of scale and resolution. For spermatophytes, the most species-rich group, taxonomic heterogenization traded off with homogenization from the local to regional extent. Birds revealed heterogenization at the island, but not at the archipelago resolution. Extirpations of native species generally led to homogenization at the local extent, whereas the effect of alien introductions varied according to taxon and spatial scale. Furthermore, overall changes in species pool similarities were driven both by spatial turnover and nestedness. We demonstrate that biotic homogenization after human colonization within Macaronesia clearly depended on taxon, spatial scale and the dissimilarity measure. We suggest that homogenization of island biotas is first conditioned by initial dissimilarity related to taxon characteristics, such as dispersal capacity or endemicity, evolutionary processes, archipelago configurations and environmental variation along spatial scales. Thus, similarity change is the outcome of the impacts of number, proportion and distribution type of lost and gained species. Rare extirpated and common introduced species homogenize, while common extirpated and rare introduced species differentiate island biotas. Partitioning of beta diversity helps to improve our understanding of the homogenization process.  相似文献   

5.
Sharon Y. Strauss 《Oikos》2014,123(3):257-266
It is easier to predict the ecological and evolutionary outcomes of interactions in less diverse communities. As species are added to communities, their direct and indirect interactions multiply, their niches may shift, and there may be increased ecological redundancy. Accompanying this complexity in ecological interactions, is also complexity in selection and subsequent evolution, which may feed back to affect the ecology of the system, as species with different traits may play different ecological roles. Drawing from my own work and that of many others, I first discuss what we currently understand about ecology and evolution in light of simple and diverse communities, and suggest the importance of escape from community complexity per se in the success of invaders. Then, I examine how community complexity may influence the nature and magnitude of eco‐evolutionary feedbacks, classifying eco‐evolutionary dynamics into three general types: those generating alternative stable states, cyclic dynamics, and those maintaining ecological stasis and stability. The latter may be important and yet very hard to detect. I suggest future directions, as well as discuss methodological approaches and their potential pitfalls, in assessing the importance and longevity of eco‐evolutionary feedbacks in complex communities. Synthesis The ecology, evolution and eco‐evolutionary dynamics of simple and diverse communities are reviewed. In more diverse communities, direct and indirect interactions multiply, species’ niches often shift, ecological redundancy can increase, and selection may be less directional. Community complexity may influence the magnitude and nature of eco‐evolutionary dynamics, which are classified into three types: those generating alternative stable states, cyclic dynamics, and those maintaining ecological stasis and stability. Strengths and pitfalls of approaches to investigating eco‐evolutionary feedbacks in complex field communities are discussed.  相似文献   

6.
大年结实(mast seeding)是多生年植物种群周期性同步大量繁殖的一种自然现象。大年结实作为植物适应环境条件、提高繁殖能力的一种策略而备受关注, 但其驱动机制和进化意义尚存在较大争议。在依赖动物扩散种子的植物中, 大年结实被认为是一种调控动物贮食行为、提高种子扩散效率, 并最终增加繁殖成功率的一种策略; 动物介导的植物间互作可能是促进植物共存的进化驱动力。本文简要梳理了大年结实现象的各种假说, 提出了一个包括气候、资源、动植物互作的理解大年结实机制的概念框架, 并着重讨论了大年结实和动物贮食行为之间的关系及其进化和生态意义。建议未来研究需要借助长期生态监测和分子生物学方法, 揭示植物大年结实与动物贮食行为之间的生态与进化过程。  相似文献   

7.
In this article, we pointed out that understanding the physiology of differential climate change effects on organisms is one of the many urgent challenges faced in ecology and evolutionary biology. We explore how physiological ecology can contribute to a holistic view of climate change impacts on organisms and ecosystems and their evolutionary responses. We suggest that theoretical and experimental efforts not only need to improve our understanding of thermal limits to organisms, but also to consider multiple stressors both on land and in the oceans. As an example, we discuss recent efforts to understand the effects of various global change drivers on aquatic ectotherms in the field that led to the development of the concept of oxygen and capacity limited thermal tolerance (OCLTT) as a framework integrating various drivers and linking organisational levels from ecosystem to organism, tissue, cell, and molecules. We suggest seven core objectives of a comprehensive research program comprising the interplay among physiological, ecological, and evolutionary approaches for both aquatic and terrestrial organisms. While studies of individual aspects are already underway in many laboratories worldwide, integration of these findings into conceptual frameworks is needed not only within one organism group such as animals but also across organism domains such as Archaea, Bacteria, and Eukarya. Indeed, development of unifying concepts is relevant for interpreting existing and future findings in a coherent way and for projecting the future ecological and evolutionary effects of climate change on functional biodiversity. We also suggest that OCLTT may in the end and from an evolutionary point of view, be able to explain the limited thermal tolerance of metazoans when compared to other organisms.  相似文献   

