首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ren G  Webster JM  Liu Z  Zhang R  Miao Z  Liu H  Gambhir SS  Syud FA  Cheng Z 《Amino acids》2012,43(1):405-413
Molecular imaging of human epidermal growth factor receptor type 2 (HER2) expression has drawn significant attention because of the unique role of the HER2 gene in diagnosis, therapy and prognosis of human breast cancer. In our previous research, a novel cyclic 2-helix small protein, MUT-DS, was discovered as an anti-HER2 Affibody analog with high affinity through rational protein design and engineering. MUT-DS was then evaluated for positron emission tomography (PET) of HER2-positive tumor by labeling with two radionuclides, 68Ga and 18F, with relatively short half-life (t1/2<2 h). In order to fully study the in vivo behavior of 2-helix small protein and demonstrate that it could be a robust platform for labeling with a variety of radionuclides for different applications, in this study, MUT-DS was further radiolabeled with 64Cu or 111In and evaluated for in vivo targeting of HER2-positive tumor in mice. Design 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated MUT-DS (DOTA-MUT-DS) was chemically synthesized using solid phase peptide synthesizer and I2 oxidation. DOTA-MUT-DS was then radiolabeled with 64Cu or 111In to prepare the HER2 imaging probe (64Cu/111In-DOTA-MUT-DS). Both biodistribution and microPET imaging of the probe were evaluated in nude mice bearing subcutaneous HER2-positive SKOV3 tumors. DOTA-MUT-DS could be successfully synthesized and radiolabeled with 64Cu or 111In. Biodistribution study showed that tumor uptake value of 64Cu or 111In-labeled DOTA-MUT-DS was 4.66±0.38 or 2.17±0.15%ID/g, respectively, in nude mice bearing SKOV3 xenografts (n=3) at 1 h post-injection (p.i.). Tumor-to-blood and tumor-to-muscle ratios for 64Cu-DOTA-MUT-DS were attained to be 3.05 and 3.48 at 1 h p.i., respectively, while for 111In-DOTA-MUT-DS, they were 2.04 and 3.19, respectively. Co-injection of the cold Affibody molecule ZHER2:342 with 64Cu-DOTA-MUT-DS specifically reduced the SKOV3 tumor uptake of the probe by 48%. 111In-DOTA-MUT-DS displayed lower liver uptake at all the time points investigated and higher tumor to blood ratios at 4 and 20 h p.i., when compared with 64Cu-DOTA-MUT-DS. This study demonstrates that the 2-helix protein based probes, 64Cu/111In DOTA-MUT-DS, are promising molecular probes for imaging HER2-positive tumor. Two-helix small protein scaffold holds great promise as a novel and robust platform for imaging and therapy applications.  相似文献   

2.
This report presents the synthesis and evaluation of (64)Cu(DO3A-xy-ACR) (DO3A-xy-ACR = 2,6-bis(dimethylamino)-10-(4-((4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-1-yl)methyl)benzyl)acridin-10-ium) as a radiotracer for imaging tumors in athymic nude mice bearing U87MG glioma xenografts by PET (positron emission tomography). The biodistribution data suggested that (64)Cu(DO3A-xy-ACR) was excreted mainly through the renal system with >65% of injected radioactivity being recovered from urine samples at 1 h postinjection (p.i.). The tumor uptake of (64)Cu(DO3A-xy-ACR) was 1.07 ± 0.23, 1.58 ± 0.55, 2.71 ± 0.66, 3.47 ± 1.19, and 3.52 ± 1.72%ID/g at 0.5, 1, 2, 4, and 24 h p.i., respectively. (64)Cu(DO3A-xy-ACR) had very high liver uptake (31.90 ± 3.98, 24.95 ± 5.64, 15.20 ± 4.29, 14.09 ± 6.82, and 8.18 ± 1.27%ID/g at 0.5, 1, 2, 4, and 24 h p.i., respectively) with low tumor/liver ratios. MicroPET studies showed that the tumors were clearly visualized as early as 30 min p.i. in the glioma-bearing mouse administered with (64)Cu(DO3A-xy-ACR). The high liver radioactivity accumulation was also seen. (64)Cu(DO3A-xy-ACR) had a relatively high metabolic stability during excretion via both renal and hepatobiliary routes, but it was completely decomposed in the liver homogenate. We explored the localization mechanism of Cu(DO3A-xy-ACR) using both U87MG human glioma and the cultured primary U87MG glioma cells. The results from the cellular staining assays showed that (64)Cu(DO3A-xy-ACR) is able to localize in the mitochondria of living U87MG glioma cells due to the enhanced negative mitochondrial potential as compared to normal cells. Although (64)Cu(DO3A-xy-ACR) is not an ideal PET radiotracer for tumor imaging due to its high liver uptake, the results from this study strongly suggest that (64)Cu-labeled acridinium cations are indeed able to localize in the energized mitochondria of tumor cells.  相似文献   

