首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Transthylakoid proton transport based on Photosystem I-dependent cyclic electron transport has been demonstrated in isolated intact spinach chloroplasts already at very low photon flux densities when the acceptor side of Photosystem I (PS I) was largely closed. It was under strict redox control. In spinach leaves, high intensity flashes given every 50 s on top of far-red, but not on top of red background light decreased the activity of Photosystem II (PS II) in the absence of appreciable linear electron transport even when excitation of PS II by the background light was extremely weak. Downregulation of PS II was a consequence of cyclic electron transport as shown by differences in the redox state of P700 in the absence and the presence of CO2 which drained electrons from the cyclic pathway eliminating control of PS II. In the presence of CO2, cyclic electron transport comes into play only at higher photon flux densities. At H+/e=3 in linear electron transport, it does not appear to contribute much ATP for carbon reduction in C3 plants. Rather, its function is to control the activity of PS II. Control is necessary to prevent excessive reduction of the electron transport chain. This helps to protect the photosynthetic apparatus of leaves against photoinactivation under light stress.  相似文献   

2.
Short-term responses of Photosystem I to heat stress   总被引:11,自引:0,他引:11  
When 23°C-grown potato leaves (Solanum tuberosum L.) were exposed for 15 min to elevated temperatures in weak light, a dramatic and preferential inactivation of Photosystem (PS) II was observed at temperatures higher than about 38°C. In vivo photoacoustic measurements indicated that, concomitantly with the loss of PS II activity, heat stress induced a marked gas-uptake activity both in far-red light (>715 nm) exciting only PS I and in broadband light (350–600 nm) exciting PS I and PS II. In view of its suppression by nitrogen gas and oxygen and its stimulation by high carbon-dioxide concentrations, the bulk of the photoacoustically measured gas uptake by heat-stressed leaves was ascribed to rapid carbon-dioxide solubilization in response to light-modulated stroma alkalization coupled to PS I-driven electron transport. Heat-induced gas uptake was observed to be insensitive to the PS II inhibitor diuron, sensitive to the plastocyanin inhibitor HgCl2 and saturated at a rather high photon flux density of around 1200 E m–2 s–1. Upon transition from far-red light to darkness, the oxidized reaction center P700+ of PS I was re-reduced very slowly in control leaves (with a half time t1/2 higher than 500 ms), as measured by leaf absorbance changes at around 820 nm. Heat stress caused a spectacular acceleration of the postillumination P700+ reduction, with t1/2 falling to a value lower than 50 ms (after leaf exposure to 48°C). The decreased t1/2 was sensitive to HgCl2 and insensitive to diuron, methyl viologen (an electron acceptor of PS I competing with the endogenous acceptor ferredoxin) and anaerobiosis. This acceleration of the P700+ reduction was very rapidly induced by heat treatment (within less than 5 min) and persisted even after prolonged irradiation of the leaves with far-red light. After heat stress, the plastoquinone pool exhibited reduction in darkness as indicated by the increase in the apparent Fo level of chlorophyll fluorescence which could be quenched by far-red light. Application (for 1 min) of far-red light to heat-pretreated leaves also induced a reversible quenching of the maximal fluorescence level Fm, suggesting formation of a pH gradient in far-red light. Taken together, the presented data indicate that PS I responded to the heat-induced loss of PS II photochemical activity by catalyzing an electron flow from stromal reductants. Heat-stress-induced PS I electron transport independent of PS II seems to constitute a protective mechanism since block of this electron pathway in anaerobiosis was observed to result in a dramatic photoinactivation of PS I.Abbreviations PFD photon flux density - PS Photosystem - Apt and Aox amplitude of the photothermal and photobaric components of the photoacoustic signal, respectively - P700 reaction center pigment of PS I - Fo and Fm initial and maximal levels of chlorophyll fluorescence, respectively - Fv=Fm Fo-variable chlorophyll fluorescence - QA primary (stable) electron acceptor of PS II - DCMU (diuron) 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Cyt cytochrome  相似文献   