8.
In recent years, there has been growing concern about how species invasions and extinctions could change the distinctiveness of formerly disparate fauna and flora, a process called biotic homogenization. In the present study, a null model of biotic of homogenization was developed and applied to the European freshwater fish fauna. We found that non-native fish species led to the greatest homogenization in south-western Europe and greatest differentiation in north-eastern Europe. Comparing these observed patterns to those expected by our null model empirically demonstrated that biotic homogenization is a non-random ecological pattern, providing evidence for previous assumptions. The place of origin of non-native species was also considered by distinguishing between exotic (originating from outside Europe) and translocated species (originating from within Europe). We showed that exotic and translocated species generated distinct geographical patterns of biotic homogenization across Europe because of their contrasting effects on the changes in community similarity among river basins. Translocated species promoted homogenization among basins, whereas exotic species tended to decrease their compositional similarity. Quantifying the individual effect of exotic and translocated species is therefore an absolute prerequisite to accurately assess the spatial dynamics of biotic homogenization.  相似文献   

9.
The struggle for existence occurs through the vital rates of population growth. This basic fact demonstrates the tight connection between ecology and evolution that defines the emerging field of eco-evolutionary dynamics. An effective synthesis of the interdependencies between ecology and evolution is grounded in six principles. The mechanics of evolution specifies the origin and rules governing traits and evolutionary strategies. Traits and evolutionary strategies achieve their selective value through their functional relationships with fitness. Function depends on the underlying structure of variation and the temporal, spatial and organizational scales of evolution. An understanding of how changes in traits and strategies occur requires conjoining ecological and evolutionary dynamics. Adaptation merges these five pillars to achieve a comprehensive understanding of ecological and evolutionary change. I demonstrate the value of this world-view with reference to the theory and practice of habitat selection. The theory allows us to assess evolutionarily stable strategies and states of habitat selection, and to draw the adaptive landscapes for habitat-selecting species. The landscapes can then be used to forecast future evolution under a variety of climate change and other scenarios.  相似文献   

10.

Understanding the effects of forest-to-agriculture conversion on microbial diversity has been a major goal in soil ecological studies. However, linking community assembly to the ruling ecological processes at local and regional scales remains challenging. Here, we evaluated bacterial community assembly patterns and the ecological processes governing niche specialization in a gradient of geography, seasonality, and land-use change, totaling 324 soil samples, 43 habitat characteristics (abiotic factors), and 16 metabolic and co-occurrence patterns (biotic factors), in the Brazilian Atlantic Rainforest, a subtropical biome recognized as one the world’s largest and most threatened hotspots of biodiversity. Pairwise beta diversities were lower in pastures than in forest and no-till soils. Pasture communities showed a predominantly neutral model, regarding stochastic processes, with moderate dispersion, leading to biotic homogenization. Most no-till and forest microbial communities followed a niche-based model, with low rates of dispersal and weak homogenizing selection, indicating niche specialization or variable selection. Historical and evolutionary contingencies, as represented by soil type, season, and dispersal limitation were the main drivers of microbial assembly and processes at the local scale, markedly correlated with the occurrence of endemic microbes. Our results indicate that the patterns of assembly and their governing processes are dependent on the niche occupancy of the taxa evaluated (generalists or specialists). They are also more correlated with historical and evolutionary contingencies and the interactions among taxa (i.e., co-occurrence patterns) than the land-use change itself.

  相似文献   

11.
Ungerer MC  Johnson LC  Herman MA 《Heredity》2008,100(2):178-183
The field of ecological genomics seeks to understand the genetic mechanisms underlying responses of organisms to their natural environments. This is being achieved through the application of functional genomic approaches to identify and characterize genes with ecological and evolutionary relevance. By its very nature, ecological genomics is an interdisciplinary field. In this review, we consider the significance of this new area of study from both an ecological and genomic perspective using examples from the recent literature. We submit that by considering more fully an ecological context, researchers may gain additional insights into the underlying genetic basis of ecologically relevant phenotypic variation. Likewise, genomic approaches are beginning to offer new insights into higher-level biological phenomena that previously occupied the realm of ecological investigation only. We discuss various approaches that are likely to be useful in ecological genomic studies and offer thoughts on where this field is headed in the future.  相似文献   

12.
Understanding the ecological and evolutionary factors that influence species rarity has important theoretical and applied implications, yet the reasons why some species are rare while others are common remain unresolved. As a novel exploration of scientific knowledge, we used network analysis conceptually to visualize the foci of a comprehensive base of >800 studies on plant species rarity within the context of ecology and evolution. In doing so, we highlight existing research strengths that could substantiate novel syntheses and gaps that could inspire new research. Our results reveal strong integrated foci on population dynamics with other ecological concepts. In contrast, despite the potential for ecological and evolutionary processes to interact, few studies explored the interplay of environmental factors and microevolutionary patterns. The cellular and molecular biology, physiology, and plasticity of rare plant species within both ecological and evolutionary contexts similarly provide avenues for impactful future investigations.  相似文献   

13.