3.
A neutrophil-specific peptide, cinnamoyl-F(D)LF(D)LFK (cFLFLFK), was conjugated consecutively with a polyethylene glycol moiety (3.4 K) and 2,2′,2″,2-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) to form cFLFLFK-PEG-DOTA. After 64Cu labeling, Positron Emission Tomography (PET) imaging was successfully able to detect mouse lung inflammation.  相似文献   

4.
Copper-64 ( T(1/2)=12.7 h; beta(+): 0.653 MeV, 17.4%; beta(-): 0.578 MeV, 39%) is produced in a biomedical cyclotron and has applications in both imaging and therapy. Macrocyclic chelators are widely used as bifunctional chelators to bind copper radionuclides to antibodies and peptides owing to their relatively high kinetic stability. In this paper, we evaluated three tetraaza macrocyclic ligands with two, three, and four pendant methanephosphonate functional groups. DO2P [1,4,7,10-tetraazacyclododecane-1,7-di(methanephosphonic acid)], DO3P [1,4,7,10-tetraazacyclododecane-1,4,7-tri(methanephosphonic acid)], and DOTP [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(methanephosphonic acid)] were all radiolabeled with (64)Cu in high radiochemical yields. Copper-64-labeled DO2P and DOTP were highly stable in rat serum out to 24 h, while (64)Cu-DO3P remained 73% intact, with the remainder possibly forming a (64)Cu(.)2DO3P dimer by 24 h. The biodistribution experiments were performed in normal Sprague-Dawley rats. Of the three complexes, (64)Cu-DO2P demonstrated the most optimal clearance through the blood and liver. Copper-64-DO3P and (64)Cu-DOTP exhibited higher liver uptake and longer retention of liver activity, possibly because of the large negative charge of the complexes under physiological conditions. All three (64)Cu-labeled complexes showed high accumulation in bone, likely due to the binding of the methanephosphonate groups to hydroxyapatite. These results suggest that this series of methanephosphonate macrocyclic ligands may be useful as potential bone-imaging agents. The thermodynamic stability constants of the Cu(II) complexes with these three ligands were determined, and were found to be significantly higher than those of their acetate analogues. The Cu(II)-DO2P complex exhibited the highest stability constant among divalent transition metal ion DO2P complexes. Metabolism studies of (64)Cu-DO2P in rat liver suggest that the DO2P ligand may be used as a bifunctional chelator for copper radionuclides in radiodiagnostic or radiotherapeutic studies.  相似文献   

5.
A modular system for the construction of radiometalated antibodies was developed based on the bioorthogonal cycloaddition reaction between 3-(4-benzylamino)-1,2,4,5-tetrazine and the strained dienophile norbornene. The well-characterized, HER2-specific antibody trastuzumab and the positron emitting radioisotopes (64)Cu and (89)Zr were employed as a model system. The antibody was first covalently coupled to norbornene, and this stock of norbornene-modified antibody was then reacted with tetrazines bearing the chelators 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA) or desferrioxamine (DFO) and subsequently radiometalated with (64)Cu and (89)Zr, respectively. The modification strategy is simple and robust, and the resultant radiometalated constructs were obtained in high specific activity (2.7-5.3 mCi/mg). For a given initial stoichiometric ratio of norbornene to antibody, the (64)Cu-DOTA- and (89)Zr-DFO-based probes were shown to be nearly identical in terms of stability, the number of chelates per antibody, and immunoreactivity (>93% in all cases). In vivo PET imaging and acute biodistribution experiments revealed significant, specific uptake of the (64)Cu- and (89)Zr-trastuzumab bioconjugates in HER2-positive BT-474 xenografts, with little background uptake in HER2-negative MDA-MB-468 xenografts or other tissues. This modular system-one in which the divergent point is a single covalently modified antibody stock that can be reacted selectively with various chelators-will allow for both greater versatility and more facile cross-comparisons in the development of antibody-based radiopharmaceuticals.  相似文献   

