首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrous oxide (N(2)O) is a stable greenhouse gas that plays a significant role in the destruction of the ozone layer. Soils are a significant source of atmospheric N(2)O. It is important to explore some innovative and effective biology-based strategies for N(2)O mitigation. The enzyme nitrous oxide reductase (N(2)OR), naturally found in soil bacteria, is responsible for catalysing the final step of the denitrification pathway, conversion of N(2)O to dintrogen gas (N(2)). To transfer this catalytic pathway from soil into plants and amplify the abundance of this essential mechanism (to reduce global warming), a mega-cassette of five coding sequences was assembled to produce transgenic plants heterologously expressing the bacterial nos operon in plant leaves. Both the single-gene transformants (nosZ) and the multi-gene transformants (nosFLZDY) produced active recombinant N(2)OR. Enzymatic activity was detected using the methyl viologen-linked enzyme assay, showing that extracts from both types of transgenic plants exhibited N(2)O-reducing activity. Remarkably, the single-gene strategy produced higher reductase capability than the whole-operon approach. The data indicate that bacterial N(2)OR expressed in plants could convert N(2)O into inert N(2) without involvement of other Nos proteins. Silencing by homologous signal sequences, or cryptic intracellular targeting are possible explanations for the low activities obtained. Expressing N(2)OR from Pseudomonas stutzeri in single-gene transgenic plants indicated that such ag-biotech solutions to climate change have the potential to be easily incorporated into existing genetically modified organism seed germplasm.  相似文献   

2.
An overexpression system for nitrous oxide reductase (N(2)OR), an enzyme that catalyzes the conversion of N(2)O to N(2) and H(2)O, has been developed in Achromobacter cycloclastes. Anaerobically purified A. cycloclastes recombinant N(2)OR (AcN(2)OR) has on average 4.5 Cu and 1.2 S per monomer. Upon reduction by methyl viologen, AcN(2)OR displays a high specific activity: 124 U/mg at 25 degrees C. Anaerobically purified AcN(2)OR displays a unique absorption spectrum. UV-visible and EPR spectra, combined with kinetics studies, indicate that the as-purified form of the enzyme is predominately a mixture of the fully-reduced Cu(Z)=[4Cu(I)] state and the Cu(Z)=[3Cu(I).Cu(II)] state, with the latter readily reducible by reduced forms of viologens. CD spectra of the as-purified AcN(2)OR over a range of pH values reveal perturbations of the protein conformation induced by pH variations, although the principal secondary structure elements are largely unaltered. Further, the activity of AcN(2)OR in D(2)O is significantly decreased compared with that in H(2)O, indicative of a significant solvent isotope effect on N(2)O reduction. These data are in good agreement with conclusions reached in recent studies on the effect of pH on catalysis by N(2)OR [K. Fujita, D.M. Dooley, Inorg. Chem. 46 (2007) 613-615].  相似文献   

3.
Nitrous oxide reductase (N2OR) is the terminal enzyme involved in denitrification by microbes. No three-dimensional structural information has been published for this enzyme. We have isolated and characterised N2OR from Alcaligenes xylosoxidans (AxN2OR) as a homodimer of M(r) 134,000 containing seven to eight copper atoms per dimer. Comparison of sequence and compositional data with other N2ORs suggests that AxN2OR is typical and can be expected to have similar domain folding and subunit structure to other members of this family of enzymes. We present synchrotron X-ray-scattering data, analysed using a model-independent method for shape restoration, which gave a approximately 20 A resolution structure of the enzyme in solution, providing a glimpse of the structure of any N2OR and shedding light on the molecular architecture of the molecule. The specific activity of AxN2OR was approximately 6 mumol of N2O reduced.min-1. (mg of protein)-1; N2OR activity showed both base and temperature activation. The visible spectrum exhibited an absorption maximum at 550 nm with a shoulder at 635 nm. On oxidation with K3Fe(CN)6, the absorption maximum shifted to 540 nm and a new shoulder at 480 nm appeared. Reduction under anaerobic conditions resulted in the formation of an inactive blue form of the enzyme with a broad absorption maximum at 650 nm. As isolated, the enzyme shows an almost featureless EPR spectrum, which changes on oxidation to give an almost completely resolved seven-line hyperfine signal in the gII region, g = 2.18, with AII = 40 G, consistent with the enzyme being partially reduced as isolated. Both the optical and EPR spectra of the oxidized enzyme are characteristic of the presence of a CuA centre.  相似文献   