3.
The low-wave phenomenon, i.e., the transient drop of yield of modulated chlorophyll fluorescence shortly after application of a pulse of saturating light, was investigated in intact leaves of tobacco and Camellia by measuring fluorescence, CO(2) assimilation and absorption at 830 nm simultaneously. Limitations on linear electron flow, due to low electron acceptor levels that were induced by low CO(2), induced the low waves of chlorophyll fluorescence. Low-wave amplitudes obtained under different CO(2) concentrations and photon-flux densities yielded single-peak curves when plotted as functions of fluorescence parameters such as PhiPS II (quantum yield of Photosystem II) and qN (coefficient of non-photochemical quenching), suggesting that low-wave formation depends on the redox state of the electron transport chain. Low waves paralleled redox changes of P700, the reaction center of Photosystem I (PS I), and an additional electron flow through PS I was detected during the application of saturating pulses that induced low-waves. It is suggested that low waves of chlorophyll fluorescence are induced by increased non-photochemical quenching, as a result of the formation of a trans-thylakoid proton gradient due to cyclic electron flow around PS I.  相似文献   

4.
The activity of photosystems one and two (PS I and PS II) wasmeasured in chloroplasts isolated from the primary leaves ofPhaseolus vulgaris. During foliar senescence, the rates of electrontransport through PS I and PS II declined by approximately 25%and 33% respectively. These losses of activity could not accountfor the decrease of 80% in the rate of coupled, non-cyclic electrontransport during senescence. It is therefore suggested thatan impairment of electron flow between the photosystems limitednon-cyclic electron transport in chloroplasts from older leaves.In this study the activity of PS II was measured using oxidizedp-phenylenediamine as the electron acceptor, and trifluralinas an inhibitor of electron transport between PS II and PS I.In chloroplasts from young leaves the reduction of ferricyanidewas a measure of non-cyclic electron transport, but in preparationsfrom older leaves ferricyanide received a large proportion ofelectrons from PS II.  相似文献   

5.
The effect of iron deficiency on photosynthetic electron transport in Photosystem II (PS II) was studied in leaves and thylakoid membranes of lettuce (Lactuca sativa, Romaine variety) plants. PS II electron transport was characterized by oxygen evolution and chlorophyll fluorescence parameters. Iron deficiency in the culture medium was shown to affect water oxidation and the advancement of the S-states. A decrease of maximal quantum yield of PS II and an increase of fluorescence intensity at step J and I of OJIP kinetics were also observed. Thermoluminescence measurements revealed that charge recombination between the quinone acceptor of PS II, QB, and the S2 state of the Mn-cluster was strongly perturbed. Also the dark decay of Chl fluorescence after a single turnover white flash was greatly retarded indicating a slower rate of QA reoxidation.  相似文献   

6.
Effects of natural shade on soybean thylakoid membrane composition   总被引:2,自引:0,他引:2  
The effect of natural shade on chloroplast thylakoid membrane activity and composition was examined for soybean (Glycine Max. cv. Young) grown under field conditions. Plots with high (10 plants m–1 row) or low (1 plant m–1 row) plant density were established. Expanding leaves were tagged at 50, 58 and 65 days after planting (DAP). At 92 DAP, tagged leaves were used as reference points to characterize canopy light environments and isolate thylakoid membranes. Light environments ranged from a photosynthetic photon flux density (PPFD) of 87% of full sun to a PPFD of 10% of full sun. The decline in PPFD was accompanied by an increase in the far-red/red (735 nm/645 nm) ratio from 0.9 to approximately six. The major effects of shade on chloroplast thylakoid membranes were a reduction in chloroplast coupling factor and a shift in light-harvesting capacity from Photosystem I to Photosystem II. Photosynthetic electron transport capacity was not affected by differences in PPFD, but was 20 to 30% higher in the 1 plant m–1 row treatment. The plant density effect on electron transport was associated with differences in plastocyanin concentration, suggesting that plastocyanin is a limiting factor in soybean. Shade did not have a significant effect on the concentration of Photosystem II, Cyt b6f, or Photosystem I complexes.Abbreviations CF1 chloroplast coupling factor - DAP days after planting - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCIP 2,6-dichlorophenolindophenol - FR/R far-red/red - PBS 10 mM sodium phosphate (pH 7.0), 150 mM NaCl - PPFD photosynthetic photon flux density - PS I Photosystem I - PS II Photosystem II - P700 reaction center of Photosystem I - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - TBS 20 mM Tris-HCl (pH 7.5), 500 mM NaCl - TTBS 20 mM Tris-HCl (pH 7.5), 500 mM NaCl, 0.05% (w/v) polyoxyethylenesorbitan monolaurate (Tween-20) The US Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.The US Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

