首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Harnessing solar energy to grow algal biomass on wastewater nutrients could provide a holistic solution to nutrient management problems on dairy farms. The production of algae from a portion of manure nutrients to replace high-protein feed supplements which are often imported (along with considerable nutrients) onto the farm could potentially link consumption and supply of on-farm nutrients. The objective of this research was to assess the ability of benthic freshwater algae to recover nutrients from dairy manure and to evaluate nutrient uptake rates and dry matter/crude protein yields in comparison to a conventional cropping system. Benthic algae growth chambers were operated in semi-batch mode by continuously recycling wastewater and adding manure inputs daily. Using total nitrogen (TN) loading rates of 0.64-1.03 g m(-2) d(-1), the dried algal yields were 5.3-5.5 g m(-2) d(-1). The dried algae contained 1.5-2.1% P and 4.9-7.1% N. At a TN loading rate of 1.03 g m(-2) d(-1), algal biomass contained 7.1% N compared to only 4.9% N at a TN loading rate of 0.64 g m(-2) d(-1). In the best case, algal biomass had a crude protein content of 44%, compared to a typical corn silage protein content of 7%. At a dry matter yield of 5.5 g m(-2) d(-1), this is equivalent to an annual N uptake rate of 1,430 kg ha(-1) yr(-1). Compared to a conventional corn/rye rotation, such benthic algae production rates would require 26% of the land area requirements for equivalent N uptake rates and 23% of the land area requirements on a P uptake basis. Combining conventional cropping systems with an algal treatment system could facilitate more efficient crop production and farm nutrient management, allowing dairy operations to be environmentally sustainable on fewer acres.  相似文献   

2.
The in situ rates of oxygen consumption by benthic nitrifiers were estimated at 11 study sites in 4 streams. Two methods were used: an in situ respiration chamber method and a method involving conversion of nitrifying potential measurements to in situ rates. Estimates of benthic nitrogenous oxygen consumption (BNOC) rate ranged from 0–380 mmol of O2 m–2·day–1, and BNOC contributed between 0–85% of the total benthic oxygen consumption rate. The activity of nitrifiers residing in the sediments was influenced by O2 availability, temperature, pH, and substrate. Depending upon site, nitrification could approximate either first-order or zero-order kinetics with respect to ammonium concentration. The source of ammonium for benthic nitrifiers could be either totally from within the sediment or totally from the overlying water. Nitrate produced in the sediments could flux to the water above or be lost within the sediment. The sediments could act as a source (positive flux) or sink (negative flux) for both ammonium (–185 mmol·m–2·day–1 to +195 mmol·m–2·day–1) and nitrate (–135 mmol·m–2·day–1 to +185 mmol·m–2·day–1).This study provides evidence to suggest that measurements of down-stream mass flow changes in inorganic nitrogen forms may give poor estimates of in situ rates of nitrification in flowing waters.  相似文献   

3.
刺参对浅海筏式贝类养殖系统的修复潜力   总被引:3,自引:0,他引:3  
浅海筏式养殖滤食性贝类产生大量的粪便和假粪(总称生物沉积物),对海水养殖环境产生一系列影响;而沉积食性海参能够有效清除颗粒有机物,在海水养殖系统中扮演“清道夫”的生态角色.为评估刺参在浅海筏式贝类养殖系统中的生物修复潜力,本文在不同季节现场研究了贝 参混养模式下刺参对贝类生物沉积物的摄食及生长和排泄特征.结果表明: 刺参能够在新设计的养殖设施中与滤食性贝类混养,最大生长率达0.34%·d-1; 并可通过摄食有效清除贝类生物沉积物, 摄食率为0.1746 g·g-1·d-1(夏季,21.2 ℃)、0.0989 g·g-1·d-1(秋季,19.2 ℃)和0.0050 g·g-1·d-1(冬季,7.7 ℃);刺参主要通过排泄溶解形态的NH4+N和PO43- -P来促进沉积物中营养盐的再生,其排泄率也呈现明显的季节变化.基于现场试验数据,估算了刺参在桑沟湾的生物修复潜力, 刺参与贝类混养可摄食4.5~159.6 kg·hm-2·d-1生物沉积物、排泄1 382.5~3 678.1 mmol·hm-2·d-1NH4+ -N及74.6~335.7 mmol·hm-2·d-1PO43--P.表明刺参对浅海筏式贝类养殖系统具有较大的生物修复潜力,贝-参混养模式不仅能够取得较大的生态效益,而且能显著增加养殖生产的经济效益.  相似文献   