4.
The nitrous oxide (N(2)O) reduction pathway from a soil bacterium, Pseudomonas stutzeri, was engineered in plants to reduce N(2)O emissions. As a proof of principle, transgenic plants expressing nitrous oxide reductase (N(2)OR) from P. stutzeri, encoded by the nosZ gene, and other transgenic plants expressing N(2)OR along with the more complete operon from P. stutzeri, encoded by nosFLZDY, were generated. Gene constructs were engineered under the control of a root-specific promoter and with a secretion signal peptide. Expression and rhizosecretion of the transgene protein were achieved, and N(2)OR from transgenic Nicotiana tabacum proved functional using the methyl viologen assay. Transgenic plant line 1.10 showed the highest specific activity of 16.7 μmol N(2)O reduced min(-1) g(-1) root protein. Another event, plant line 1.9, also demonstrated high specific activity of N(2)OR, 13.2 μmol N(2)O reduced min(-1) g(-1) root protein. The availability now of these transgenic seed stocks may enable canopy studies in field test plots to monitor whole rhizosphere N flux. By incorporating one bacterial gene into genetically modified organism (GMO) crops (e.g., cotton, corn, and soybean) in this way, it may be possible to reduce the atmospheric concentration of N(2)O that has continued to increase linearly (about 0.26% year(-1)) over the past half-century.  相似文献   

5.
Nitrous oxide reductase (N(2)OR) catalyses the final step of the denitrification pathway-the reduction of nitrous oxide to nitrogen. The catalytic centre (CuZ) is a unique tetranuclear copper centre bridged by inorganic sulphur in a tetrahedron arrangement that can have different oxidation states. Previously, Marinobacter hydrocarbonoclasticus N(2)OR was isolated with the CuZ centre as CuZ*, in the [1Cu(2+) : 3Cu(+)] redox state, which is redox inert and requires prolonged incubation under reductive conditions to be activated. In this work, we report, for the first time, the isolation of N(2)OR from M. hydrocarbonoclasticus in the 'purple' form, in which the CuZ centre is in the oxidized [2Cu(2+) : 2Cu(+)] redox state and is redox active. This form of the enzyme was isolated in the presence of oxygen from a microaerobic culture in the presence of nitrate and also from a strictly anaerobic culture. The purple form of the enzyme was biochemically characterized and was shown to be a redox active species, although it is still catalytically non-competent, as its specific activity is lower than that of the activated fully reduced enzyme and comparable with that of the enzyme with the CuZ centre in either the [1Cu(2+) : 3Cu(+)] redox state or in the redox inactive CuZ* state.  相似文献   

6.
7.
In vitro inactivation of methionine synthase by nitrous oxide   总被引:3,自引:0,他引:3  
Nitrous oxide (N2O) is commonly used as an anesthetic agent. Prolonged exposure to N2O leads to megaloblastic anemia in humans and to loss of methionine synthase activity in vertebrates. We now report that purified preparations of cobalamin-dependent methionine synthase (5-methyltetrahydrofolate-homocysteine methyltransferase, EC 2.1.1.13) from both Escherichia coli and pig liver are irreversibly inactivated during turnover in buffers saturated with N2O. Inactivation by N2O occurs only in the presence of all components required for turnover: homocysteine, methyltetrahydrofolate, adenosylmethionine, and a reducing system. Reisolation of the inactivated E. coli enzyme after turnover in the presence of N2O resulted in significant losses of bound cobalamin and of protein as compared to controls where the enzyme was subjected to turnover in N2-equilibrated buffers before reisolation. However, N2O inactivation was not associated with major changes in the visible absorbance spectrum of the remaining enzyme-bound cobalamin. We postulate that N2O acts by one-electron oxidation of the cob(I)alamin form of the enzyme which is generated transiently during turnover with the formation of cob(II)alamin, N2, and hydroxyl radical. Generation of hydroxyl radical at the active site of the enzyme could explain the observed irreversible loss of enzyme activity.  相似文献   