7.
Recently, a number of techniques, some of them relatively new and many often used in combination, have given a clearer picture of the dynamic role of electron transport in Photosystem I of photosynthesis and of coupled cyclic photophosphorylation. For example, the photoacoustic technique has detected cyclic electron transport in vivo in all the major algal groups and in leaves of higher plants. Spectroscopic measurements of the Photosystem I reaction center and of the changes in light scattering associated with thylakoid membrane energization also indicate that cyclic photophosphorylation occurs in living plants and cyanobacteria, particularly under stressful conditions.In cyanobacteria, the path of cyclic electron transport has recently been proposed to include an NAD(P)H dehydrogenase, a complex that may also participate in respiratory electron transport. Photosynthesis and respiration may share common electron carriers in eukaryotes also. Chlororespiration, the uptake of O2 in the dark by chloroplasts, is inhibited by excitation of Photosystem I, which diverts electrons away from the chlororespiratory chain into the photosynthetic electron transport chain. Chlororespiration in N-starved Chlamydomonas increases ten fold over that of the control, perhaps because carbohydrates and NAD(P)H are oxidized and ATP produced by this process.The regulation of energy distribution to the photosystems and of cyclic and non-cyclic phosphorylation via state 1 to state 2 transitions may involve the cytochrome b 6-f complex. An increased demand for ATP lowers the transthylakoid pH gradient, activates the b 6-f complex, stimulates phosphorylation of the light-harvesting chlorophyll-protein complex of Photosystem II and decreases energy input to Photosystem II upon induction of state 2. The resulting increase in the absorption by Photosystem I favors cyclic electron flow and ATP production over linear electron flow to NADP and poises the system by slowing down the flow of electrons originating in Photosystem II.Cyclic electron transport may function to prevent photoinhibition to the photosynthetic apparatus as well as to provide ATP. Thus, under high light intensities where CO2 can limit photosynthesis, especially when stomates are closed as a result of water stress, the proton gradient established by coupled cyclic electron transport can prevent over-reduction of the electron transport system by increasing thermal de-excitation in Photosystem II (Weis and Berry 1987). Increased cyclic photophosphorylation may also serve to drive ion uptake in nutrient-deprived cells or ion export in salt-stressed cells.There is evidence in some plants for a specialization of Photosystem I. For example, in the red alga Porphyra about one third of the total Photosystem I units are engaged in linear electron transfer from Photosystem II and the remaining two thirds of the Photosystem I units are specialized for cyclic electron flow. Other organisms show evidence of similar specialization.Improved understanding of the biological role of cyclic photophosphorylation will depend on experiments made on living cells and measurements of cyclic photophosphorylation in vivo.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - cyt cytochrome - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCCD dicyclohexylcarbodiimide - DCHC dicyclohexyl-18-crown-6 - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FCCP carbonylcyanide 4-(trifluoromethoxy) phenylhydrazone - LHC light harvesting chlorophyll - LHCP II light harvesting chlorophyll protein of Photosystem II - PQ plastoquinone - PS I, II Photosystem I, II - SHAM salicyl hydroxamic acid - TBT Tri-n-butyltin CIW/DPB Publication No. 1146  相似文献   

