首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Overview of innate immunity in Drosophila   总被引:2,自引:0,他引:2  
  相似文献   

2.
刘小民  袁明龙 《遗传》2018,40(6):451-466
在长期进化过程中,昆虫形成了强大的天然免疫防御系统,即体液免疫和细胞免疫。体液免疫主要包括Toll、IMD和JAK/STAT 3条信号通路,通过信号转导及免疫途径调控免疫相关基因的表达,诱导产生抗菌肽和其他效应分子。细胞免疫由血细胞介导,主要完成对病原物的包裹、吞噬和集结等。近年来,昆虫基因组学快速发展,通过生物信息学等方法从昆虫基因组数据中已鉴定到大量免疫相关基因,对这些基因的研究加深了人们对昆虫天然免疫分子机制的认识和理解。根据基因功能,免疫相关基因分为识别、信号转导、调制器、效应分子、黑化反应、RNA干扰和其他基因等7类,这些基因通过互作来调控体液免疫和细胞免疫。本文对昆虫免疫相关基因的分类、功能及家族进化等方面的研究成果进行总结,并对今后昆虫免疫的研究重点进行了展望,以期为昆虫免疫分子机制的研究及开发新的害虫防治策略提供依据。  相似文献   

3.
Persistent hepatitis C virus infection is associated with progressive hepatic fibrosis and liver cancer. Acute infection evokes several distinct innate immune responses, but these are partially or completely countered by the virus. Hepatitis C virus proteins serve dual functions in replication and immune evasion, acting to disrupt cellular signaling pathways leading to interferon synthesis, subvert Jak-STAT signaling to limit expression of interferon-stimulated genes, and block antiviral activities of interferon-stimulated genes. The net effect is a multilayered evasion of innate immunity, which negatively influences the subsequent development of antigen-specific adaptive immunity, thereby contributing to virus persistence and resistance to therapy.  相似文献   

4.
模式识别受体(PRR)的发现推动了免疫学领域的迅速发展.在近15年时间里,揭示了PRR启动的天然免疫反应机制及信号转导途径,并对天然免疫反应调节获得性免疫产生的机制进行了广泛研究.本文综述该领域一些新的重要发现,集中讨论病原体激活抗原递呈细胞的天然免疫反应调节淋巴细胞介导的抗原特异性获得性免疫机理,以及不同天然免疫途径在宿主抵抗感染和修复组织损伤中的作用,并讨论该领域尚未解决的重要问题.  相似文献   

5.
The innate immune system senses microbial components by signaling receptors and induces phagocytosis by uptake receptors. The Toll-like receptor represents the signaling receptors that cause maturation of dendritic cells, while phagocytosis is supported by other receptor families. We identify the structural signatures of microbial components recognized by these receptors to establish the two-receptor hypothesis in innate immunity.  相似文献   

6.
Innate immunity is an evolutionarily conserved self-defense mechanism against microbial infections. In Drosophila, induction of antimicrobial peptides is a major immune response that is regulated by two distinct signaling pathways called the IMD pathway and the Toll pathway, similar to the tumor necrosis factor-alpha signaling and Toll-like receptor/interleukin-1 signaling pathways, respectively, in mammals. In mammals, innate immunity interacts with adaptive immunity and has a key role in the regulated immune response. Therefore, innate immunity is a pharmaceutical target for the development of immune regulators. Previously, based on the striking conservation between the mechanisms that regulate Drosophila immunity and human innate immunity, we established an ex vivo culture in which compounds acting on innate immunity can be evaluated using a reporter gene that reflects activation of the IMD pathway [Yajima et al. [Yajima, M., Takada, M., Takahashi, N., Kikuchi, H., Natori, S., Oshima, Y., Kurata, S., 2003. A newly established in vitro culture using transgenic Drosophila reveals functional coupling between the phospholipase A2-generated fatty acid cascade and lipopolysaccharide-dependent activation of the immune deficiency (imd) pathway in insect immunity. The Biochemical Journal 371(Pt 1), 205-210] Biochem J 371, 205-210]. Here, we combined the ex vivo culture with a reporter gene that reflects the heat shock response and demonstrated that the resulting systems are useful for screening compounds that act specifically on innate immunity, including mammalian innate immune responses. Identification of target molecules is essential for the development of more potent medicines with fewer side effects. In this study, we also established ex vivo systems capable of identifying target molecules of the identified compounds using targeted activation of the IMD pathway.  相似文献   