8.
It was shown that kcat for the benzyl viologen cation (BV+)-N2O oxidoreductase activity of nitrous oxide reductase from Wolinella succinogenes was 2-3 times greater at high N2O concentrations than at low. This effect of N2O on kcat exhibited a titration curve implicating a single secondary binding site for N2O with a Kd of 130-200 microM (Km with respect to N2O is about 2.5 microM). This work represents the first evidence of an apparently allosteric kinetic effect among nitrous oxide reductases. Its possible cause is discussed. BV+ was generated in these kinetic studies by addition of sub-stoichiometric amounts of dithionite. This means of reduction proved to be superior to the photochemical generation of BV+ that had been used previously with the enzyme. Mass spectrometric measurements suggested that the M(r) of the subunit of the enzyme is about 95,500 rather than 88,000.  相似文献   

9.
The interactions of nitrous oxide with cytochrome c oxidase isolated from bovine heart muscle have been investigated in search of an explanation for the inhibition of mitochondrial respiration by the inhalation anesthetic. Oxidase activity of the isolated enzyme is partially and reversibly reduced by nitrous oxide. N2O molecules are shown by infrared spectroscopy to occupy sites within the oxidase. Occupancy of sites within the protein by N2O has no observed effects on visible Soret spectra or on the O2 reaction site; no evidence is found for N2O serving as a ligand to a metal. The anesthetic does not substitute for O2 as an oxygen atom donor in either the cytochrome c oxidase or carbon monoxide dioxygenase reactions catalyzed by the enzyme. N2O appears to affect oxidase activity by reducing the rate of electron transfer from cytochrome c to the O2 reaction site rather than by interfering directly with the reduction of O2 to water. Cytochrome c oxidase represents a target site for nitrous oxide and possibly other anesthetics, and the inhibition of oxidase activity may contribute significantly to the anesthetic and/or toxic effects of these substances.  相似文献   

10.
Nitric oxide (NO) and nitrous oxide (N2O) are climatically important trace gases that are produced by both nitrifying and denitrifying bacteria. In the denitrification pathway, N2O is produced from nitric oxide (NO) by the enzyme nitric oxide reductase (NOR). The ammonia-oxidizing bacterium Nitrosomonas europaea also possesses a functional nitric oxide reductase, which was shown recently to serve a unique function. In this study, sequences homologous to the large subunit of nitric oxide reductase (norB) were obtained from eight additional strains of ammonia-oxidizing bacteria, including Nitrosomonas and Nitrosococcus species (i.e., both beta- and gamma-Proteobacterial ammonia oxidizers), showing widespread occurrence of a norB homologue in ammonia-oxidizing bacteria. However, despite efforts to detect norB homologues from Nitrosospira strains, sequences have not yet been obtained. Phylogenetic analysis placed nitrifier norB homologues in a subcluster, distinct from denitrifier sequences. The similarities and differences of these sequences highlight the need to understand the variety of metabolisms represented within a "functional group" defined by the presence of a single homologous gene. These results expand the database of norB homologue sequences in nitrifying bacteria.  相似文献   