8.
Photoacoustic spectroscopy was used to study the thermal deactivation processes in a Photosystem I submembrane fraction isolated from spinach. A large part of the thermal dissipation was variable. The yield of this variable thermal emission depended on the redox state of the Photosystem. It increased with the measuring modulated light intensity coinciding with the gradual closure of the reaction centers. Thermal deactivation was maximal when the reaction centers were closed by a saturating illumination. Extrapolation of the data at zero light intensity indicated that the yield of non-variable thermal emission represented about 37% of the maximal emission. The presence of methylviologen as artificial electron acceptor decreased the yield of variable thermal emission whereas inhibition following heat stress treatments increased it. The significance of the variable and non-variable components of thermal dissipation is discussed and the measured energy storage is suggested to originate from the reduction of the plastoquinone pool during cyclic electron transport around Photosystem I.Abbreviations Chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - MV methylviologen - Pheo pheophytin - PA photoacoustic - PS I Photosystem I - PS II Photosystem II - Tes [N-tris (hydroxymethyl)] methyl-2-aminoethanesulfonic acid  相似文献   

9.
With an aim to improve our understanding of the mechanisms behind specific anion effects in biological membranes, we have studied the effects of sodium salts of anions of varying valency in thylakoid membranes. Rates of electron transport of PS II and PS I, 77K fluorescence emission and excitation spectra, cyclic electron flow around PS I and circular dichroism (CD) spectra were measured in thylakoid membranes in order to elucidate a general mechanism of action of inorganic anions on photosynthetic electron transport chain. Re-distribution of absorbed excitation energy has been observed as a signature effect of inorganic anions. In the presence of anions, such as nitrite, sulphate and phosphate, distribution of absorbed excitation energy was found to be more in favor of Photosystem I (PS I). The amount of energy distributed towards PS I depended on the valency of the anion. In this paper, we propose for the first time that energy re-distribution and its valence dependence may not be the effect of anions per se. The entry of negative charge (anion) is accompanied by influx of positive charge (protons) to maintain a balance of charge across the thylakoid membranes. As reflected by the CD spectra, the observed energy re-distribution could be a result of structural rearrangements of the protein complexes of PS II caused by changes in the ionic environment of the thylakoid lumen.  相似文献   

10.
The oxygen evolved by Chlamydomonas reinhardtii in the light is measured simultaneously with a Clark electrode and with the nitrosodimethylaniline-imidazole colorimetric method which is specific for singlet oxygen. Experiments with wild-type and FuD7 mutant cells (unable to synthesize the D1 protein of Photosystem II), with dichlorophenyldimethylurea (which blocks electron transfer from Photosystem II to Photosystem I) and with dibromothymoquinone (which diverts electrons from their normal path between the two photosystems), as well as with hydroxylamine (an inactivator of the water-splitting part of Photosystem II and a competitor of water for electron donation to it), all point to the dependence of detected singlet oxygen on photolysis of water by Photosystem II.Abbreviations DBMIB Dibromothymoquinone - DCMU Dichlorophenyldimethylurea - PS I and PS II Photosystems I and II - RNO para-nitrosodimethylaniline Contribution of the Centre interdisciplinaire de Biochimie de Oxygène.  相似文献   

11.
Chlorella was used to study the effects of dehydration on photosynthetic activities. The use of unicellular green algae assured that the extent of dehydration was uniform throughout the whole cell population during the course of desiccation. Changes in the activities of the cells were monitored by measurements of fluorescence induction kinetics. It was found that inhibition of most of the photosynthetic activities started at a similar level of cellular water content. They included CO2 fixation, photochemical activity of Photosystem II and electron transport through Photosystem I. The blockage of electron flow through Photosystem I was complete and the whole transition occurred within a relative short time of dehydration. On the other hand, the suppression of Photosystem II activity was incomplete and the transition took a longer time of dehydration. Upon rehydration, the inhibition of Photosystem II activity was fully reversible when samples were in the middle of the transition, but was not thereafter. The electron transport through Photosystem I was also reversible during the transition, but was only partially afterward.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fm maximum fluorescence yield - F0 non-variable fluorescence level emitted when all PS II centers are open - Fv variable part of fluorescence - PS photosystem - QA primary quinone acceptor of Photosystem II  相似文献   

