首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chimpanzees show cultural differences among populations across Africa but also between neighboring communities. The extent of these differences among neighbors, however, remains largely unknown. Comparing three neighboring chimpanzee community in the Taï National Park, Côte d'Ivoire, we found 27 putative cultural traits, including tool use, foraging, social interaction, communication and hunting behavior, exceeding by far previously known diversity. As foraging behavior is predominantly influenced by the environment, we further compared in detail ecological circumstances underlying insectivore feeding behavior to analyze whether foraging differences on Dorylus ants and Thoracotermes termites seen between neighboring chimpanzee communities were caused by environmental factors. Differences in the prey characteristics of Dorylus ants (aggression level, running speed, and nest structure) that could influence the behavior of chimpanzees were excluded, suggesting that the observed group‐specific variation is not ecologically driven. Only one community preyed on Thoracotermes termites despite a similar abundance of termite mounds in all three territories, supporting the idea that this difference is also not shaped by the environment. Therefore, our study suggests that transmission of cultural knowledge plays a role in determining insectivory prey behavior. This behavioral plasticity, independent of ecological conditions, can lead to large numbers of cultural diversification between neighboring chimpanzee communities. These findings not only deepen our understanding of the cultural abilities of chimpanzees in the wild but also open up possible future comparisons of the origin of cultural diversification among humans and chimpanzees. Am J Phys Anthropol 156:67–75, 2015 © 2014 Wiley Periodicals, Inc.  相似文献   

2.
We present a preliminary report on the differences and similarities in material culture among four neighbouring chimpanzee (Pan troglodytes verus) communities. One of these communities includes Bossou, a long-term field site of wild chimpanzees, in Guinea, West Africa. We also conducted surveys of three new sites. Two of those surveyed areas, Seringbara in Guinea and Yealé in C?te d'Ivoire, are located less than 12 km away from Bossou in the Nimba Mountains region, which forms a natural boundary between Guinea and C?te d'Ivoire. The third, Diécké, is situated further south-west, closer to the border with Liberia. During the surveys, we gathered behavioural information about these neighbouring populations of chimpanzees. The differences, as well as similarities, in material culture were tabulated based on our findings. The three behavioural variants found so far involve differences in nut cracking behaviour with regard to the species of nut cracked. Some variation in materials used for nut cracking has also been recorded. However, we still need to establish whether these local variations can be explained by the demands of the physical and biotic environments in which the populations of chimpanzees live. If these alternative hypotheses can be excluded with continuing research at the study sites, these differences are likely to be cultural behaviours that are influenced by the social context and mode, i.e. horizontal, vertical or oblique, of transmission, by the social structure and organisation of each community and/or perhaps by some form of social norms prevalent within these communities.  相似文献   

3.
Adaptive ecological differentiation among sympatric populations is promoted by environmental heterogeneity, strong local selection and restricted gene flow. High gene flow, on the other hand, is expected to homogenize genetic variation among populations and therefore prevent local adaptation. Understanding how local adaptation can persist at the spatial scale at which gene flow occurs has remained an elusive goal, especially for wild vertebrate populations. Here, we explore the roles of natural selection and nonrandom gene flow (isolation by breeding time and habitat choice) in restricting effective migration among local populations and promoting generalized genetic barriers to neutral gene flow. We examined these processes in a network of 17 breeding ponds of the moor frog Rana arvalis, by combining environmental field data, a common garden experiment and data on variation in neutral microsatellite loci and in a thyroid hormone receptor (TRβ) gene putatively under selection. We illustrate the connection between genotype, phenotype and habitat variation and demonstrate that the strong differences in larval life history traits observed in the common garden experiment can result from adaptation to local pond characteristics. Remarkably, we found that haplotype variation in the TRβ gene contributes to variation in larval development time and growth rate, indicating that polymorphism in the TRβ gene is linked with the phenotypic variation among the environments. Genetic distance in neutral markers was correlated with differences in breeding time and environmental differences among the ponds, but not with geographical distance. These results demonstrate that while our study area did not exceed the scale of gene flow, ecological barriers constrained gene flow among contrasting habitats. Our results highlight the roles of strong selection and nonrandom gene flow created by phenological variation and, possibly, habitat preferences, which together maintain genetic and phenotypic divergence at a fine‐grained spatial scale.  相似文献   