11.
The stimulating effect of copper addition on the reduction rate of nitrous oxide (N(2)O) to dinitrogen (N(2)) in the presence of sulfide was investigated in batch experiments (pH 7.0; 55 degrees C). N(2)O was dosed either directly as a gas to the headspace of the bottles or formed as intermediate during the denitrification of nitrite in Fe(II)EDTA(2-)-containing medium and nitrate in Fe(II)EDTA(2-)-free medium. Sulfide was either dosed externally or generated from endogenous sulfur sources during anaerobic incubation of the sludge. In the presence of sulfide (from 15 microM to 1mM), heterotrophic denitrification using ethanol as electron donor was incomplete, i.e., N(2)O accumulated instead of N(2) or was transiently formed. Copper addition (60 microM) rapidly stimulated the reduction of N(2)O to N(2). Zinc addition (60 microM) did not have a similar strong stimulating effect as observed for copper and the N(2)O reduction rate was not stimulated at all upon supply of FeCl(3) (2 mM). Thus, a copper deficiency for N(2)O reduction is most likely developed in the presence of sulfide. It is suggested that sulfide induces this deficiency as it readily precipitates as copper sulfide and thus scavenges copper in the medium or that sulfide inactivates the N(2)OR reductase as it sequesters the copper of this metalloenzyme.  相似文献   

12.
The multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.  相似文献   

13.
Earthworms emit the greenhouse gas nitrous oxide (N2O), and ingested denitrifiers in the gut appear to be the main source of this N2O. The primary goal of this study was to determine if earthworms also emit dinitrogen (N2), the end product of complete denitrification. When [15N]nitrate was injected into the gut, the earthworms Aporrectodea caliginosa and Lumbricus terrestris emitted labeled N2 (and also labeled N2O) under in vivo conditions; emission of N2 by these two earthworms was relatively linear and approximated 1.2 and 6.6 nmol N2 per h per g (fresh weight), respectively. Isolated gut contents also produced [15N]nitrate-derived N2 and N2O under anoxic conditions. N2 is formed by N2O reductase, and acetylene, an inhibitor of this enzyme, inhibited the emission of [15N]nitrate-derived N2 by living earthworms. Standard gas chromatographic analysis demonstrated that the amount of N2O emitted was relatively linear during initial incubation periods and increased in response to acetylene. The calculated rates for the native emissions of N2 (i.e., without added nitrate) by A. caliginosa and L. terrestris were 1.1 and 1.5 nmol N2 per h per g (fresh weight), respectively; these emission rates approximated that of N2O. These collective observations indicate that (i) earthworms emit N2 concomitant with the emission of N2O via the in situ activity of denitrifying bacteria in the gut and (ii) N2O is quantitatively an important denitrification-derived end product under in situ conditions.  相似文献   

14.
Y Henry  P Bessières 《Biochimie》1984,66(4):259-289
Present knowledge of the different enzymatic steps of the denitrification chains in various bacteria, particularly Paracoccus denitrificans and Pseudomonas aeruginosa has been briefly reviewed. The question whether nitric oxide (NO), nitrous oxide (N2O) and other nitrogen derivatives are obligatory intermediates has been discussed. The second part is an extensive review of the structure and the function of a key enzyme in denitrification, cytochrome c551-nitrite-oxidoreductase from P. aeruginosa. Recent results on the stoichiometry of nitrite reduction have been discussed.  相似文献   

15.
Formation of nitrate reductase (NaR) and nitrous oxide reductase (N2OR) by a Pseudomonas sp. G59 did not occur in aerobic or anaerobic conditions, but was observed in a microaerobic incubation in which an anaerobically grown culture was agitated in a sealed vessel initially containing 20 kPa oxygen in the headspace. During the microaerobic incubation, the oxygen concentration in the headspace decreased and dissolved oxygen reached 0.1-0.2 kPa. NaR activity was detected immediately and N2OR activity after 3 h of incubation irrespective of the presence or absence of NO3- or N2O. In the presence of NO3-, NO2- was accumulated as a major product, but N2O was observed in low concentrations only after N2OR appeared. After microaerobic incubation for 3 h, N2OR formation continued even anaerobically in an atmosphere of N2O. In contrast, Escherichia coli formed NaR not only microaerobically but also anaerobically. However, NaR formation by E. coli was inhibited by sodium fluoride under anaerobic, but not under microaerobic conditions. The Pseudomonas culture did not possess fermentative activity. It is suggested that the dependence on microaerobiosis for the formation of these reductases by the Pseudomonas culture was due to an inability to produce energy anaerobically until these anaerobic respiratory enzymes were formed.  相似文献   