Background

Some of the most exciting advances in pollination biology have resulted from interdisciplinary research combining ecological and evolutionary perspectives. For example, these two approaches have been essential for understanding the functional ecology of floral traits, the dynamics of pollen transport, competition for pollinator services, and patterns of specialization and generalization in plant–pollinator interactions. However, as research in these and other areas has progressed, many pollination biologists have become more specialized in their research interests, focusing their attention on either evolutionary or ecological questions. We believe that the continuing vigour of a synthetic and interdisciplinary field like pollination biology depends on renewed connections between ecological and evolutionary approaches.

Scope

In this Viewpoint paper we highlight the application of ecological and evolutionary approaches to two themes in pollination biology: (1) links between pollinator behaviour and plant mating systems, and (2) generalization and specialization in pollination systems. We also describe how mathematical models and synthetic analyses have broadened our understanding of pollination biology, especially in human-modified landscapes. We conclude with several suggestions that we hope will stimulate future research. This Viewpoint also serves as the introduction to this Special Issue on the Ecology and Evolution of Plant–Pollinator Interactions. These papers provide inspiring examples of the synergy between evolutionary and ecological approaches, and offer glimpses of great accomplishments yet to come.Key words: Floral traits, generalization and specialization, global change, male fitness, mating systems, multiple paternity, plant–pollinator networks, pollen and gene dispersal, pollinator behaviour, pollination syndromes, pollination webs, self-fertilization  相似文献   

14.
Technological improvements have accelerated natural product (NP) discovery and engineering to the point that systematic genome mining for new molecules is on the horizon. NP biosynthetic potential is not equally distributed across organisms, environments, or microbial life histories, but instead is enriched in a number of prolific clades. Also, NPs are not equally abundant in nature; some are quite common and others markedly rare. Armed with this knowledge, random ‘fishing expeditions’ for new NPs are increasingly harder to justify. Understanding the ecological and evolutionary pressures that drive the non-uniform distribution of NP biosynthesis provides a rational framework for the targeted isolation of strains enriched in new NP potential. Additionally, ecological theory leads to testable hypotheses regarding the roles of NPs in shaping ecosystems. Here we review several recent strain prioritization practices and discuss the ecological and evolutionary underpinnings for each. Finally, we offer perspectives on leveraging microbial ecology and evolutionary biology for future NP discovery.  相似文献   

15.
Aim To identify hypotheses for how climate change affects long‐term population persistence that can be used as a framework for future syntheses of ecological responses to climate change. Location Global. Methods We surveyed ecological and evolutionary concepts related to how a changing climate might alter population persistence. We organized established concepts into a two‐stage framework that relates abiotic change to population persistence via changes in the rates or outcomes of ecological and evolutionary processes. We surveyed reviews of climate change responses, and evaluated patterns in light of our conceptual framework. Results We classified hypotheses for population responses to climate change as one of two types: (1) hypotheses that relate rates of ecological and evolutionary processes (plasticity, dispersal, population growth and evolution) to abiotic change, and (2) hypotheses that relate changes in these processes to four fundamental population‐level responses (colonization, acclimatization, adaptation or extinction). We found that a disproportionate emphasis on response in the climate change literature is difficult to reconcile with ecological and evolutionary theories that emphasize processes. We discuss a set of 24 hypotheses that represent gaps in the literature that limit our ability determine whether observed climate change responses are sufficient to facilitate persistence through future climate change. Main conclusions Though theory relates environmental change to fundamental ecological and evolutionary processes and population‐level responses, clear hypotheses based on theory have not been systematically formulated and tested in the context of climate change. Stronger links between basic theory and observed impacts of climate change are required to assess which responses are common, likely or able to facilitate population persistence despite ongoing environmental change. We anticipate that a hypothesis‐testing framework will reveal that indirect effects of climate change responses are more pervasive than previously thought and related to a few general processes, even though the patterns they create are incredibly diverse.  相似文献   