7.
We found that absence of osteopontin (OPN) in immunocompromised Rag2(-/-) mice, which lack T and B cells, made the mice extremely susceptible to an opportunistic fungus Pneumocystis, although immunocompetent OPN-deficient mice could clear Pneumocystis as well as wild-type mice. OPN has been studied as an extracellular protein, and the role of an intracellular isoform of OPN (iOPN) is still largely unknown. In this study, we elucidated the mechanism by which iOPN was involved in antifungal innate immunity. First, iOPN was essential for cluster formation of fungal receptors that detect Pneumocystis, including dectin-1, TLR2, and mannose receptor. Second, iOPN played a role as an adaptor molecule in TLR2 and dectin-1 signaling pathways and mediated ERK activation and cytokine production by zymosan, which simultaneously activates TLR2 and dectin-1 pathways. Third, iOPN enhanced phagocytosis and clearance of Pneumocystis. Our study suggests the critical involvement of iOPN in antifungal innate immunity.  相似文献   

8.
Host responses to infectious challenges include initial events elicited directly by agent structures distinct from host determinants, activation of innate immune system components by the products of initial events, and the shaping of downstream adaptive immunity by these initial/innate responses. The picture emerging from viral infections is that viral structures interact with intracellular signaling pathways to induce expression of the type 1 interferons, IFN-alpha/beta. In addition to mediating direct antiviral effects, these cytokines play dominant roles in regulating innate and adaptive immune responses to infection. In particular, IFN-alpha/beta acts to inhibit interleukin-12 (IL-12) expression and IL-12 activation of innate natural killer (NK) cell IFN-alpha production, while inducing NK cell cytotoxicity and proliferation, and promoting adaptive T cell IFN-alpha responses. Although certain viral infections do elicit initial/innate IL-12 and NK-cell-produced IFN-alpha, endogenous IFN-alpha/beta also controls the magnitudes of these responses. Thus, the pathways activated, to dominantly regulate innate and adaptive immune responses during viral infections, are being defined.  相似文献   

9.
Research into intracellular sensing of microbial products is an up and coming field in innate immunity. Toll-like receptors (TLRs) recognize Brucella spp. and bacterial components and initiate mononuclear phagocyte responses that influence both innate and adaptive immunity. Recent studies have revealed the intracellular signaling cascades involved in the TLR-initiated immune response to Brucella infection. TLR2, TLR4 and TLR9 have been implicated in host interactions with Brucella; however, TLR9 has the most prominent role. Further, the relationship between specific Brucella molecules and various signal transduction pathways needs to be better understood. MyD88-dependent and TRIF-independent signaling pathways are involved in Brucella activation of innate immune cells through TLRs. We have recently reported the critical role of MyD88 molecule in dendritic cell maturation and interleukin-12 production during B. abortus infection. This article discusses recent studies on TLR signaling and also highlights the contribution of NOD and type I IFN receptors during Brucella infection. The better understanding of the role by such innate immune receptors in bacterial infection is critical in host-pathogen interactions.  相似文献   

