首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The zymogen granule is the specialized organelle in pancreatic acinar cells for digestive enzyme storage and regulated secretion and is a classic model for studying secretory granule function. Our long term goal is to develop a comprehensive architectural model for zymogen granule membrane (ZGM) proteins that would direct new hypotheses for subsequent functional studies. Our initial proteomics analysis focused on identification of proteins from purified ZGM (Chen, X., Walker, A. K., Strahler, J. R., Simon, E. S., Tomanicek-Volk, S. L., Nelson, B. B., Hurley, M. C., Ernst, S. A., Williams, J. A., and Andrews, P. C. (2006) Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol. Cell. Proteomics 5, 306-312). In the current study, a new global topology analysis of ZGM proteins is described that applies isotope enrichment methods to a protease protection protocol. Our results showed that tryptic peptides of ZGM proteins were separated into two distinct clusters according to their isobaric tag for relative and absolute quantification (iTRAQ) ratios for proteinase K-treated versus control zymogen granules. The low iTRAQ ratio cluster included cytoplasm-orientated membrane and membrane-associated proteins including myosin V, vesicle-associated membrane proteins, syntaxins, and all the Rab proteins. The second cluster having unchanged ratios included predominantly luminal proteins. Because quantification is at the peptide level, this technique is also capable of mapping both cytoplasm- and lumen-orientated domains from the same transmembrane protein. To more accurately assign the topology, we developed a statistical mixture model to provide probabilities for identified peptides to be cytoplasmic or luminal based on their iTRAQ ratios. By implementing this approach to global topology analysis of ZGM proteins, we report here an experimentally constrained, comprehensive topology model of identified zymogen granule membrane proteins. This model contributes to a firm foundation for developing a higher order architecture model of the ZGM and for future functional studies of individual ZGM proteins.  相似文献   

3.
A computational method to calculate the orientation of membrane-associated alpha-helices with respect to a lipid bilayer has been developed. It is based on a previously derived implicit membrane representation, which was parameterized using the structures of 46 alpha-helical membrane proteins. The method is validated by comparison with an independent data set of six transmembrane and nine antimicrobial peptides of known structure and orientation. The minimum energy orientations of the transmembrane helices were found to be in good agreement with tilt and rotation angles known from solid-state NMR experiments. Analysis of the free-energy landscape found two types of minima for transmembrane peptides: i), Surface-bound configurations with the helix long axis parallel to the membrane, and ii), inserted configurations with the helix spanning the membrane in a perpendicular orientation. In all cases the inserted configuration also contained the global energy minimum. Repeating the calculations with a set of solution NMR structures showed that the membrane model correctly distinguishes native transmembrane from nonnative conformers. All antimicrobial peptides investigated were found to orient parallel and bind to the membrane surface, in agreement with experimental data. In all cases insertion into the membrane entailed a significant free-energy penalty. An analysis of the contributions of the individual residue types confirmed that hydrophobic residues are the main driving force behind membrane protein insertion, whereas polar, charged, and aromatic residues were found to be important for the correct orientation of the helix inside the membrane.  相似文献   

4.
Identification of short coding sequences is challenging, both experimentally and in silico , and functional natural peptides (< 50 amino acids) have to a large extent been overlooked in Gram-negative bacteria. Recent results have converged to highlight the role of hydrophobic peptides that form a novel class of active molecules in Escherichia coli and Salmonella enterica serovar Typhimurium. These peptides can play a regulatory role by interacting with protein partners at the inner membrane and by modulating protein partner activity or stability. Genome-wide analyses in both bacterial species have identified several conserved short open reading frames encoding a single transmembrane segment. We discuss the known and predicted membrane-associated peptides and the tools for their identification. Besides the identification of novel regulatory networks, characterization of peptides with a single transmembrane helix segment and proteins that interact with them provides a powerful opportunity to study interactions between alpha helices within biological membranes. In addition, some bioactive membrane peptides could provide a basis for engineering membrane protein antagonists.  相似文献   