4.
Much attention has been paid to geographic variation in chimpanzee behavior, but few studies have applied quantitative techniques to explain this variation. Here, we apply methods typically utilized in macroecology to explain variation in the putative cultural traits of chimpanzees. We analyzed published data containing 39 behavioral traits from nine chimpanzee communities. We used a canonical correspondence analysis to examine the relative importance of environmental characteristics and geography, which may be a proxy for inter-community gene flow and/or social transmission, for explaining geographic variation in chimpanzee behavior. We found that geography, and longitude in particular, was the best predictor of behavioral variation. Chimpanzee communities in close longitudinal proximity to each other exhibit similar behavioral repertoires, independent of local ecological factors. No ecological variables were significantly related to behavioral variation. These results support the idea that inter-community dispersal patterns have played a major role in structuring behavioral variation. We cannot be certain whether behavioral variation has a genetic basis, is the result of innovation and diffusion, or a combination of the two.  相似文献   

5.
Ecologists and evolutionary biologists have a long‐standing interest in the patterns and causes of geographical variation in animals’ acoustic signals. Nonetheless, the processes driving acoustic divergence are still poorly understood. Here, we studied the geographical variation in echolocation vocalizations (commonly referred to as echolocation ‘pulses’ given their short duration and relatively stereotypic nature, and to contrast them from the communicative vocalizations or ‘calls’) of a widespread bat species Hipposideros armiger in south China, and assessed whether the acoustic divergence was driven by either ecological selection, or cultural or genetic drift. Our results revealed that the peak frequency of echolocation pulses varied significantly across populations sampled, with the maximum variation of about 6 kHz. The peak frequency clustered into three groups: eastern and western China, Hainan and southern Yunnan. The population differences in echolocation pulses were not significantly related to the variation in climatic (mean annual temperature, mean annual relative humidity, and mean annual precipitable water) or genetic (genetic distance) factors, but significantly related to morphological (forearm length) variation which was correlated with mean annual temperature. Moreover, the acoustic differences were significantly correlated with geographical and latitudinal distance after controlling for ‘morphological distance’. Thus, neither direct ecological selection nor genetic drift contributed to the acoustic divergence observed in H. armiger. Instead, we propose that the action of both indirect ecological selection (i.e. selection on body size) as well as cultural drift promote, in part, divergence in echolocation vocalizations of individuals within geographically distributed populations.  相似文献   

6.
We investigated oil palm (Elaeis guineensis) use for feeding in 3 chimpanzee communities: Bossou and Seringbara in Guinea and Yealé in Côte d'Ivoire. Bossou was used as the benchmark for comparison. Bossou chimpanzees (Pan troglodytes verus) exhibit a wide range of oil palm targeted behaviors. We used direct observations of their two tool use, i.e., nut-cracking and pestle pounding, to establish strict and reliable criteria to ascertain the presence of comparable behaviors at the two adjacent Nimba sites. Based on monthly surveys of oil palms across the three sites, significant differences in patterns of use emerged. Bossou chimpanzees demonstrated the greatest frequency of oil palm use, while Seringbara chimpanzees, 6 km away, failed to exhibit any use and Yealé chimpanzees, 12 km away, showed all uses comparable to Bossou chimpanzees except pestle pounding and mature leaf pith-feeding. We examined the density and distribution of oil palms, tool availability for nut-cracking and pestle pounding, fruit, flower and nut availability, competition with sympatric species for fruit and nuts and the diversity of fruit species in the diet across the 3 sites. We found no clear difference in proximate environmental variables underlying observed variations in oil palm use among the 3 sites, yielding the conclusion that the differences are cultural. Assuming individual interchange between communities and the involvement of social learning in the intracommunity transmission and maintenance of oil palm uses, the result raises interesting questions about diffusion of behavior between neighboring chimpanzee communities.  相似文献   