16.
Earthworm activity is known to increase emissions of nitrous oxide (N(2)O) from arable soils. Earthworm gut, casts, and burrows have exhibited higher denitrification activities than the bulk soil, implicating priming of denitrifying organisms as a possible mechanism for this effect. Furthermore, the earthworm feeding strategy may drive N(2)O emissions, as it determines access to fresh organic matter for denitrification. Here, we determined whether interactions between earthworm feeding strategy and the soil denitrifier community can predict N(2)O emissions from the soil. We set up a 90-day mesocosm experiment in which (15)N-labeled maize (Zea mays L.) was either mixed in or applied on top of the soil in the presence or absence of the epigeic earthworm Lumbricus rubellus and/or the endogeic earthworm Aporrectodea caliginosa. We measured N(2)O fluxes and tested the bulk soil for denitrification enzyme activity and the abundance of 16S rRNA and denitrifier genes nirS and nosZ through real-time quantitative PCR. Compared to the control, L. rubellus increased denitrification enzyme activity and N(2)O emissions on days 21 and 90 (day 21, P = 0.034 and P = 0.002, respectively; day 90, P = 0.001 and P = 0.007, respectively), as well as cumulative N(2)O emissions (76%; P = 0.014). A. caliginosa activity led to a transient increase of N(2)O emissions on days 8 to 18 of the experiment. Abundance of nosZ was significantly increased (100%) on day 90 in the treatment mixture containing L. rubellus alone. We conclude that L. rubellus increased cumulative N(2)O emissions by affecting denitrifier community activity via incorporation of fresh residue into the soil and supplying a steady, labile carbon source.  相似文献   

17.
Ornithine decarboxylase is the initial and rate-limiting enzyme in the polyamine biosynthetic pathway. Polyamines are found in all mammalian cells and are required for cell growth. We previously demonstrated that N-hydroxyarginine and nitric oxide inhibit tumor cell proliferation by inhibiting arginase and ornithine decarboxylase, respectively, and, therefore, polyamine synthesis. In addition, we showed that nitric oxide inhibits purified ornithine decarboxylase by S-nitrosylation. Herein we provide evidence for the chemical mechanism by which nitric oxide and S-nitrosothiols react with cysteine residues in ornithine decarboxylase to form an S-nitrosothiol(s) on the protein. The diazeniumdiolate nitric oxide donor agent 1-diethyl-2-hydroxy-2-nitroso-hydrazine acts through an oxygen-dependent mechanism leading to formation of the nitrosating agents N(2)O(3) and/or N(2)O(4). S-Nitrosoglutathione inhibits ornithine decarboxylase by an oxygen-independent mechanism likely by S-transnitrosation. In addition, we provide evidence for the S-nitrosylation of 4 cysteine residues per ornithine decarboxylase monomer including cysteine 360, which is critical for enzyme activity. Finally S-nitrosylated ornithine decarboxylase was isolated from intact cells treated with nitric oxide, suggesting that nitric oxide may regulate ornithine decarboxylase activity by S-nitrosylation in vivo.  相似文献   

18.
The nitric oxide (N = O) free radical exhibits potent cytocidal, mutagenic and vasodilatory properties. We have examined the hypothesis that the hydroxynitrosamino functionality (see sequence in text), which occurs naturally in antineoplastic and antihypertensive agents, will directly generate N = O following peroxidatic 1-electron oxidation. Cupferron (see sequence in text) is indeed an excellent (k greater than 10(7) m-1 s-1) substrate for horseradish peroxidase. The products are N = O and nitrosobenzene (phi - N = O) which are generated and consumed as follows. First, cupferron is oxidized by the classical peroxidatic mechanism to form an unstable nitroxide free radical (see sequence in text) which then forms N = O and phi - N = O spontaneously (see sequence in text). The N = O then reacts with phi - N = O to reform cupferron (see sequence in text) or with the enzyme to generate the characteristic peroxidase--N = O chromophore. Simultaneously, in a competitive reaction with O2, the N = O is converted to NO-2 (4N = O + O2 + 2H2O------------4NO-2 + 4H+). The reactivity of hydroxynitrosamino compounds with horseradish peroxidase is in the order cupferron greater than hydroxynitrosaminomethane greater than alanosine. These model reactions, involving direct oxidation of the hydroxynitrosamino moiety, comprise a novel pathway for the biological production of N = O.  相似文献   