10.
Paramyxoviruses represent a remarkably diverse family of enveloped nonsegmented negative-strand RNA viruses, some of which are the most ubiquitous disease-causing viruses of humans and animals. This review focuses on paramyxovirus activation of innate immune pathways, the mechanisms by which these RNA viruses counteract these pathways, and the innate response to paramyxovirus infection of dendritic cells (DC). Paramyxoviruses are potent activators of extracellular complement pathways, a first line of defense that viruses must face during natural infections. We discuss mechanisms by which these viruses activate and combat complement to delay neutralization. Once cells are infected, virus replication drives type I interferon (IFN) synthesis that has the potential to induce a large number of antiviral genes. Here we describe four approaches by which paramyxoviruses limit IFN induction: by limiting synthesis of IFN-inducing aberrant viral RNAs, through targeted inhibition of RNA sensors, by providing viral decoy substrates for cellular kinase complexes, and through direct blocking of the IFN promoter. In addition, paramyxoviruses have evolved diverse mechanisms to disrupt IFN signaling pathways. We describe three general mechanisms, including targeted proteolysis of signaling factors, sequestering cellular factors, and upregulation of cellular inhibitors. DC are exceptional cells with the capacity to generate adaptive immunity through the coupling of innate immune signals and T cell activation. We discuss the importance of innate responses in DC following paramyxovirus infection and their consequences for the ability to mount and maintain antiviral T cells.  相似文献   

11.
刁勇  许瑞安 《微生物学报》2012,52(5):550-557
重组腺相关病毒(rAAV)已成为基因治疗领域应用最广泛的载体之一。临床前研究显示其具有很高的安全性,但人体免疫毒性仍是制约其临床疗效的关键,因此有关rAAV免疫机制的研究成为近期热点。尽管天然免疫在获得性免疫反应中发挥重要作用,但与rAAV有关的天然免疫研究过去一直未被重视。直到最近,才确认有至少3种人体细胞(树突状细胞、巨噬细胞和内皮细胞)参与了rAAV的天然免疫,作用机制为可识别载体基因组的TLR9或病毒衣壳TLR2所介导,NF-κB或干扰素调节因子(IRFs)信号通路被激活,导致各种炎性因子及I型干扰素的大量表达。自身互补型rAAV诱导的TLR9依赖性天然免疫较单链rAAV更为强烈。本文重点对近期发现的激活天然免疫反应的宿主与rAAV的相互作用、涉及的信号通路、天然免疫对获得性免疫以及转基因表达的影响进行综述。  相似文献   

12.
13.
Dendritic cells were discovered 25 years ago as professional antigen presenting cells bridging together innate and adaptive immunity. Recently additional functions of dendritic cells have been uncovered indicating a relevant role of dendritic cells in immune system regulation. Indeed, they are the professional sensors of the immune system that can detect perturbations caused by non-self infectious as well as self non-infectious signals in most tissues. Dendritic cells discriminate both antigen amounts and antigen persistence through their receptor repertoire via the integration of different signaling pathways. The environment plays an essential role in conditioning the effector functions of dendritic cells leading either to the activation or suppression of adaptive immunity.  相似文献   

14.
Double-stranded RNA (dsRNA), the genetic material for many RNA viruses, induces robust host immune responses via pattern recognition receptors, which include Toll-like receptor 3 (TLR3), retinoic acid-inducible gene-I-like receptors (RLRs) and the multi-protein NLRP3 inflammasome complex. The engagement of dsRNA receptors or inflammasome activation by viral dsRNA initiates complex intracellular signaling cascades that play essential roles in inflammation and innate immune responses, as well as the resultant development of adaptive immunity. This review focuses on signaling pathways mediated by TLR3, RLRs and the NLRP3 inflammasome, as well as the potential use of agonists and antagonists that target these pathways to treat disease.  相似文献   

15.
Toll样受体家族(Toll-like receptors,TLRs)成员在固有免疫反应,尤其是调节吞噬细胞(如巨噬细胞等)特异性识别微生物病原体抗原,分泌促炎细胞因子,上调共刺激分子,并诱导机体适应性免疫反应抗微生物病原体感染中发挥重要调控作用,被称为机体固有免疫和适应性免疫调节中的辅助受体(adjuvant receptor)。目前,对Toll样受体家族成员调控免疫反应信号传导途径的研究已成为分子免疫学领域的研究热点,认为主要存在髓样分化蛋白88(MyD88,是一种转接蛋白)依赖性和MyrD88非依赖性两条主要调控途径。本文仅就Toll样受体信号传导途径的研究进展作以简要综述。  相似文献   