7.
Cultural traits are distributed across human societies in a patterned way. Study of the mechanisms whereby cultural traits persist and change over time is key to understanding human cultural diversity. For more than a century, a central question has engaged anthropologists interested in the study of cultural trait variation: What is the source of cultural variation? More precisely, are cultural traits transmitted primarily from ancestral to descendant populations (vertical transmission) or between contemporary, typically neighboring populations (horizontal transmission), or do they emerge as independent innovations? While debates among unilineal evolutionists and diffusionists have long since faded, there is still much uncertainty about how traits are transmitted at this macroevolutionary level, as well as about the implications of these transmission patterns for testing hypotheses regarding the adaptive function of particular cultural traits across human populations.  相似文献   

8.
Genetic differences among tree species, their hybrids and within tree species are known to influence associated ecological communities and ecosystem processes in areas of limited species diversity. The extent to which this same phenomenon occurs based on genetic variation within a single tree species, in a diverse complex ecosystem such as a tropical forest, is unknown. The level of biodiversity and complexity of the ecosystem may reduce the impact of a single tree species on associated communities. We assessed the influence of within-species genetic variation in the tree Brosimum alicastrum (Moraceae) on associated epiphytic and invertebrate communities in a neotropical rainforest. We found a significant positive association between genetic distance of trees and community difference of the epiphytic plants growing on the tree, the invertebrates living among the leaf litter around the base of the tree, and the invertebrates found on the tree trunk. This means that the more genetically similar trees are host to more similar epiphyte and invertebrate communities. Our work has implications for whole ecosystem conservation management, since maintaining sufficient genetic diversity at the primary producer level will enhance species diversity of other plants and animals.  相似文献   

9.
Global climate change and increases in sea levels will affect coastal marine communities. The conservation of these ecologically important areas will be a challenge because of their wide geographic distribution, ecological diversity and species richness. To address this problem, we need to better understand how the genetic variation of the species in these communities is distributed within local populations, among populations and between distant regions. In this study we apply genotyping by sequencing (GBS) and examine 955 SNPs to determine Sailfin molly (Poecilia latipinna) genetic diversity among three geographically close mangrove salt marsh flats in the Florida Keys compared to populations in southern and northern Florida. The questions we are asking are whether there is sufficient genetic variation among isolated estuarine fish within populations and whether there are significant divergences among populations. Additionally, we want to know if GBS approaches agree with previous studies using more traditional molecular approaches. We are able to identify large genetic diversity within each saltmarsh community (π ≈ 36%). Additionally, among the Florida Key populations and the mainland or between southern and northern Florida regions, there are significant differences in allele frequencies seen in population structure and evolutionary relationships among individuals. Surprisingly, even though the cumulative FST value using all 955 SNPs within the three Florida Key populations is small, there are 29 loci with significant FST values, and 11 of these were outliers suggestive of adaptive divergence. These data suggest that among the salt marsh flats surveyed here, there is significant genetic diversity within each population and small but significant differences among populations. Much of the genetic variation within and among populations found here with GBS is very similar to previous studies using allozymes and microsatellites. However, the meaningful difference between GBS and these previous measures of genetic diversity is the number of loci examined, which allows more precise delineations of population structure as well as facilitates identifying loci with excessive FST values that could indicate adaptive divergence.  相似文献   

10.
Although geographic variation in an organism's traits is often seen as a consequence of selection on locally adaptive genotypes accompanied by canalized development [1], developmental plasticity may also play a role [2, 3], especially in behavior [4]. Behavioral plasticity includes both individual learning and social learning of local innovations ("culture"). Cultural plasticity is the undisputed and dominant explanation for geographic variation in human behavior. It has recently also been suggested to hold for various primates and birds [5], but this proposition has been met with widespread skepticism [6-8]. Here, we analyze parallel long-term studies documenting extensive geographic variation in behavioral ecology, social organization, and putative culture of orangutans [9] (genus Pongo). We show that genetic differences among orangutan populations explain only very little of the geographic variation in behavior, whereas environmental differences explain much more, highlighting the importance of developmental plasticity. Moreover, variation in putative cultural variants is explained by neither genetic nor environmental differences, corroborating the cultural interpretation. Thus, individual and cultural plasticity provide a plausible pathway toward local adaptation in long-lived organisms such as great apes and formed the evolutionary foundation upon which human culture was built.  相似文献   