19.
Nitrous oxide reductase, which catalyzes the reduction of N2O to N2, was purified in a largely oxidized form from Pseudomonas aeruginosa strain P2 by a simple anaerobic procedure to yield an enzyme with a peptide purity of 95-98%. For the native (dimeric) enzyme, Mr = 120,000 and for the denatured subunit, Mr = 73,000. The enzyme contained four Cu atoms/subunit, was purple in color, and exhibited a broad absorption band at 550 nm with an extinction coefficient of about 11,000 M-1 x cm-1 referenced to the dimer. It was nearly inactive as prepared but could be activated by incubation with 2-(N-cyclohexylamino)ethane sulfonate buffer, pH 10, to specific activities as high as 27 mumol of N2O x min-1 x mg-1.Km for N2O and benzyl viologen radical cation was about 2 and 4 microM, respectively, both before and after enzyme activation. Activation increased the t1/2 for turnover-dependent inactivation from about 30 s to 5-10 min. Reduction of the enzyme by dithionite was kinetically biphasic and resulted in the loss of the 550-nm band and ultimate appearance of a 670-nm band. Isoelectric focusing revealed five components with pI values from 5.2 to 5.7. The pI values did not change following activation. The copper CD spectrum of the enzyme as prepared was different from that for the activated enzyme, whereas those for the enzyme after exposure to air and the activated enzyme were similar. Because the activated enzyme is a mixture of activated and inactive species, the specific activity of the activated species must be substantially greater than the observed value. Molecular heterogeneity may also explain the decreased optical absorbance and CD amplitude that resulted from the activation process. The data overall reinforce the view that the absorption spectrum of nitrous oxide reductase is not a good predictor of absolute activity.  相似文献   

20.
Nitrous oxide reductase from Wolinella succinogenes was purified very nearly to homogeneity. The enzyme was found to be dimeric, with Mr = 162,000 and subunit Mr = 88,000, and to contain three copper atoms and one iron atom (as cytochrome c) per subunit. The oxidized enzyme exhibited absorption bands at 410 and 528 nm, and the dithionite-reduced enzyme, at 416, 520, and 550 nm. The isoelectric point was 8.6; specific activity was at 25 degrees C and pH 7.1, 160 mumol x min-1 x mg-1; and Km was 7.5 microM N2O under the same conditions. alpha-Chymotrypsin cleaved the enzyme into cytochrome c-depleted dimers with an average Mr = 134,000 and cytochrome c-enriched fragments with an average Mr = 13,000. The enzyme was stable at 4 degrees C for at least 100 h under air and 3 h in the presence of 5 mM EDTA. It exhibited a dithionite-N2O oxidoreductase as well as a BV+-N2O oxidoreductase activity. During turnover with BV+ at 25 mM N2O, the enzyme was observed to undergo an initial activation and a subsequent inactivation. The kinetics of inactivation were approximately first-order in remaining activity, and the first-order rate constant was essentially independent of the initial enzyme concentration. These characteristics are consistent with the occurrence of turnover-dependent inactivation. Acetylene was a relatively weak inhibitor, but cyanide and azide were rather strong inhibitors. The nitrous oxide reductase of W. succinogenes is quite different from that of denitrifying bacteria. The amount of activity in cell extracts and the absence of O2-labile nitrous oxide reductase suggested that the cytochrome c containing enzyme may be the only one produced by W. succinogenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号