5.
Lai JS  Cheng CW  Sung TY  Hsu WL 《PloS one》2012,7(4):e35018
Secretome analysis is important in pathogen studies. A fundamental and convenient way to identify secreted proteins is to first predict signal peptides, which are essential for protein secretion. However, signal peptides are highly complex functional sequences that are easily confused with transmembrane domains. Such confusion would obviously affect the discovery of secreted proteins. Transmembrane proteins are important drug targets, but very few transmembrane protein structures have been determined experimentally; hence, prediction of the structures is essential. In the field of structure prediction, researchers do not make assumptions about organisms, so there is a need for a general signal peptide predictor.To improve signal peptide prediction without prior knowledge of the associated organisms, we present a machine-learning method, called SVMSignal, which uses biochemical properties as features, as well as features acquired from a novel encoding, to capture biochemical profile patterns for learning the structures of signal peptides directly.We tested SVMSignal and five popular methods on two benchmark datasets from the SPdb and UniProt/Swiss-Prot databases, respectively. Although SVMSignal was trained on an old dataset, it performed well, and the results demonstrate that learning the structures of signal peptides directly is a promising approach. We also utilized SVMSignal to analyze proteomes in the entire HAMAP microbial database. Finally, we conducted a comparative study of secretome analysis on seven tuberculosis-related strains selected from the HAMAP database. We identified ten potential secreted proteins, two of which are drug resistant and four are potential transmembrane proteins.SVMSignal is publicly available at http://bio-cluster.iis.sinica.edu.tw/SVMSignal. It provides user-friendly interfaces and visualizations, and the prediction results are available for download.  相似文献   

6.
In the search for methods to study structure and function of membrane-associated proteins and peptides flow linear dichroism, LD, spectroscopy has emerged as a promising technique. Using shear-aligned lipid vesicles, conformations and binding geometries of membrane-bound bio-macromolecules can be assessed. Here we investigate anchoring properties and specific orientations of tryptophan relative to the peptide backbone and to the membrane normal for the model peptides gramicidin and melittin. We have monitored the conformational change associated with the refolding of non-channel gramicidin into its channel form, and quantitatively determined the average orientations of its tryptophan transition moments, suggesting that these residues adopt a well-defined orientation at the membrane interface. An important conclusion regards the structural variation of gramicidin between these two distinct transmembrane forms. Whilst circular dichroism (CD) spectra, as has been reported before, vary strongly between the two forms suggesting their structures might be quite different, the LD results clearly evidence both the peptide backbone orientation and tryptophan side-chain positioning to be very similar. The latter are oriented in accord with what is expected from their role to anchor peptide termini to the membrane surface. The variations in CD could be due to, the in LD observed, minor shifts in mutual orientation and distance between neighbouring tryptophans sensitively determining their exciton interactions. Our data dispute that the non-channel form of membrane-bound gramicidin would be any of the intertwined forms often observed in crystal as the positioning of tryptophans along the peptide axis would not be compatible with the strong interfacial positioning observed here. The general role of tryptophans as interfacial anchors is further assessed for melittin whose conformation shows considerable angular spread, consistent with a carpet model of its mechanism for induced membrane leakage, and a predominantly surface-aligned membrane orientation governed by amphipathic interactions.  相似文献   

7.
Three-dimensional structures of membrane proteins from genomic sequencing   总被引:1,自引:0,他引:1  
Hopf TA  Colwell LJ  Sheridan R  Rost B  Sander C  Marks DS 《Cell》2012,149(7):1607-1621
We show that amino acid covariation in proteins, extracted from the evolutionary sequence record, can be used to fold transmembrane proteins. We use this technique to predict previously unknown 3D structures for 11 transmembrane proteins (with up to 14 helices) from their sequences alone. The prediction method (EVfold_membrane) applies a maximum entropy approach to infer evolutionary covariation in pairs of sequence positions within a protein family and then generates all-atom models with the derived pairwise distance constraints. We benchmark the approach with blinded de novo computation of known transmembrane protein structures from 23 families, demonstrating unprecedented accuracy of the method for large transmembrane proteins. We show how the method can predict oligomerization, functional sites, and conformational changes in transmembrane proteins. With the rapid rise in large-scale sequencing, more accurate and more comprehensive information on evolutionary constraints can be decoded from genetic variation, greatly expanding the repertoire of transmembrane proteins amenable to modeling by this method.  相似文献   