11.
Song divergence among populations of passerine birds is recognized as a potentially important premating isolation mechanism and may represent the first step in speciation. Because song divergence may be influenced by an array of acoustic, ecological, and genetic factors, the study of its origin requires a multifaceted approach. Here we describe the relationship between acoustic, neutral genetic and ecological variation in five populations of the Swainson's thrush: two from coastal temperate rainforest habitat representing the 'russet-backed' subspecies group, two from inland coniferous forest habitat representing the 'olive-backed' subspecies group, and one mixed locality that resides within a contact zone between the two groups. Song in the five populations is analysed using a multivariate analysis of spectral and temporal measurements, population genetic structure is assessed using an analysis of five microsatellite loci and ecological differences between populations are quantified using an analysis of climatic parameters. Matrix correspondence tests are used to distinguish between the potential for drift and selection in driving song divergence. No significant correlation was found between acoustic and genetic distance suggesting that song divergence cannot be explained by drift alone. A significant correlation between ecological and acoustic distance after accounting for genetic distance, suggests a potential role for ecological selection on divergence in spectral and temporal components of Swainson's thrush song.  相似文献   

12.
Nut-cracking behavior has been reported in several communities in West Africa but not in East and Central Africa. Furthermore, even within nut-cracking communities, there are individuals who do not acquire the skill. The present study aimed to clarify the cognitive capability required for nut-cracking behavior and the process through which the the nut-cracking behavior emerges. To examine emergence, we provided three naïve adult chimpanzees with a single opportunity to observe human models. A human tester demonstrated nut-cracking behavior using a pair of stones and then supplied stones and nuts to the chimpanzee subjects. Two out of three chimpanzees proceeded to hit a nut on an anvil stone using a hammer stone, one of whom succeeded in cracking open the nuts during the first test session. The third chimpanzee failed to crack open nuts. We used four variables (object, location, body part used, and action) to describe stone/nut manipulation in order to analyze further the patterns of object manipulation exhibited by the subjects. The analysis revealed that there were three main difficulties associated with nut-cracking behavior. (1) The chimpanzee who failed at the task never showed hitting action. (2) The chimpanzee who failed at the task manipulated nuts but rarely stones. (3) The combination of three objects was not commonly observed in the three chimpanzees. We also discuss our results with reference to the effect of enculturation in captivity and the social context of learning in the wild.  相似文献   

13.
Heritable variation in traits can have wide-ranging impacts on species interactions, but the effects that ongoing evolution has on the temporal ecological dynamics of communities are not well understood. Here, we identify three conditions that, if experimentally satisfied, support the hypothesis that evolution by natural selection can drive ecological changes in communities. These conditions are: (i) a focal population exhibits genetic variation in a trait(s), (ii) there is measurable directional selection on the trait(s), and (iii) the trait(s) under selection affects variation in a community variable(s). When these conditions are met, we expect evolution by natural selection to cause ecological changes in the community. We tested these conditions in a field experiment examining the interactions between a native plant (Oenothera biennis) and its associated arthropod community (more than 90 spp.). Oenothera biennis exhibited genetic variation in several plant traits and there was directional selection on plant biomass, life-history strategy (annual versus biennial reproduction) and herbivore resistance. Genetically based variation in biomass and life-history strategy consistently affected the abundance of common arthropod species, total arthropod abundance and arthropod species richness. Using two modelling approaches, we show that evolution by natural selection in large O. biennis populations is predicted to cause changes in the abundance of individual arthropod species, increases in the total abundance of arthropods and a decline in the number of arthropod species. In small O. biennis populations, genetic drift is predicted to swamp out the effects of selection, making the evolution of plant populations unpredictable. In short, evolution by natural selection can play an important role in affecting the dynamics of communities, but these effects depend on several ecological factors. The framework presented here is general and can be applied to other systems to examine the community-level effects of ongoing evolution.  相似文献   