4.
Meiofauna (small-sized Metazoa and Foraminifera) may constitute a significant part of seafloor biomass and potentially play an important role in benthic metabolism. However, respiration measurements are limited and the methods used are diverse together complicating comparison or upscaling. Here we describe a novel glass micro-respiration chamber used to perform non-invasive measurements (built-in oxygen-sensitive fluorogenic membrane and stirrer) and together with direct organic carbon measurements report initial biomass-specific respiration rates of common intertidal meiofauna. Results indicate large differences between respiration rates of different taxa (biomass 0.7-5.2 µg C per individual) but very similar organic carbon biomass-specific respiration rates (1.6-2.5 µl O2 h− 1 mgC− 1 or on average 2.0 ± 0.3 µl O2 h− 1 mgC− 1). This new, rapid and accurate method allows the study of metabolic allometry of the different small-sized taxa and determining their functional role in benthic metabolism.  相似文献   

5.
Samples for benthic meiofauna were collected in the vicinity of a salmon aquaculture farm in Bliss Harbour, Bay of Fundy, Canada in early August 1990. Simultaneously, samples for water content, organic carbon, organic nitrogen were collected, and redox potential and benthic oxygen consumption were measured. Meiobenthic size-spectra of biomass and respiration (calculated using allometric equations) were examined at three locations along a gradient of sediment organic enrichment radiating from the farm. Neither biomass nor respiration size-spectra were significantly different between locations despite a decrease in taxon diversity with increasing sediment organic enrichment. Small nematodes were the single largest contributor to respiration and usually to biomass at all locations, particularly at the most organically enriched location directly under the salmon farm. Calculated meiofauna respiration accounted for a greater proportion of total benthic community respiration in organically enriched sediments than in less enriched sediments.  相似文献   

6.
Invasive bivalves often act as ecosystem engineers, generally causing physical alterations in the ecosystems in which they establish themselves. However, the effects of these physical alterations over benthic macroinvertebrate communities’ structure are less clear. The objective of this study was to characterize the ecological effects of the invasive bivalves Corbicula fluminea and Limnoperna fortunei on the structure of benthic macroinvertebrate communities in neo-tropical reservoirs. Three hypotheses were tested: (1) invasive bivalves act as facilitator species to other benthic macroinvertebrates, resulting in communities with higher number of species, abundance and diversity; (2) invasive bivalves change the taxonomic composition of benthic macroinvertebrate communities; (3) invasive bivalves increase the complexity of benthic macroinvertebrate communities. For that it was used data from 160 sampling sites from four reservoirs. We sampled sites once in each area, during the dry season from 2009 to 2012. The first hypothesis was rejected, as the presence of invasive bivalves significantly decreased the host benthic communities’ number of species and abundance. The second hypothesis was corroborated, as the composition of other benthic macroinvertebrates was shown to be significantly different between sites with and without invasive bivalves. We observed a shift from communities dominated by common soft substrate taxa, such as Chironomidae and Oligochaeta, to communities dominated by the invasive Gastropoda Melanoides tuberculata. The biomass data corroborated that, showing significantly higher biomass of M. tuberculata in sites with invasive bivalves, but significantly lower biomass of native species. Benthic macroinvertebrate communities presenting invasive bivalves showed significantly higher eco-exergy and specific eco-exergy, which corroborate the third hypothesis. These results suggest that while the presence of invasive bivalves limits the abundance of soft bottom taxa such as Chironomidae and Oligochaeta, it enhances benthic communities’ complexity and provide new energetic pathways to benthic communities in reservoirs. This study also suggests a scenario of invasion meltdown, as M. tuberculata was facilitated by the invasive bivalves.  相似文献   