6.
Several bifunctional chelates (BFCs) were investigated as carriers of (64)Cu for PET imaging. The most widely used chelator for (64)Cu labeling of BFCs is DOTA (1,4,7,10-tetraazacyclododecane-N,N',N″,N'-tretraacetic acid), even though this complex exhibits only moderate in vivo stability. In this study, we prepared a series of alternative chelator-peptide conjugates labeled with (64)Cu, measured in vitro receptor binding affinities in human breast cancer T47D cells expressing the gastrin-releasing peptide receptor (GRPR) and compared their in vivo stability in mice. DOTA-, NOTA-(1,4,7-triazacyclononane-1,4,7-triacetic acid), PCTA-(3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid), and Oxo-DO3A-(1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid) peptide conjugates were prepared using H(2)N-Aoc-[d-Tyr(6),βAla(11),Thi(13),Nle(14)]bombesin(6-14) (BBN) as a peptide template. The BBN moiety was selected since it binds with high affinity to the GRPR, which is overexpressed on human breast cancer cells. A convenient synthetic approach for the attachment of aniline-BFC to peptides on solid support is also presented. To facilitate the attachment of the aniline-PCTA and aniline-Oxo-DO3A to the peptide via an amide bond, a succinyl spacer was introduced at the N-terminus of BBN. The partially protected aniline-BFC (p-H(2)N-Bn-PCTA(Ot-Bu)(3) or p-H(2)N-Bn-DO3A(Ot-Bu)(3)) was then coupled to the resulting N-terminal carboxylic acid preactivated with DEPBT/ClHOBt on resin. After cleavage and purification, the peptide-conjugates were labeled with (64)Cu using [(64)Cu]Cu(OAc)(2) in 0.1 M ammonium acetate buffer at 100 °C for 15 min. Labeling efficacy was >90% for all peptides; Oxo-DO3A-BBN was incubated an additional 150 min at 100 °C to achieve this high yield. Specific activities varied from 76 to 101 TBq/mmol. Competition assays on T47D cells showed that all BFC-BBN complexes retained high affinity for the GRPR. All BFC-BBN (64)Cu-conjugates were stable for over 20 h when incubated at 37 °C in mouse plasma samples. However, in vivo, only 37% of the (64)Cu/Oxo-DO3A complex remained intact after 20 h while the (64)Cu/DOTA-BBN complex was completely demetalated. In contrast, both (64)Cu/NOTA- and (64)Cu/PCTA-BBN conjugates remained stable during the 20 h time period. Our results indicate that it is possible to successfully conjugate aniline-BFC with peptide on solid support. Our data also show that (64)Cu-labeled NOTA- and PCTA-BBN peptide conjugates are promising radiotracers for PET imaging of many human cancers overexpressing the GRP receptor.  相似文献   

7.
Ribonucleic acid (RNA) aptamers with high affinity and specificity for cancer-specific cell-surface antigens are promising reagents for targeted molecular imaging of cancer using positron emission tomography (PET). For this application, aptamers must be conjugated to chelators capable of coordinating PET-radionuclides (e.g., copper-64, (64)Cu) to enable radiolabeling for in vivo imaging of tumors. This study investigates the choice of chelator and radiolabeling parameters such as pH and temperature for the development of (64)Cu-labeled RNA-based targeted agents for PET imaging. The characterization and optimization of labeling conditions are described for four chelator-aptamer complexes. Three commercially available bifunctional macrocyclic chelators (1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid mono N-hydroxysuccinimide [DOTA-NHS]; S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid [p-SCN-Bn-NOTA]; and p-SCN-Bn-3,6,9,15-tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid [p-SCN-Bn-PCTA]), as well as the polyamino-macrocyclic diAmSar (3,6,10,13,16,19-hexaazabicyclo[6.6.6] icosane-1,8-diamine) were conjugated to A10-3.2, a RNA aptamer which has been shown to bind specifically to a prostate cancer-specific cell-surface antigen (PSMA). Although a commercial bifunctional version of diAmSar was not available, RNA conjugation with this chelator was achieved in a two-step reaction by the addition of a disuccinimidyl suberate linker. Radiolabeling parameters (e.g., pH, temperature, and time) for each chelator-RNA conjugate were assessed in order to optimize specific activity and RNA stability. Furthermore, the radiolabeled chelator-coupled RNA aptamers were evaluated for binding specificity to their target antigen. In summary, key parameters were established for optimal radiolabeling of RNA aptamers for eventual PET imaging with (64)Cu.  相似文献   

8.