14.
Recovering evidence of past human activities enables us to recreate behaviour where direct observations are missing. Here, we apply archaeological methods to further investigate cultural transmission processes in percussive tool use among neighbouring chimpanzee communities in the Taï National Park, Côte d''Ivoire, West Africa. Differences in the selection of nut-cracking tools between neighbouring groups are maintained over time, despite frequent female transfer, which leads to persistent cultural diversity between chimpanzee groups. Through the recovery of used tools in the suggested natal territory of immigrants, we have been able to reconstruct the tool material selection of females prior to migration. In combination with direct observations of tool selection of local residents and immigrants after migration, we uncovered temporal changes in tool selection for immigrating females. After controlling for ecological differences between territories of immigrants and residents our data suggest that immigrants abandoned their previous tool preference and adopted the pattern of their new community, despite previous personal proficiency of the same foraging task. Our study adds to the growing body of knowledge on the importance of conformist tendencies in animals.  相似文献   

15.
长期以来,自然选择理论与中性理论对生物分子进化中的环境适应机理存在着激烈争论。目前,在植物种群分子进化中对生境适应的研究中正面临着一些难题:中性突变是分子水平进化的唯一原因,自然选择发挥主要作用的适应性进化是否存在于分子水平,选择与中性两种学说两种机制完全不同,如何才能将两者联系和统一起来,部分学者利用建立各种模型来描述自然选择对分子标记位点以及连锁序列的直接作用,如生态位宽度变异假设等。本研究小组以新疆阜康荒漠植物为研究对象,通过对两种重要荒漠植物遗传多样性的研究,分析两种植物各亚种群不同生境的生态因子与其遗传变异的关系,讨论生态位宽度变异假设,揭示遗传变异的产生与维持。中性论者与选择论者都试图解释生物环境适应与分子变异之间的关系。中性论和选择论是反映进化的两个侧面,它们不是绝对的,可以相互转化。  相似文献   

16.
In the Lepidoptera, sex-linked genes have been found to be of importance for species differences in, for example, host-plant preference, and have been implicated in ecological speciation. Variation within species is typically not sex-linked. However, in the comma butterfly Polygonia c-album (Nymphalidae) an X-linked gene has been found to play a major role in determining differences in host-plant use between two well separated populations. For this reason, we studied the role of sex-linked genes for host-plant preference within a single Swedish population of this species. Three generations of females with known pedigrees were studied in the laboratory, and they were given a choice between Urtica dioica and Salix caprea in flight cages. We found strong variation among females and significant genetic variance for host-plant preference, but no evidence for major importance of sex linkage of host-plant preference on this local scale. To what extent the observed genetic variation was due to additive genes and/or effects of major genes was not clear from the maximum likelihood analysis. In a follow-up study we sampled females over a larger area. We found strong variation among females, but not among localities, suggesting an open population structure with strong gene flow. From the combined stock, a selection experiment was performed over 2 years and six generations. The selection lines diverged after the first generation of selection and remained separate, but did not diverge further, suggesting a low degree of narrow-sense heritability and that the genetic differences may be effects of major genes. We discuss these results in relation to the possible role of genetics in the radiation of the Lepidoptera and other phytophagous insects.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 755–765.  相似文献   

17.
Although models of evolution usually assume that the strength of selection on a trait and the expression of genetic variation in that trait are independent, whenever the same ecological factor impacts both parameters, a correlation between the two may arise that accelerates trait evolution in some environments and slows it in others. Here, we address the evolutionary consequences and ecological causes of a correlation between selection and expressed genetic variation. Using a simple analytical model, we show that the correlation has a modest effect on the mean evolutionary response and a large effect on its variance, increasing among‐population or among‐generation variation in the response when positive, and diminishing variation when negative. We performed a literature review to identify the ecological factors that influence selection and expressed genetic variation across traits. We found that some factors – temperature and competition – are unlikely to generate the correlation because they affected one parameter more than the other, and identified others – most notably, environmental novelty – that merit further investigation because little is known about their impact on one of the two parameters. We argue that the correlation between selection and genetic variation deserves attention alongside other factors that promote or constrain evolution in heterogeneous landscapes.  相似文献   