8.
To avoid the specific problems concerning intrinsic membrane proteins in proteome analysis, an alternative strategy is described that is complementary to previous investigations using 2-D polyacrylamide gel electrophoresis (PAGE) techniques. The strategy involves (a) obtaining purified preparations of the membranes from Chlorobium tepidum by washing with 2 M NaBr, which removed membrane-associated soluble proteins and membrane-associated organelles; (b) separation of membrane protein complexes using 1-D Blue-native polyacrylamide gel electrophoresis (BN-PAGE) after solubilization with n-dodecyl-beta-d-maltoside (DDM); (c) combination of the BN with Tricine-SDS-PAGE; (d) high-throughput mass spectrometric analysis after gel band excision, in-gel digestion, and MALDI target spotting; and (e) protein identification from mixtures of tryptic peptides by peptide mass fingerprinting. Using this approach, we identified 143 different proteins, 70 of which have not been previously reported using 2-D PAGE techniques. Membrane proteins with up to 14 transmembrane helices were found, and this procedure proved to be efficient with proteins within a wide pI range (4.4-11.6). About 54% of the identified membrane proteins belong to various functional categories like energy metabolism, transport, signal transduction, and protein translocation, while for the others, a function is not yet known, indicating the potential of the method for the elucidation of the membrane proteomes in general.  相似文献   

9.
Cytochrome P450 46A1 (CYP46A1) and NADPH-cytochrome P450 oxidoreductase (CPR) are the components of the brain microsomal mixed-function monooxygenase system that catalyzes the conversion of cholesterol to 24-hydroxycholesterol. Both CYP46A1 and CPR are monotopic membrane proteins that are anchored to the endoplasmic reticulum via the N-terminal transmembrane domain. The exact mode of peripheral association of CYP46A1 and CPR with the membrane is unknown. Therefore, we studied their membrane topology by using an approach in which solution-exposed portion of heterologously expressed membrane-bound CYP46A1 or CPR was removed by digestion with either trypsin or chymotrypsin followed by extraction of the residual peptides and their identification by mass spectrometry. The identified putative membrane-interacting peptides were mapped onto available crystal structures of CYP46A1 and CPR and the proteins were positioned in the membrane considering spatial location of the missed cleavage sites located within these peptide as well as the flanking residues whose cleavage produced these peptides. Experiments were then carried out to validate the inference from our studies that the substrate, cholesterol, enters CYP46A1 from the membrane. As for CPR, its putative membrane topology indicates that the Q153R and R316W missense mutations found in patients with disordered steroidogenesis are located within the membrane-associated regions. This information may provide insight in the deleterious nature of these mutations.  相似文献   

10.
Protein modules as organizers of membrane structure.   总被引:15,自引:0,他引:15  
Investigations conducted over the past 18 months have shed new light on how modular protein-binding domains, in particular PDZ domains, co-ordinate the assembly of functional plasma membrane domains. Members of the MAGUK (membrane-associated guanylate kinase) protein family, like PSD-95, use multiple domains to cluster ion channels, receptors, adhesion molecules and cytosolic signaling proteins at synapses, cellular junctions, and polarized membrane domains. Other PDZ proteins, like the Drosophila protein INAD and the epithelial Na(+)/H(+) regulatory factor (NHERF), organize cellular signaling by localizing transmembrane and cytosolic components to specific membrane domains and assembling these components into functional complexes. The organization of these proteins into discreet structures has functional consequences for downstream signaling.  相似文献   