Purpose

Oxidized low-density lipoprotein (LDL) plays an essential role in the pathogenesis of atherosclerosis. The purpose of this study was to characterize the pharmacokinetics (PK) of a human recombinant IgG1 antibody to oxidized LDL (anti-oxLDL) in cynomolgus monkey. The tissue biodistribution of anti-oxLDL was also investigated using positron emission tomography (PET) imaging.

Methods

Anti-oxLDL was conjugated with the N-hydroxysuccinimide ester of DOTA (1,4,7,10-tetraazacyclododecane 1,4,7,10-tetraacetic acid) and radiolabeled by chelation of radioactive copper-64 (64Cu) for detection by PET. Anti-oxLDL was administered as a single intravenous (IV) dose of 10 mg/kg (as a mixture of radiolabeled and non-labeled material) to two male and two female cynomolgus monkeys. Serum samples were collected over 29 days. Two ELISA methods were used to measure serum concentrations of anti-oxLDL; Assay A was a ligand binding assay that measured free anti-oxLDL (unbound and partially bound forms) and Assay B measured total anti-oxLDL. The biodistribution was observed over a 48-hour period following dose administration using PET imaging.

Results

Anti-oxLDL serum concentration-time profiles showed a biphasic elimination pattern that could be best described by a two-compartment elimination model. The serum concentrations obtained using the two ELISA methods were comparable. Clearance values ranged from 8 to 17 ml/day/kg, while beta half-life ranged from 8 to12 days. The initial volume of distribution and volume of distribution at steady state were approximately 55 mL/kg and 150 mL/kg, respectively. PET imaging showed distribution predominantly to the blood pool, visible as the heart and great vessels in the trunk and limbs, plus diffuse signals in the liver, kidney, spleen, and bone marrow.

Conclusions

The clearance of anti-oxLDL is slightly higher than typical IgG1 antibodies in cynomolgus monkeys. The biodistribution pattern appears to be consistent with an antibody that has no large, rapid antigen sink outside the blood space.  相似文献   

9.
Yang CT  Kim YS  Wang J  Wang L  Shi J  Li ZB  Chen X  Fan M  Li JJ  Liu S 《Bioconjugate chemistry》2008,19(10):2008-2022
Radiolabeled organic cations, such as triphenylphosphonium (TPP), represents a new class of radiotracers for imaging cancers and the transport function of multidrug resistance P-glycoproteins (particularly MDR1 Pgp) by single photon emission computed tomography (SPECT) or positron emission tomography (PET). This report presents the synthesis and biological evaluation of (64)Cu-labeled 2-(diphenylphosphoryl)ethyldiphenylphosphonium (TPEP) cations as novel PET radiotracers for tumor imaging. Biodistribution studies were performed using the athymic nude mice bearing subcutaneous U87MG human glioma xenografts to explore the impact of linkers, bifunctional chelators (BFCs), and chelates on biodistribution characteristics of the (64)Cu-labeled TPEP cations. Metabolism studies were carried out using normal athymic nude mice to determine the metabolic stability of four (64)Cu radiotracers. It was found that most (64)Cu radiotracers described in this study have significant advantages over (99m)Tc-Sestamibi for their high tumor/heart and tumor/muscle ratios. Both BFCs and linkers have significant impact on biological properties of (64)Cu-labeled TPEP cations. For example, (64)Cu(DO3A-xy-TPEP) has much lower liver uptake and better tumor/liver ratios than (64)Cu(DO3A-xy-TPP), suggesting that TPEP is a better mitochondrion-targeting molecule than TPP. Replacing DO3A with DO2A results in (64)Cu(DO2A-xy-TPEP) (+), which has a lower tumor uptake than (64)Cu(DO3A-xy-TPEP). Substitution of DO3A with NOTA-Bn leads to a significant decrease in tumor uptake for (64)Cu(NOTA-Bn-xy-TPEP). The use of DOTA-Bn to replace DO3A has little impact on the tumor uptake, but the tumor/liver ratio of (64)Cu(DOTA-Bn-xy-TPEP) (-) is not as good as that of (64)Cu(DO3A-xy-TPEP), probably due to the aromatic benzene ring in DOTA-Bn. Addition of an extra acetamido group in (64)Cu(DOTA-xy-TPEP) results in a lower liver uptake, but tumor/liver ratios of (64)Cu(DOTA-xy-TPEP) and (64)Cu(DO3A-xy-TPEP) are comparable due to a faster tumor washout of (64)Cu(DOTA-xy-TPEP). Substitution of xylene with the PEG 2 linker also leads to a significant reduction in both tumor and liver uptake. MicroPET imaging studies on (64)Cu(DO3A-xy-TPEP) in athymic nude mice bearing U87MG glioma xenografts showed that the tumor was clearly visualized as early as 1 h postinjection with very high T/B contrast. There was very little metabolite (<2%) detectable in the urine and feces samples for (64)Cu(DO3A-xy-TPEP), (64)Cu(DOTA-Bn-xy-TPEP)(-), and (64)Cu(NOTA-Bn-xy-TPEP). Considering both tumor uptake and T/B ratios (particularly tumor/heart, tumor/liver, and tumor/muscle), it was concluded that (64)Cu(DO3A-xy-TPEP) is a promising PET radiotracer for imaging the MDR-negative tumors.  相似文献   