7.
The specific oxygen uptake rate (q(O)2, respiration rate) of Bacillus thuringiensis subsp. kurstaki HD-1 was very high at inoculation and was found to decrease essentially monotonically throughout both vegetative growth phase and transition phase under different batch culture conditions. Average q(O)2 values decreased from 8-10 mmol/g h at 1 h after inoculation to less than 2 mmol/g h by the time growth ended. The results are shown to be consistent with the few previous reports on q(O)2 in B. thuringiensis in the literature but also novel in that this pattern of monotonic decline has not been described previously. Both pH control and EDTA in low concentration shortened the vegetative growth phase and reduced the 10 h biomass concentration. Using plots of q(O)2 versus specific growth rate, mu, biomass yield based on the oxygen used for growth, was calculated for transition phase to be 0.041-0.047 g/mmol, consistent with literature values. The same plot also showed that the presence of EDTA resulted in an atypical q(O)2-mu trajectory and apparently much higher biomass yield from the oxygen consumed.  相似文献   

8.
Methane Production in Shallow-Water, Tropical Marine Sediments   总被引:2,自引:2,他引:0       下载免费PDF全文
The in situ production of methane was monitored in several types of tropical benthic communities. A bed of Thalassia testudinum located in Caesar Creek (Florida Keys) exhibited the highest methanogenic activity (initial rates = 1.81 to 1.86 mumol CH4/m2 per h) as compared with another seagrass (Syringodium sp., 0.15 to 0.33 mumol/m2 per h) and two coral reef environments (Hydro-Lab, 0.016 to 0.10 mumol/m2 per h; Curacao, 0.14 to 0.47 mumol/m2 per h). The results suggest that a wide variety of benthic metabolic processes (e.g., photosynthetic oxygen production) influences methane production rates.  相似文献   

9.
The functional role of burrowing bivalves in freshwater ecosystems   总被引:13,自引:0,他引:13  
1. Freshwater systems are losing biodiversity at a rapid rate, yet we know little about the functional role of most of this biodiversity. The ecosystem roles of freshwater burrowing bivalves have been particularly understudied. Here we summarize what is known about the functional role of burrowing bivalves in the orders Unionoida and Veneroida in lakes and streams globally. 2. Bivalves filter phytoplankton, bacteria and particulate organic matter from the water column. Corbicula and sphaeriids also remove organic matter from the sediment by deposit feeding, as may some unionids. Filtration rate varies with bivalve species and size, temperature, particle size and concentration, and flow regime. 3. Bivalves affect nutrient dynamics in freshwater systems, through excretion as well as biodeposition of faeces and pseudofaeces. Excretion rates are both size and species dependent, are influenced by reproductive stage, and vary greatly with temperature and food availability. 4. Bioturbation of sediments through bivalve movements increases sediment water and oxygen content and releases nutrients from the sediment to the water column. The physical presence of bivalve shells creates habitat for epiphytic and epizoic organisms, and stabilizes sediment and provides refugia for benthic fauna. Biodeposition of faeces and pseudofaeces can alter the composition of benthic communities. 5. There is conflicting evidence concerning the role of resource limitation in structuring bivalve communities. Control by bivalves of primary production is most likely when their biomass is large relative to the water volume and where hydrologic residence time is long. Future studies should consider exactly what bivalves feed upon, whether feeding varies seasonally and with habitat, and whether significant overlap in diet occurs. In particular, we need a clearer picture of the importance of suspension versus deposit feeding and the potential advantages and tradeoffs between these two feeding modes. 6. In North America, native burrowing bivalves (Unionidae) are declining at a catastrophic rate. This significant loss of benthic biomass, coupled with the invasion of an exotic burrowing bivalve (Corbicula), may result in large alterations of ecosystem processes and functions.  相似文献   