11.
Although progress has been made in understanding the thermodynamic stability of water-soluble proteins, our understanding of the folding of membrane proteins is at a relatively primitive level. A major obstacle to understanding the folding of membrane proteins is the discovery of systems in which the folding is in thermodynamic equilibrium, and the development of methods to quantitatively assess this equilibrium in micelles and bilayers. Here, we describe the application of disulfide cross-linking to quantitatively measure the thermodynamics of membrane protein association in detergent micelles. The method involves initiating disulfide cross-linking of a protein under reversible redox conditions in a thiol-disulfide buffer and quantitative assessment of the extent of cross-linking at equilibrium. The 19-46 alpha-helical transmembrane segment of the M2 protein from the influenza A virus was used as a model membrane protein system for this study. Previously it has been shown that transmembrane peptides from this protein specifically self-assemble into tetramers that retain the ability to bind to the drug amantadine. We used thiol-disulfide exchange to quantitatively measure the tetramerization equilibrium of this transmembrane protein in dodecylphosphocholine (DPC) detergent micelles. The association constants obtained agree remarkably well with those derived from analytical ultracentrifugation studies. The experimental method established herein should provide a broadly applicable tool for thermodynamic studies of folding, oligomerization and protein-protein interactions of membrane proteins.  相似文献   

12.
Membrane-bound proteins owe their retention and conformation in the lipid bilayer to hydrophobic peptide domains. Additional fixation, by protein-lipid hydrogen bonding, has been suggested, and recent reports on protein kinase C activation by diacylglycerol (DG) provide an unambiguous model for such bonding. The sn-1,2-diacylglycerol appears to donate a hydrogen bond from the sn-3 hydroxyl to the enzyme and to receive two hydrogen bonds, in the sn-1 and sn-2 ester CO groups, from the enzyme. This arrangement is confirmed in phorbol ester, a competitive inhibitor of DG for the kinase. This tumor promotor has a nearly identical spatial arrangement of hydrogen bond donor (9 alpha-OH) and acceptors (12 and 13 ester CO); so have two other tumor promotors, teleocidin and aplysiatoxin. There are reasons to believe that protein kinase C is not the only protein that is bound to membrane lipids by hydrogen bonding, and such bonding will have to be considered in membrane-associated events such as fusion, cross-membrane transport, or anesthesia.  相似文献   

13.
Many proteins function by changing conformation in response to ligand binding or changes in other factors in their environment. Any change in the sequence of a protein, for example during evolution, which alters the relative free energies of the different functional conformations changes the conditions under which the protein will function. Voltage-gated ion channels are membrane proteins that open and close an ion-selective pore in response to changes in transmembrane voltage. The charged S4 transmembrane helix transduces changes in transmembrane voltage into a change in protein internal energy by interacting with the rest of the channel protein through a combination of non-covalent interactions between adjacent helices and covalent interactions along the peptide backbone. However, the structural basis for the wide variation in the V50 value between different voltage-gated potassium channels is not well defined. To test the role of the loop linking the S3 helix and the S4 helix in voltage sensitivity, we have constructed a set of mutants of the rat Kv1.2 channel that vary solely in the length and composition of the extracellular loop that connects S4 to S3. We evaluated the effect of these different loop substitutions on the voltage sensitivity of the channel and compared these experimental results with molecular dynamics simulations of the loop structures. Here, we show that this loop has a significant role in setting the precise V50 of activation in Kv1 family channels.  相似文献   

14.
15.
Expressed protein ligation (EPL) is a protein engineering approach that allows the modification or assembly of a target protein from multiple recombinant and synthetic polypeptides. EPL has been previously used to modify intracellular proteins and small integral membrane proteins for structural and functional studies. Here we describe the semisynthetic site-specific modification of the complete, multidomain extracellular regions of both A and B classes of Eph receptor tyrosine kinases. We show that the ectodomains of these receptors can be ligated to different peptides under carefully established experimental conditions, while their biological activity is retained. This work extends the boundaries of the EPL technique for semisynthesis of multidomain, extracellular, disulfide-bonded, and glycosylated proteins and highlights its potential application for reconstituting entire single-pass transmembrane proteins.  相似文献   

16.
Non-viral gene therapy uses engineered nanoparticles in the virus size range for the cell-targeted delivery of therapeutic nucleic acids. A diverse range of macromolecules are suitable for constructing such 'artificial viruses'. However, proteins, either man-made or from natural sources, are especially convenient for mimicking the viral functions critical for gene transfer. Cell penetration is a critical step for the delivery of nucleic acids in sufficient amounts and hence for reaching satisfactory transgene expression levels. Membrane-active peptides have shown great promise because of their positive role in cross-membrane transport and intracellular trafficking, and they have been incorporated into different artificial viruses. In this review, we will discuss the biological properties of these peptides together with the newest rational approaches designed to optimize their application.  相似文献   