10.
Complementary imaging modalities provide more information than either method alone can yield and we have developed a dual-mode imaging probe for combined magnetic resonance (MR) and positron emission tomography (PET) imaging. We have developed dual-mode PET/MRI active probes targeted to vascular inflammation and present synthesis of (1) an aliphatic amine polystyrene bead and (2) a novel superparamagnetic iron oxide nanoparticle targeted to macrophages that were both coupled to positron-emitting copper-64 isotopes. The amine groups of the polystyrene beads were directly conjugated with an amine-reactive form (isothiocyanate) of aza-macrocycle 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA). Iron oxide nanoparticles are dextran sulfate coated, and the surface was modified to contain aldehyde groups to conjugate to an amine-activated DOTA. Incorporation of chelated Cu-64 to nanoparticles under these conditions, which is routinely used to couple DOTA to macromolecules, was unexpectedly difficult and illustrates that traditional conjugation methods do not always work in a nanoparticle environment. Therefore, we developed new methods to couple Cu-64 to nanoparticles and demonstrate successful labeling to a range of nanoparticle types. We obtained labeling yields of 24% for the amine polystyrene beads and 21% radiolabeling yield for the anionic dextran sulfate iron oxide nanoparticles. The new coupling chemistry can be generalized for attaching chelated metals to other nanoparticle platforms.  相似文献   

11.
Zhang Y  Hong H  Engle JW  Bean J  Yang Y  Leigh BR  Barnhart TE  Cai W 《PloS one》2011,6(12):e28005
Optimizing the in vivo stability of positron emission tomography (PET) tracers is of critical importance to cancer diagnosis. In the case of (64)Cu-labeled monoclonal antibodies (mAb), in vivo behavior and biodistribution is critically dependent on the performance of the bifunctional chelator used to conjugate the mAb to the radiolabel. This study compared the in vivo characteristics of (64)Cu-labeled TRC105 (a chimeric mAb that binds to both human and murine CD105), through two commonly used chelators: 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Flow cytometry analysis confirmed that chelator conjugation of TRC105 did not affect its CD105 binding affinity or specificity. PET imaging and biodistribution studies in 4T1 murine breast tumor-bearing mice revealed that (64)Cu-NOTA-TRC105 exhibited better stability than (64)Cu-DOTA-TRC105 in vivo, which resulted in significantly lower liver uptake without compromising the tumor targeting efficiency. In conclusion, this study confirmed that NOTA is a superior chelator to DOTA for PET imaging with (64)Cu-labeled TRC105.  相似文献   