10.
西双版纳热带季节雨林优势树种树干呼吸特征   总被引:3,自引:0,他引:3       下载免费PDF全文
 采用红外气体分析法(IRGA)原位监测了西双版纳热带季节雨林11种优势树种树干呼吸速率、1 cm深树干温度以及林内空气变化情况。研究发 现,11种优势树种的树干呼吸具有相同的季节规律,并且雨季均大于干季时的树干呼吸。树种间树干呼吸速率差异显著,在0. 823~2.727 μmol&;#8226;m-2&;#8226;s-1。树干1.3 m处所测南北方向树干呼吸无显著性差异。树干呼吸与树干温度显著相关(0.552<0.92),呈良好的自然指数回归关 系,Q10值为1.90~3.03。20 ℃时各树种的RT(总树干呼吸)速率为0.771~2.570μmol&;#8226;m-2&;#8226;s-1。  相似文献   

11.
The benthic oxygen consumption and carbon dioxide production of undisturbed and sieved sediment cores with various values for the biomass of polychaetes collected from the intertidal mud-flat of Nanakita River estuary of Japan were measured simultaneously. The benthic oxygen consumption and carbon dioxide production increased in proportion to the biomass of a dominant polychaete species Neanthes japonica (Izuka). This increase was not explained by the respiration of the animals alone. The residual increase in benthic O2 and CO2 fluxes may be due to mineralization processes in the burrow wall and enhanced diffusion caused by the pumping activity of the worms. From the average biomass of polychaetes at the study site, total benthic O2 and CO2 fluxes were estimated to be 5.2 mmol·m−2·h−1 and 7.3 mmol·m−2·h−1, respectively, at 20 ° C. The worms were responsible for 79% of the total O2 flux and 73% of the total CO2 flux but the respiration of the worms accounted for only 53% of the total O2 flux and 36% of the total CO2 flux. The residual enhanced fluxes were 26% and 37% for the total O2 and CO2 fluxes, respectively.  相似文献   

12.
Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans   总被引:1,自引:0,他引:1  
Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respiration. High resolution respirometry was used to quantify mitochondrial respiration from the biopsies of arm and leg muscles while in-vivo arm and leg VO(2) were determined by the Fick method during leg cycling and arm cranking. We hypothesized that muscle mitochondrial respiratory rate exceeds that of systemic oxygen delivery. The state 3 mitochondrial respiration of the deltoid muscle (4.3±0.4 mmol o(2)kg(-1) min(-1)) was similar to the in-vivo VO(2) during maximal arm cranking (4.7±0.5 mmol O(2) kg(-1) min(-1)) with 6 kg muscle. In contrast, the mitochondrial state 3 of the quadriceps was 6.9±0.5 mmol O(2) kg(-1) min(-1), exceeding the in-vivo leg VO(2) max (5.0±0.2 mmol O(2) kg(-1) min(-1)) during leg cycling with 20 kg muscle (P<0.05). Thus, when half or more of the body muscle mass is engaged during exercise, muscle mitochondrial respiratory capacity surpasses in-vivo VO(2) max. The findings reveal an excess capacity of muscle mitochondrial respiratory rate over O(2) delivery by the circulation in the cascade defining maximal oxidative rate in humans.  相似文献   