16.
Predators appear to be less frequently specialised (i.e. adapted to restricted diet) on their prey than herbivores, parasites or parasitoids. Here, we critically evaluate contemporary evolutionary hypotheses that might be used to explain the evolution of specialised foraging in predators. We propose a unifying concept within which we define four types of trophic categories using ecological (diet breadth) and evolutionary (degree of adaptations) contexts. We use data on spiders (Araneae), the most diversified order of terrestrial predators, to assess applicability of frameworks and evolutionary concepts related to trophic specialisation. The majority of spider species are euryphagous but a few have a restricted prey range, i.e. they are stenophagous. We provide a detailed overview of specialisation on different prey types, namely spiders, crustaceans, moths, dipterans, ants, and termites. We also review the available evidence for trophic adaptations, classified into four categories: behavioural, morphological, venomic and metabolic. Finally, we discuss the ecological and evolutionary implications of trophic specialisation and propose avenues for future research.  相似文献   

17.
New questions about microbial ecology and diversity combined with significant improvement in the resolving power of molecular tools have helped the reemergence of the field of prokaryotic biogeography. Here, we show that biogeography may constitute a cornerstone approach to study diversity patterns at different taxonomic levels in the prokaryotic world. Fundamental processes leading to the formation of biogeographic patterns are examined in an evolutionary and ecological context. Based on different evolutionary scenarios, biogeographic patterns are thus posited to consist of dramatic range expansion or regression events that would be the results of evolutionary and ecological forces at play at the genotype level. The deterministic or random nature of those underlying processes is, however, questioned in light of recent surveys. Such scenarios led us to predict the existence of particular genes whose presence or polymorphism would be associated with cosmopolitan taxa. Furthermore, several conceptual and methodological pitfalls that could hamper future developments of the field are identified, and future approaches and new lines of investigation are suggested.  相似文献   

18.
Toward a mechanistic understanding and prediction of biotic homogenization   总被引:1,自引:0,他引:1  
The widespread replacement of native species with cosmopolitan, nonnative species is homogenizing the global fauna and flora. While the empirical study of biotic homogenization is substantial and growing, theoretical aspects have yet to be explored. Consequently, the breadth of possible ecological mechanisms that can shape current and future patterns and rates of homogenization remain largely unknown. Here, we develop a conceptual model that describes 14 potential scenarios by which species invasions and/or extinctions can lead to various trajectories of biotic homogenization (increased community similarity) or differentiation (decreased community similarity); we then use a simulation approach to explore the model's predictions. We found changes in community similarity to vary with the type and number of nonnative and native species, the historical degree of similarity among the communities, and, to a lesser degree, the richness of the recipient communities. Homogenization is greatest when similar species invade communities, causing either no extinction or differential extinction of native species. The model predictions are consistent with current empirical data for fish, bird, and plant communities and therefore may represent the dominant mechanisms of contemporary homogenization. We present a unifying model illustrating how the balance between invading and extinct species dictates the outcome of biotic homogenization. We conclude by discussing a number of critical but largely unrecognized issues that bear on the empirical study of biotic homogenization, including the importance of spatial scale, temporal scale, and data resolution. We argue that the study of biotic homogenization needs to be placed in a more mechanistic and predictive framework in order for studies to provide adequate guidance in conservation efforts to maintain regional distinctness of the global biota.  相似文献   

19.
20.
In Australia, the role of noisy miners Manorina melanocephala in biotic homogenization of the avifauna has been well established in modified landscapes, and is listed as a threatening process under national conservation legislation. However, less is known about the effect of the congeneric and more widely distributed yellow‐throated miner, M. flavigula. In this paper we investigate the relative roles of habitat loss and increased dominance by the yellow‐throated miner in avian homogenization and species functional group decline. We examined bird community data collected from 368 woodland sites across three bioregions. For each site there was a local and a landscape scale measure of remnant vegetation cover. We used both multivariate and regression analysis to test the relative influence of yellow‐throated miner abundance and vegetation on bird community composition. There was clear compositional change and homogenization of the avifauna where yellow‐throated miners were present and vegetation cover was low. The abundance of 40 bird species was predicted by combinations of vegetation cover or yellow‐throated miner abundance, and 31 of these regressions included the term yellow‐throated miner. Of these, there was a negative relationship with 23 species, and 19 of these were insectivores or nectarivores. We postulate that the combination of clearing and yellow‐throated miner abundance can interact to disrupt the ecological function of woodlands, by the depletion of insect‐ and nectar‐feeding species and the disturbance to mixed feeding flocks. We propose future research objectives that include a continental‐scale analysis of the determinants of yellow‐throated miner overabundance, the numerical and geographical thresholds of their potential impacts, and the ecological consequences on both avifauna and the woodlands they inhabit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号