12.
To develop new radiopharmaceuticals for interventional radionuclide therapy of locally recurrent prostate cancer, poly[N-(3-aminopropyl)methacrylamide] [poly(APMA)] polymers were synthesized by free radical precipitation polymerization in acetone-dimethylsulfoxide using N,N'-azobis(isobutyronitrile) as the initiator. The polymers were characterized with nuclear magnetic resonance, size exclusion chromatography, and dynamic light scattering (M(n) = 2.40 x 10(4), M(w)/M(n) = 1.87). Subsequently, poly[APMA] was coupled with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride as an activator, followed by conjugation with (64)Cu radionuclide. Prolonged retention of poly[APMA]-DOTA-(64)Cu conjugates within the tumor tissues was demonstrated by micro-positron emission tomography at 24 hours following intra-tumoral injection of the conjugates to human prostate xenografts in mice. The data suggest that the poly[APMA]-DOTA-(64)Cu conjugates might be useful for interventional radionuclide therapy of locally recurrent prostate cancer in humans.  相似文献   

13.
Sulfonated metallo phthalocyanines (MPcS(n)) are second generation photosensitizers advanced for photodynamic therapy of various medical applications. A series of ZnPcS(n) was demetallated and subsequently converted to the corresponding [(64)Cu]CuPcS(n) in 40-50% isolated yields and >98% radiochemical purities. Tumor-bearing mice were injected with the (64)Cu-labeled products and subjected to 3-h dynamic PET imaging studies. Biodistribution patterns showed characteristic differences between the various derivatives. Tumor uptake was detected only for the amphiphilic derivatives [(64)Cu]CuPcS(2) and [(64)Cu]CuPcS(3)C(6) (1-1.5%ID/g). The biological data suggest that PET imaging with [(64)Cu]CuPc can be used to establish structure-PDT efficacy relationships for Pc-based photosensitizers.  相似文献   

14.
The gastrin-releasing peptide receptor (GRPR) is overexpressed on a variety of tumor types and has been targeted with radiolabeled peptides for detection and therapy of these cancers. Analogues of the 14 amino acid bombesin (BN) peptide have been radiolabeled with both gamma- and positron-emitting radionuclides for detection of GRPR-expressing tumors. We have previously evaluated BN analogues radiolabeled with the positron-emitter, copper-64 (64Cu), that contained various aliphatic linkers placed between the BN peptide and the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator. These studies showed that the analogues could be used for positron-emission tomographic (PET) imaging of GRPR-positive tumors in mice but clinical translation would be hindered by significant uptake in background tissues. Therefore, the purpose of this study was to determine if the use of amino acid linkers placed between the DOTA chelate and the BN peptide would reduce nontarget tissue uptake, while maintaining good prostate tumor uptake. The linkers studied utilized three amino acid combinations of glycine (G), serine (S), or glutamic acid (E). In vitro assays in PC-3 cells showed that the glutamic acid-containing linkers had poor binding and internalization, while the other analogues had IC50 values <100 nM and good internalization. In vivo, these same analogues demonstrated tumor-specific uptake and good imaging characteristics that were comparable to, or better than the previously reported 64Cu-labeled DOTA-BN analogues. Overall, this study shows that BN analogues containing amino acid linkers can be used for the PET imaging of GRPR-expressing prostate cancer and that these linkers lead to lower background tissue uptake.  相似文献   

15.
It was previously reported that tetraiodothyroacetic acid (tetrac) inhibits angiogenesis by binding to the cell surface receptor for thyroid hormone on integrin αVβ3. Therefore, we synthesized and evaluated two 64Cu-labeled tetrac derivatives and a Cy5.5-labeled tetrac derivative for tumor angiogenesis imaging. Tetrac was structurally modified to conjugate with 1,4,7,10-tetraazacyclododecane-N,N′,N″,N″′-tetraacetic acid (DOTA) via its hydroxy or carboxylic acid end, and the resulting DOTA-conjugated tetrac derivatives were then labeled with 64Cu. Tetrac was also conjugated with Cy5.5 via its carboxylic acid end. All three tetrac derivatives (13) exhibited greater inhibitory activity than tetrac against endothelial cell tube formation. The U87MG cell binding of [64Cu]2 showed a time-dependent increase over 24 h and it was inhibited by 38% at 4 h in the presence of tetrac, indicating specificity of [64Cu]2 to the thyroid hormone receptor site on integrin αVβ3. Positron emission tomography (PET) images of U87MG tumor-bearing mice injected with [64Cu]1 and [64Cu]2 revealed that high radioactivity accumulated in the tumors, and that the tumor uptake and tumor-to-nontarget uptake ratio were higher in small tumors than in large tumors. In addition, the Cy5.5-labeled tetrac derivative (3) displayed a strong near-infrared (NIR) signal in the tumors. Taken together, these results suggest that these ligands hold promise as imaging agents for visualization of tumor angiogenesis.  相似文献   