13.
Benthic biogeochemistry and macrofauna were investigated six times over 1 year in a shallow sub-tropical embayment. Benthic fluxes of oxygen (annual mean ?918 μmol O2 m?2 h?1), ammonium (NH4 +), nitrate (NO3 ?), dissolved organic nitrogen, dinitrogen gas (N2), and dissolved inorganic phosphorus were positively related to OM supply (N mineralisation) and inversely related to benthic light (N assimilation). Ammonium (NH4 +), NO3 ? and N2 fluxes (annual means +14.6, +15.9 and 44.6 μmol N m?2 h?1) accounted for 14, 16 and 53 % of the annual benthic N remineralisation respectively. Denitrification was dominated by coupled nitrification–denitrification throughout the study. Potential assimilation of nitrogen by benthic microalgae (BMA) accounted for between 1 and 30 % of remineralised N, and was greatest during winter when bottom light was higher. Macrofauna biomass tended to be highest at intermediate benthic respiration rates (?1,000 μmol O2 m?2 h?1), and appeared to become limited as respiration increased above this point. While bioturbation did not significantly affect net fluxes, macrofauna biomass was correlated with increased light rates of NH4 + flux which may have masked reductions in NH4 + flux associated with BMA assimilation during the light. Peaks in net N2 fluxes at intermediate respiration rates are suggested to be associated with the stimulation of potential denitrification sites due to bioturbation by burrowing macrofauna. NO3 ? fluxes suggest that nitrification was not significantly limited within respiration range measured during this study, however comparisons with other parts of Moreton Bay suggest that limitation of coupled nitrification–denitrification may occur in sub-tropical systems at respiration rates exceeding ?1,500 μmol O2 m?2 h?1.  相似文献   

14.
The oxygen and nutrient dynamics of the zooxanthellate, upside down jellyfish (Cassiopea sp.), were determined both in situ and during laboratory incubations under controlled light conditions. In the laboratory, Cassiopea exhibited a typical Photosynthesis–Irradiance (P–I) curve with photosynthesis increasing linearly with irradiance, until saturation was reached at an irradiance of ~400 μE m−2 s−1, with photosynthetic compensation (photosynthesis = respiration) being achieved at an irradiance of ~50 μE m−2 s−1. Under saturating irradiation, gross photosynthesis attained a rate of almost 3.5 mmol O2 kg WW−1 h−1, whereas the dark respiration rate averaged 0.6 mmol O2 kg WW−1 h−1. Based upon a period of saturating irradiance of 9 h, the ratio of daily gross photosynthesis to daily respiration was 2.04. Thus, photosynthetic carbon fixation was not only sufficient to meet the carbon demand of respiration, but also to potentially support a growth rate of ~3% per day. During dark incubations Cassiopea was a relatively minor source of inorganic N and P, with the high proportion of NO X (nitrate + nitrite) produced indicating that the jellyfish were colonised by nitrifying bacteria. Whereas, under saturating irradiance the jellyfish assimilated ammonium, NO X and phosphate from the bathing water. However, the quantities of inorganic nitrogen assimilated were small by comparison to carbon fixation rates and the jellyfish would need to exploit other sources of nitrogen, such as ingested zooplankton, in order to maintain balanced growth. During in situ incubations the presence of Cassiopea had major effects on benthic oxygen and nutrient dynamics, with jellyfish occupied patches of sediment having 3.6-fold higher oxygen consumption and 4.5-fold higher ammonium regeneration rates than adjacent patches of bare sediment under dark conditions. In contrast at saturating irradiance, jellyfish enhanced benthic photosynthetic oxygen production almost 100-fold compared to the sediment alone and created a small sink for inorganic nutrients, whereas unoccupied sediment patches were sources of inorganic nutrients to the water column. Overall, Cassiopea greatly enhanced the spatial and temporal heterogeneity of benthic fluxes and processes by creating “hotspots” of high activities which switched between being sources or sinks for oxygen and nutrients over diurnal irradiance cycles, as the metabolism of the jellyfish swapped between heterotrophy and net autotrophy.  相似文献   