12.
Fifteen ancestral genotypes of United States soybean cultivars were screened for differences in photosynthetic electron transport capacity using isolated thylakoid membranes. Plants were grown in controlled environment chambers under high or low irradiance conditions. Thylakoid membranes were isolated from mature leaves. Photosynthetic electron transport was assayed as uncoupled Hill activity using 2,6-dichlorophenolindophenol (DCIP). Soybean electron transport activity was dependent on genotype and growth irradiance and ranged from 6 to 91 mmol DCIP reduced [mol chlorophyll]–1 s–1. Soybean plastocyanin pool size ranged from 0.1 to 1.3 mol plastocyanin [mol Photosystem I]–1. In contrast, barley and spinach electron transport activities were 140 and 170 mmol DCIP reduced [mol chlorophyll]–1 s–1, respectively, with plastocyanin pool sizes of 3 to 4 mol plastocyanin [mol Photosystem I]–1. No significant differences in the concentrations of Photosystem II, plastoquinone, cytochrome b6f complexes, or Photosystem I were observed. Thus, genetic differences in electron transport activity were correlated with plastocyanin pool size. The results suggested that plastocyanin pool size can vary significantly and may limit photosynthetic electron transport capacity in certain species such as soybean. Soybean plastocyanin consisted of two isoforms with apparent molecular masses of 14 and 11 kDa, whereas barley and spinach plastocyanins each consisted of single polypeptides of 8 and 12 kDa, respectively.Abbreviations DAP days after planting - DCIP 2,6-dichlorophenolindophenol - LiDS lithium dodecyl sulfate - PPFD photosynthetic photon flux density (mol photons m–2 s–1) - PS I Photosystem I - PS II Photosystem II - P700 reaction center of Photosystem I The US Government right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged.  相似文献   

13.
Electron transport from Photosystem II to Photosystem I of spinach chloroplasts can be stimulated by bicarbonate and various carbonyl or carboxyl compounds. Monovalent or divalent cations, which have hitherto been implicated in the energy distribution between the two photosystems, i.e., spillover phenomena at low light intensities, show a similar effect under high light conditions employed in this study. A mechanism for this stimulation of forward electron transport from Photosystem II to Photosystem I could involve inhibition of two types of Photosystem II partial reactions, which may involve cycling of electrons around Photosystem II. One of these is the DCMU-insensitive silicomolybdate reduction, and the other is ferricyanide reduction by Photosystem II at pH 8 in the presence of dibromothymoquinone. Greater stimulation of forward electron transport reactions is observed when both types of Photosystem II cyclic reactions are inhibited by bicarbonate, carbonyl and carboxyl-type compounds, or by certain mono- or divalent cations.Abbreviations used: DCMU, 3-(3,4-dichlorophenyl)-1, 1-dimethylurea; DCIP, 2,6-dichloroindophenol; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; FeCN, potassium ferricyanide; MV, methylviologen; PS I, photosystem I; PS II, photosystem II; SM, silicomolybdic acid.  相似文献   

14.
Synechocystis sp. PCC 6803 when grown in the presence of sublethal (M) levels of cobalt chloride shows an enhancement of Photosystem II (PS II) catalyzed Hill reaction. This stimulation seems to be induced by cobalt ions as other metal ions inhibit para-benzoquinone catalyzed Hill reaction. At saturating white light intensity, this enhancement is two times over that of the control cells on unit chlorophyll basis. Analysis of the PS II electron transport rate at varying intensities of white, blue or yellow light suggests an increased maximal rates but no change in the quantum yield or effective antenna size of CoCl2-grown cells. There were no structural and functional changes in the phycobilisome as judged by the absence of changes in the phycocyanin/allophycocyanin ratio, fluorescence emission spectra, second derivative absorption spectra at 77 K and SDS-PAGE analysis of isolated phycobilisomes. The 77 K fluorescence emission spectra of the cells showed a decrease in the ratio of Photosystem I emission (F725) to Photosystem II emission (F685) in CoCl2-grown cells compared to the control cells. These observations indicate three possibilities: (1) there is an increase in the number of Photosystem II units; (2) a faster turnover of Photosystem II centers; or (3) an alteration in energy redistribution between PS II and PS I in CoCl2-grown cells which causes stimulation of Photosystem II electron transport rate.Abbreviations APC allophycocyanin - Chl a chlorophyll a - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - EDTA ethylene diamine tetraacetic acid - PBS phycobilisome - PC phycocyanin - PSI Photosystem I - PS II Photosystem II - pBQ p-benzoquinone - PMSF phenyl methyl sulfonyl fluoride  相似文献   