16.
The papain family of cysteine cathepsins are actively involved in multiple stages of tumorigenesis. Because elevated cathepsin activity can be found in many types of human cancers, they are promising biomarkers that can be used to target radiological contrast agents for tumor detection. However, currently there are no radiological imaging agents available for these important molecular targets. We report here the development of positron emission tomography (PET) radionuclide-labeled probes that target the cysteine cathepsins by formation of an enzyme activity-dependent bond with the active site cysteine. These probes contain an acyloxymethyl ketone (AOMK) functional group that irreversibly labels the active site cysteine of papain family proteases attached to a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) tag for labeling with (64)Cu for PET imaging studies. We performed biodistribution and microPET imaging studies in nude mice bearing subcutaneous tumors expressing various levels of cysteine cathepsin activity and found that the extent of probe uptake by tumors correlated with overall protease activity as measured by biochemical methods. Furthermore, probe signals could be reduced by pre-treatment with a general cathepsin inhibitor. We also found that inclusion of a Cy5 tag on the probe increased tumor uptake relative to probes lacking this fluorogenic dye. Overall, these results demonstrate that small molecule activity-based probes carrying radio-tracers can be used to image protease activity in living subjects.  相似文献   

17.
To image implant-surrounding activated macrophages, a macrophage-specific PET probe was prepared by conjugating folic acid (FA) and 2,2′,2″,2?-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetracetic acid (DOTA) to polyethylene glycol (PEG) and then labeling the conjugate with Ga-68. In vivo PET imaging evaluations demonstrate that the probe is able to detect foreign body reactions, and more importantly, quantify the degree of inflammatory responses to an implanted medical device. These results were further validated by histological analysis.  相似文献   

18.
An understanding of the metabolic fate of radiometal-labeled peptides is important due to their application in the areas of diagnostic imaging and targeted radiotherapy. Radioisotopes of copper ((64)Cu, T(1/2) = 12.7 h; (67)Cu, T(1/2) = 62 h) have been labeled to monoclonal antibodies (mAbs) and peptides and have applications in the areas of PET imaging and targeted radiotherapy of cancer. Copper-64-TETA-D-Phe(1)-octreotide ([(64)Cu]TETA-OC) has been shown to bind to the somatostatin receptor, both in vitro and in vivo, and this agent inhibited the growth of somatostatin-receptor positive tumors in rats. Copper-64-TETA-OC, however, showed a retention of activity in the blood, liver, and bone marrow, suggesting possible dissociation of (64)Cu from TETA-OC in vivo. The purpose of this study was to determine if (64)Cu dissociates from [(64)Cu]TETA-OC and binds to the protein, superoxide dismutase (SOD) in rat liver. The liver metabolism of [(64)Cu]TETA-OC was examined in normal rats using a gel-electrophoresis assay specific for SOD and size-exclusion chromatography. The major metabolite in rat liver at 20 h postinjection had a molecular weight of 32 kDa as shown by size-exclusion chromatography. A gel electrophoresis assay specific for the detection of SOD [nitro-blue tetrazolium (NBT)] showed that a (64)Cu-labeled protein isolated from rat liver homogenates comigrated with SOD. Evaluating the metabolic fate of copper radiopharmaceuticals demonstrated that Cu(II) dissociates from macrocyclic chelators such as TETA and binds to proteins in high concentrations, namely SOD in rat liver.  相似文献   