15.
Bunce JA 《Annals of botany》2005,95(6):1059-1066
BACKGROUND AND AIMS: Respiration is an important component of plant carbon balance, but it remains uncertain how respiration will respond to increases in atmospheric carbon dioxide concentration, and there are few measurements of respiration for crop plants grown at elevated [CO(2)] under field conditions. The hypothesis that respiration of leaves of soybeans grown at elevated [CO(2)] is increased is tested; and the effects of photosynthesis and acclimation to temperature examined. METHODS: Net rates of carbon dioxide exchange were recorded every 10 min, 24 h per day for mature upper canopy leaves of soybeans grown in field plots at the current ambient [CO(2)] and at ambient plus 350 micromol mol(-1) [CO(2)] in open top chambers. Measurements were made on pairs of leaves from both [CO(2)] treatments on a total of 16 d during the middle of the growing seasons of two years. KEY RESULTS: Elevated [CO(2)] increased daytime net carbon dioxide fixation rates per unit of leaf area by an average of 48 %, but had no effect on night-time respiration expressed per unit of area, which averaged 53 mmol m(-2) d(-1) (1.4 micromol m(-2) s(-1)) for both the ambient and elevated [CO(2)] treatments. Leaf dry mass per unit of area was increased on average by 23 % by elevated [CO(2)], and respiration per unit of mass was significantly lower at elevated [CO(2)]. Respiration increased by a factor of 2.5 between 18 and 26 degrees C average night temperature, for both [CO(2)] treatments. CONCLUSIONS: These results do not support predictions that elevated [CO(2)] would increase respiration per unit of area by increasing photosynthesis or by increasing leaf mass per unit of area, nor the idea that acclimation of respiration to temperature would be rapid enough to make dark respiration insensitive to variation in temperature between nights.  相似文献   

16.
Photosynthetic activity and respiration in an equatorial African soda lake   总被引:2,自引:0,他引:2  
SUMMARY. Photosynthetic activity and respiration in Lake Sonachi (Kenya), a meromictic soda lake lying in a volcanic crater, were measured through diel cycles during a 15-month period. A pattern of thermal stratification in the morning and mixing in the afternoon and night occurred in the mixolimnion. Diel variations in dissolved oxygen at 50 cm were 2.2–7.5 mgO2 1-11% of the incident photosynthetically available irradiance (PAR) reached a depth of 1.3–2.4 m and, as a consequence, the steepest thermal gradients and highest oxygen concentrations occurred in the top 1–2 m. Vertical profiles of dissolved oxygen were used in three ways to estimate photosynthetic and respiration rates. Changes in dissolved oxygen at the depth of maximal photosynthesis (c. 50 cm) during mid-morning were corrected for vertical diffusion to determine net free water oxygen increases of 70-1800 mg O2 m-3 h-1 Variations in areal oxygen content at successive intervals throughout the day and night were corrected for air-water oxygen exchange to calculate net free water oxygen change per h. Maximal rates of increase (550–4850 mg O2 m-2 h-1) usually occurred in late morning or early afternoon; maximal rates of decrease (440–2600 mg O2 m-2 h-1) were common at sunset. The correction for air-water exchange was usually small because of the low wind speeds and the nearness to saturation of the surface water. Summation of daytime and night-time rates of oxygen change provide estimates of net (-3.4–12 gO2 m -2) and gross (-0.7-18.7 g O2 m-2) daily photosynthesis and respiration (0.8-7.2 gO2 m-2). Photosynthetic rates of bottled samples ranged from 150 to 870 mgO2m -2h -1 and 1.4 to 6.8 g O2, m-2 day -1The efficiency of utilization of PAR incident on the lake surface varied from 1.0 to 7.2 mmol O2E-1 periods with higher irradiance typically had lower efficiencies. Free water estimates of photosynthesis usually exceeded the rates measured in bottles. For example, net, free water changes per hour were 1.2–10 times higher than gross areal rates per hour in bottles. Photosynthetic activity in Lake Sonachi in 1973 and 1974 was modest when compared to other tropical African soda lakes.  相似文献   