18.
Abstract.— A necessary condition for the maintenance of genetic variation in heterogenous environments is that the relative fitnesses of a collection of genotypes vary as conditions of growth change. This can be detected by estimating the amount of gene-by-environment interaction (G X E) when a range of types are tested across a range of conditions. However it is the sign and magnitude of the genetic correlation, which is a component of G X E, that governs the ultimate fate of variation. Whether genetic variation will be preserved, then, depends on how the genetic correlation changes as a function of the ecological differences among environments and the genetic differences among genotypes. To evaluate this, we assayed the performance of 15 chlorophyte species of known genetic relation in 20 environments. We found that the quantity of G X E increased as both the environmental variance across environments and the genetic distance increased. Moreover the genetic correlation declined as the environmental variance between pairs of environments and the genetic distance between pairs of genotypes increased. These results suggest that divergent selection will be more likely to maintain genetic variation when environments are strongly contrasted and genotypes widely divergent.  相似文献   

19.
Using a set of nine effectively isogenic lines collected from nature in 1998, we observed unperturbed behaviors of mixed-sex groups of Drosophila melanogaster. We repeatedly scanned replicated groups of genetically identical individuals, five females and five males, and recorded the behavior of each individual (i.e., walking, feeding, grooming, flying, courting, mating, fighting, or resting). From these behaviors, we made a composite variable of activity for our quantitative genetic analysis. Genotypes differed in activity, explaining 14.41% of the variation in activity; 8.60% of the variation was explained by a significant genotype x sex interaction, which signifies genetic variation for sexual dimorphism in behavior. Phenotypic plasticity explained 11.13% of the variation in activity. Different genotypes and sexes within genotypes had different rank orders of the component behaviors that contribute to activity. We found no effect of common rearing environment. Instead, differences between replicate groups within genotype accounted for 19.47% variation in activity, and activity was significantly repeatable across scans. This emergent group behavior is likely caused by differences between groups of interacting individuals, even though individuals were genetically identical across groups. Thus, emergent group behavior explained almost as much variation in activity as the combined sources of genetic variation (23.01%), and this is an additional level on which selection could operate: individuals and groups. We discuss how differences among groups could change patterns of additive genetic variation available for evolution. Furthermore, because the behavior of an individual is influenced by conspecifics, genotype interactions between individuals could contribute to indirect selection. Finally, if we consider activity as a syndrome governing all component behaviors with strong genetic correlations among behaviors within an individual, then these component behaviors cannot evolve independently. These results suggest that reductionist approaches of molecular behavior genetics may be incomplete and/or misleading when considering similar phenotypes at the population level or when trying to understand how behaviors evolve.  相似文献   

20.
Variation in local environments may lead to variation in the selection pressures and differentiation among local populations even at microgeographic scale. We investigated variation in temperature-induced plasticity in larval life-history traits among populations of an isolated pool frog (Rana lessonae) metapopulation in Central Sweden. Successful breeding of this northern fringe metapopulation is highly dependent on early summer temperature, however, the metapopulation shows very little variation in molecular genetic markers suggesting limited potential for local differentiation. We exposed larvae from three closely-located populations to two temperatures (20 and 25°C) in laboratory to investigate their growth and development responses to temperature variation. In general, larvae exposed to warmer temperature experienced higher survival and metamorphosed faster, but at a smaller size than those at low temperature. We found differences among the populations in both trait mean values and in the plastic responses. Among-family variation within populations was found in growth rate and time to metamorphosis, as well as in plasticity suggesting that these traits have a capacity to evolve. Our results indicate ample phenotypic variation within and among these closely-located populations despite the low molecular genetic variation. The differences in pond temperature characteristics detected in the study in the three localities may suggest that differential selection is acting in the populations. The strong differentiation found in the larval traits implies that understanding the factors that influence the potential of the populations to adapt to environmental changes may be essential for successful conservation strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号