19.
The alpha-melanocyte-stimulating hormone (alpha-MSH) receptor (melanocortin type 1 receptor, or MC1R) plays an important role in the development and growth of melanoma cells. It was found that MC1R was overexpressed on most murine and human melanoma, making it a promising molecular target for melanoma imaging and therapy. Radiolabeled alpha-MSH peptide and its analogs that can specifically bind with MC1R have been extensively explored for developing novel agents for melanoma detection and radionuclide therapy. The goal of this study was to evaluate a 64Cu-labeled alpha-MSH analog, Ac-Nle-Asp-His-D-Phe-Arg-Trp-Gly-Lys(DOTA)-NH2 (DOTA-NAPamide), as a potential molecular probe for microPET imaging of melanoma and MC1R expression in melanoma xenografted mouse models. 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated NAPamide was synthesized and radiolabeled with 64Cu (t1/2=12 h) in NH4OAc (0.1 M; pH 5.5) buffered solution for 60 min at 50 degrees C. Cell culture studies reveal rapid and high uptake and internalization of 64Cu-DOTA-NAPamide in B16F10 cells. Over 90% of receptor-bound tracer is internalized at 3 h incubation. A cellular retention study demonstrates that the receptor-bound 64Cu-DOTA-NAPamide is slowly released from the B16F10 cells into the medium; 66% of the radioactivity is still associated with the cells even after 3 h incubation. The biodistribution of 64Cu-DOTA-NAPamide was then investigated in C57BL/6 mice bearing subcutaneous murine B16F10 melanoma tumors with high capacity of MC1R and Fox Chase Scid mice bearing human A375M melanoma with a relatively low number of MC1R receptors. Tumor uptake values of 64Cu-DOTA-NAPamide are found to be 4.63 +/- 0.45% and 2.49 +/- 0.31% ID/g in B16F10 and A375M xenografted melanoma at 2 h postinjection (pi), respectively. The B16F10 tumor uptake at 2 h pi is further inhibited to 2.29 +/- 0.24% ID/g, while A375M tumor uptake at 2 h pi remains 2.20 +/- 0.41% ID/g with a coinjection of excess alpha-MSH peptide. MicroPET imaging of 64Cu-DOTA-NAPamide in B16F10 tumor mice clearly shows good tumor localization. However, low A375M tumor uptake and poor tumor to normal tissue contrast were observed. This study demonstrates that 64Cu-DOTA-NAPamide is a promising molecular probe for alpha-MSH receptor positive melanoma PET imaging as well as MC1R expression imaging in living mice.  相似文献   

20.
Cell adhesion molecules alphavbeta3 and alphavbeta5 play a pivotal role in tumor angiogenesis and metastasis. Antiangiogenic therapy by using small peptide antagonists of alphav-integrins slows tumor growth and prevents tumor spread. The ability to visualize and quantify integrin expression will enable selection of appropriate patients for clinical trials, following determination of treatment efficacy and development of new potent drugs. We have previously labeled cyclic RGD peptide c(RGDyK) with 125I and 18F and applied the radiotracers to both subcutaneous and orthotopic brain tumor models. Here we conjugated c(RGDyK) with 1,4,7,10-tetraaza-1,4,7,10-tetradodecane-N,N',N' ',N' "-tetraacetic acid (DOTA) and labeled the DOTA-RGD conjugate with 64Cu (t1/2) = 12.8 h, 19% beta+) in high radiochemical purity and specific activity. The tumor targeting ability and in vivo kinetics of 64Cu-DOTA-RGD was compared with [18F]FB-RGD and 125I-RGD in orthotopic MDA-MB-435 breast cancer model. All three radiotracers revealed fast blood clearance and high tumor-to-blood and tumor-to-muscle ratios. 125I-RGD had higher tumor uptake than the corresponding 18F and 64Cu analogues. [18F]FB-RGD indicated a fast tumor washout rate and an unfavorable hepatobiliary excretion pathway, resulting in significant activity accumulation in gallbladder and intestines. 64Cu-DOTA-RGD had prolonged tumor retention (1.44 +/- 0.09 %ID/g at 4 h postinjection) and persistent uptake in the liver. All three tracers revealed receptor specific tumor accumulation which were illustrated by effective blocking via coinjection with a blocking dose of c(RGDyK). Static microPET imaging and whole-body autoradiography showed strong contrast from the contralateral background. In conclusion, overall molecular charge and characteristics of radiolabels have profound effects on tumor accumulation and in vivo kinetics of radiolabeled RGD peptide. Further modification of the RGD peptide and optimization of the tracer for prolonged tumor uptake and improved in vivo kinetics are being explored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号