17.
The new yeast Debaryomyces hansenii UFV-170 was tested in this work in batch experiments under variable oxygenation conditions. To get additional information on its fermentative metabolism, a stoichiometric network was proposed and checked through a bioenergetic study performed using the experimental data of product and substrate concentrations. The yeast metabolism resulted to be practically inactive under strict oxygen-limited conditions (qO2 = 12.0 mmol(O2) C-mol(DM)(-1) h(-1)), as expected by the impossibility of regenerating NADH2+. Significant fractions of the carbon source were addressed to both respiration and biomass growth under excess oxygen levels (qO2 > or = 55.0 mmol(O2) C-mol(DM)(-1) h(-1)), thus affecting xylitol yield (Y(P/S) = 0.41-0.52 g g(-1)). Semi-aerobic conditions (qO2 = 26.8 mmol(O2) C-mol(DM)(-1) h(-1)) were able to ensure the best xylitol production performance (Pmax = 76.6 g L(-1)), minimizing the fractions of the carbon source addressed either to respiration or biomass production and increasing Y(P/S) up to 0.73 g g(-1). An average P/O ratio of about 1.0 mol(ATP) mol(O)(-1) allowed estimation of the main kinetic-bioenergetic parameters of the biosystem. The overall ATP requirements of biomass were found to be particularly high and dependent on the oxygen availability in the medium as well as on the physiological state of the culture. Under semi-aerobic and aerobic conditions, they varied in the ranges 13.5-15.4 and 9.74-10.2 mol(ATP) C-mol(DM)(-1), respectively, whereas during the best semi-aerobic bioconversion they progressively increased from 5.68 to 24.7 mol(ATP) C-mol(DM)(-1). After a starting phase of adaptation to the medium, the cell achieved a phase of decelerated growth during which its excellent xylose-to-xylitol capacity kept almost constant after 112 h up to the end of the run.  相似文献   

18.
The influence of oxygen transfer rate (OTR) on the molecular mass of alginate was studied. In batch cultures without dissolved oxygen tension (DOT) control and at different agitation rates, the DOT was nearly zero and the OTR was constant during biomass growth, hence the cultures were oxygen-limited. The OTR reached different maximum levels (OTRmax) and enabled to establish various relative respiration rates. Overall, the findings showed that OTR influences alginate molecular mass. The mean molecular mass (MMM) of the alginate increased as OTRmax decreased. The molecular mass obtained at 3.0 mmol l−1 h−1 was 7.0 times higher (1,560 kDa) than at 9.0 mmol l−1 h−1 (220 kDa). An increase in molecular mass can be a bacterial response to adverse nutritional conditions such as oxygen limitation.  相似文献   

19.
1. In extremely acid mining lakes, benthic filamentous green algae (Zygnemataceae, Chlorophyta) thrive as effective competitors for limited carbon (C). These algae could supply C for microbial‐mediated benthic alkalinity generation. However, biomass, productivity and impact of the acidobiontic filamentous green algae at pH ≤3 have not previously been determined. 2. Periphytic filamentous green algae was mapped by harvesting their biomass from 85 1 × 1 m quadrats in mining lake Grünewalder Lauch. Zygogonium ericetorum colonised water depths between 1.6 and 10.5 m covering 88% of total area. Biomass peaked at 5–6 m depth. Total Zygogonium biomass amounted to 72.2 t dry weight for the whole lake (0.94 km2), which corresponds to 16.1 t C and the accumulation of primary production from 2.2 years. 3. Growth of Zygogonium is moderately N, C and extremely P deficient, and seriously stressed by high rates of Fe deposition during summer. Consequently, net primary production (NPP) of Zygogonium, calculated from measured photosynthesis versus irradiance characteristics and calculated underwater irradiance (0.13 g C m?2 year?1) and in situ oxygen measurements (7.8 g C m?2 year?1), corresponds to only 0.3% and 18.1% of pelagic NPP. 4. Neither pelagic nor benthic Zygogonium primary production can supply enough C for efficient acidity removal. However, at rates of benthic NPP in summer of 21.4 mg C m?2 day?1, Zygogonium contributed 26% of the C equivalents to remove acidity associated with ferric iron, contributing at least seasonally to efficient alkalinity generation.  相似文献   

20.
Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号