15.
The light harvesting and photosynthetic characteristics of a chlorophyll-deficient mutant of cowpea (Vigna unguilata), resulting from a single nuclear gene mutation, are examined. The 40% reduction in total chlorophyll content per leaf area in the mutant is associated with a 55% reduction in pigment-proteins of the light harvesting complex associated with Photosystem II (LHC II), and to a lesser extent (35%) in the light harvesting complex associated with Photosystem I (LHC I). No significant differences were found in the Photosystem I (PS I) and Photosystem II (PS II) contents per leaf area of the mutant compared to the wildtype parent. The decreases in the PS I and PS II antennae sizes in the mutant were not accompanied by any major changes in quantum efficiencies of PS I and PS II in leaves at non-saturating light levels for CO2 assimilation. Although the chlorophyll deficiency resulted in an 11% decrease in light absorption by mutant leaves, their maximum quantum yield and light saturated rate of CO2 assimilation were similar to those of wildtype leaves. Consequently, the large and different decreases in the antennae of PS II and PS I in the mutant are not associated with any loss of light use efficiency in photosynthesis.Abbreviations LHC I, LHC II light harvesting chlorophyll a/b protein complexes associated with PS I and PS II - A820 light-induced absorbance change at 820 nm - øPS I, øPS II relative quantum efficiencies of PS I and PS II photochemistry  相似文献   

16.
In spinach chloroplasts illuminated with far red light, the relative intensity maximum during the decay of delayed light is emitted at 680–690 nm. This finding supports previous models predicting emission from Photosystem II, and contradicts earlier attributions to Photosystem I.Due to self absorption, the emission spectrum of the relative maximum is shifted to longer wavelengths and displays apparent Photosystem I characteristics in chloroplast samples of higher concentration or in leaves. This may have caused earlier investigators to ascribe the emission to Photosystem I.A differences between the spectral width of the emission spectra of delayed fluorescence and the relative maximum indicates that these two phenomena represent emission from different sub-populations of Photosystem II centers.Abbreviations PS I Photosystem I - PS II Photosystem II - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

17.
Adaptive responses to excess (supraoptimal) level of cobalt supplied to the growth medium were studied in the cyanobacterium Synechocystis PCC 6803. Growth of cells in the medium containing 10 M CoCl2 led to a large stimulation (50%) in O2-evolution and an overall increase (30%) in the photosynthetic electron transport rates. Analysis of variable Chl a fluorescence yield of PS II and immuno-detection of Photosystem II (PS II) reaction-center protein D1, showed a small increase (15–20%) in the number of PS II units in cobalt-grown cells. Cobalt-grown cells, therefore, had a slightly elevated PS II/PS I ratio compared to control.We observed alteration in the extent of energy distribution between the two photosystems in the eobalt grown cells. Energy was preferentially distributed in favour of PS II accompanied by a reduction in the extent of energy transfer from PS II to PS I in cobalt-grown cells. These cells also showed a smaller PS I absorption cross-section and a smaller size of intersystem electron pool than the control cells. Thus, our results suggest that supplementation of 10 M CoCl2, to the normal growth medium causes multiple changes involving small increase in PS II to PS I ratio, enhanced funneling of energy to PS II and an increase in PS I electron transport, decrease PS I cross section and reduction in intersystem pool size. The cumulative effects of these alterations cause stimulation in electron transport and O2 evolution.Abbreviations BCIP 5-bromo-4-chloro-3-indolylphosphate - Chl a Chlorophyll a - Cyt blf Cytochrome blf - DCBQ 2,6-dichlorobenzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - DCPIP 2,6-dichlorophenol indophenol - DPC Diphenyl carbazide - Fo fluorescence when all reaction centers are open - FM fluorescence yield when all reaction centers are closed - Fv variable chlorophyll fluorescence - HEPES N-2-hydroxyethyl piperazine-N'-2-ethanesulphonic acid - MV methyl viologen - NBT nitro-blue tetrazolium - pBQ para-benzoquinone - PB somes phycobilisomes - PC Phycocyanin - PQ plastoquinone - PS I Photosystem I - PS II Photosystem II - P700 reaction center Chl a of PS 1 - ST-and MT-flash single turnover and multiple turnover flash  相似文献   