16.
Yang G  Yang L  Zhao Z  Wang J  Zhang X 《PloS one》2012,7(6):e39015
The innate immune system, including the cell-based immunity (mainly apoptosis and phagocytosis) and the humoral immunity (such as pro-phenoloxidase system), is the first defense line of animals against the infection of pathogens in a non-specific manner, which is fine regulated through the gene expression regulations. The microRNAs (miRNAs) are recognized as important regulators of gene expression. To date, however, a comprehensive view about the regulation of innate immunity by miRNAs is not available. To address this issue, the signature miRNAs involved in the innate immunity were characterized in this study. The phagocytosis, apoptosis and phenoloxidase (PO), a key enzyme in the pro-phenoloxidase system, of invertebrate shrimp were activated or inhibited, followed by the small RNA sequencing. The results showed that a total of 24 miRNAs took great effects on phagocytosis, apoptosis or the pro-phenoloxidase system, which were further confirmed by Northern blots. Among the 24 innate immunity-associated miRNAs, 21 miRNAs were conserved in animals, suggesting that these miRNAs might share the similar or the same functions in different species of animals. Based on degradome sequencing and prediction of target genes, it was found that the miRNAs might mediate the regulations of phagocytosis, apoptosis or pro-phenoloxidase system by targeting different genes. Therefore our study presented the first comprehensive view of the miRNAs associated with innate immunity, which would facilitate to reveal the molecular events in the regulation of innate immunity.  相似文献   

17.
Signaling pathways in innate and adaptive immunity play vital roles in pathogen recognition and the func-tions of immune cells.Higher-order assemblies have recently emerged as a central principle that governs immune signaling and,by extension,cellular communi-cation in general.There are mainly two types of higher-order assemblies:1) ordered,solid-like large supramolecular complexes formed by stable and rigid protein-protein interactions,and 2) liquid-like phase-separated condensates formed by weaker and more dynamic intermolecular interactions.This review covers key examples of both types of higher-order assemblies in major immune pathways.By placing emphasis on the molecular structures of the examples provided,we dis-cuss how their structural organization enables elegant mechanisms of signaling regulation.  相似文献   

18.
19.
Inflammatory bowel diseases (IBDs), such as Crohn's disease and ulcerative colitis, are lifelong diseases that remain challenging to treat. IBDs are characterized by alterations in intestinal barrier function and dysregulation of the innate and adaptive immunity. An increasing number of lipids are found to be important regulators of inflammation and immunity as well as gut physiology. Therefore, the study of lipid mediators in IBDs is expected to improve our understanding of disease pathogenesis and lead to novel therapeutic opportunities. Here, through selected examples – such as fatty acids, specialized proresolving mediators, lysophospholipids, endocannabinoids, and oxysterols – we discuss how lipid signaling is involved in IBD physiopathology and how modulating lipid signaling pathways could affect IBDs.  相似文献   

20.
甲型流感病毒作为引起人类和动物急性呼吸道传染病的一个主要病原体,在世界范围内广泛流行。研究表明,甲型流感病毒感染宿主后会诱导宿主的天然免疫应答。甲型流感病毒感染可引起Toll样受体(Toll like receptors,TLRs)和RIG-Ⅰ样受体(RIG-Ⅰ like receptors,RLRs)等宿主模式识别受体介导的抗病毒信号通路的活化,并在多种机制调控下诱导干扰素和其他细胞因子的表达,如Ⅰ型干扰素、Ⅲ型干扰素等,从而启动干扰素刺激基因(Interferon stimulated genes,ISGs)的转录及其抗病毒蛋白的表达,进而实现抗病毒作用。本文就甲型流感病毒感染与干扰素介导的天然免疫应答相关的信号通路和调控机制进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号