18.
This paper explores the effects of high light stress on Fe-deficient plants. Maize (Zea mays) plants were grown under conditions of Fe deficiency and complete nutrition. Attached, intact leaves of Fe-deficient and control plants were used for gas exchange experiments under suboptimal, optimal and photoinhibitory illumination. Isolated chloroplasts were used to study photosynthetic electron transport system, compromised by the induction of Fe deficiency. The reaction centers of PS II (measured as reduction of Q, the primary electron acceptor of P 680) and PS I (measured as oxidation of P 700) were estimated from the amplitude of light induced absorbance change at 320 and 700 nm, respectively. Plants were subjected to photoinhibitory treatment for different time periods and isolated chloroplasts from these plants were used for electron transport studies. Carbon dioxide fixation in control as well as in Fe-deficient plants decreased in response to high light intensities. Total chlorophyll, P 700 and Q content in Fe-deficient chloroplasts decreased, while Chl a/b ratio and Q/P 700 ratio increased. However, electron transport through PS II suffered more after photoinhibitory treatment as compared to electron transport through PS I or whole chain. Electron transfer through PS I+PS II, excluding the water oxidation complex showed a decrease in Fe-deficient plants. However, electron transport through this part of the chain did not suffer much as a result of photoinhibition, suggesting a defect in the oxidising side of PS II.  相似文献   

19.
The effect of such flavonoid as quercetin and its oxidized from on electron transfer was studied in subchloroplast preparations of the Photosystem II (PS(2) and Photosystem I (PS(1)). Quercetin and its oxidized form are shown to inhibit the electron transfer in the PS(2) acceptor and donor sites, respectively. They also function as an electron donor or and electron acceptor in PS(1)), respectively  相似文献   

20.
In addition to the linear electron transport, several alternative Photosystem I-driven (PS I) electron pathways recycle the electrons to the intersystem electron carriers mediated by either ferredoxin:NADPH reductase, NAD(P)H dehydrogenase, or putative ferredoxin:plastoquinone reductase. The following functions have been proposed for these pathways: adjustment of ATP/NADPH ratio required for CO(2) fixation, generation of the proton gradient for the down-regulation of Photosystem II (PS II), and ATP supply the active transport of inorganic carbon in algal cells. Unlike ferredoxin-dependent cyclic electron transport, the pathways supported by NAD(P)H can function in the dark and are likely involved in chlororespiratory-dependent energization of the thylakoid membrane. This energization may support carotenoid biosynthesis and/or maintain thylakoid ATPase in active state. Active operation of ferredoxin-dependent cyclic electron transport requires moderate reduction of both the intersystem electron carriers and the acceptor side of PS I, whereas the rate of NAD(P)H-dependent pathways under light depends largely on NAD(P)H accumulation in the stroma. Environmental stresses such as photoinhibition, high temperatures, drought, or high salinity stimulated the activity of alternative PS I-driven electron transport pathways. Thus, the energetic and regulatory functions of PS I-driven pathways must be an integral part of photosynthetic organisms and provides additional flexibility to environmental stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号