17.
A method of packing of transmembrane hairpin helices in proteins is described. The procedure is based on the optimization of hydrophobic contacts calculated using the three-dimensional (3D) molecular hydrophobicity potential technique. To verify the validity of the computational scheme, we calculated relative orientations of membrane-spanning peptides in pairs L2–L3, M2–M3, and M4–M5 from L- and M-subunits of the photoreaction center ofRhodopseudomonas viridis and compared the predicted structures with those derived from atomic coordinates. The results of computer modeling agree with the X-ray data. We applied the approach proposed to study possible interhelical interactions in transmembrane hairpin structures of Na+, K+-ATPase.  相似文献   

18.
Specialized domains, displaying a peculiar lipid and protein composition, are present within the plasma membrane of mammalian cells and play a pivotal role in fundamental membrane-associated events. Among lipids, sphingolipids (in particular glycolipids and sphingomyelin) are characteristically enriched within such domains. Moreover, a series of functionally related proteins is present, suggesting the involvement of these membrane structures in the mechanism of signal transduction and lipid/protein sorting. An increasing body of evidence suggests that domains are dynamic structures, and that their dynamic fluctuations can modulate the activity of domain-associated proteins through changes of glycolipid–protein interaction. Even if a large body of experimental investigation has been carried out on eukaryotic cells, only little attention has been paid to the neuron. The purpose of the present review is to summarize the observations implying a functional role of glycolipid-enriched domains in cultured rat cerebellar granule cells.  相似文献   

19.
Signal peptides and transmembrane helices both contain a stretch of hydrophobic amino acids. This common feature makes it difficult for signal peptide and transmembrane helix predictors to correctly assign identity to stretches of hydrophobic residues near the N-terminal methionine of a protein sequence. The inability to reliably distinguish between N-terminal transmembrane helix and signal peptide is an error with serious consequences for the prediction of protein secretory status or transmembrane topology. In this study, we report a new method for differentiating protein N-terminal signal peptides and transmembrane helices. Based on the sequence features extracted from hydrophobic regions (amino acid frequency, hydrophobicity, and the start position), we set up discriminant functions and examined them on non-redundant datasets with jackknife tests. This method can incorporate other signal peptide prediction methods and achieve higher prediction accuracy. For Gram-negative bacterial proteins, 95.7% of N-terminal signal peptides and transmembrane helices can be correctly predicted (coefficient 0.90). Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 99% (coefficient 0.92). For eukaryotic proteins, 94.2% of N-terminal signal peptides and transmembrane helices can be correctly predicted with coefficient 0.83. Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 87% (coefficient 0.85). The method can be used to complement current transmembrane protein prediction and signal peptide prediction methods to improve their prediction accuracies.  相似文献   

20.
Programs exist for searching protein sequences for potential membrane-penetrating segments (hydrophobic regions) and for lipid-binding sites with highly defined tertiary structures, such as PH, FERM, C2, ENTH, and other domains. However, a rapidly growing number of membrane-associated proteins (including cytoskeletal proteins, kinases, GTP-binding proteins, and their effectors) bind lipids through less structured regions. Here, we describe the development and testing of a simple computer search program that identifies unstructured potential membrane-binding sites. Initially, we found that both basic and hydrophobic amino acids, irrespective of sequence, contribute to the binding to acidic phospholipid vesicles of synthetic peptides that correspond to the putative membrane-binding domains of Acanthamoeba class I myosins. Based on these results, we modified a hydrophobicity scale giving Arg- and Lys-positive, rather than negative, values. Using this basic and hydrophobic scale with a standard search algorithm, we successfully identified previously determined unstructured membrane-binding sites in all 16 proteins tested. Importantly, basic and hydrophobic searches identified previously unknown potential membrane-binding sites in class I myosins, PAKs and CARMIL (capping protein, Arp2/3, myosin I linker; a membrane-associated cytoskeletal scaffold protein), and synthetic peptides and protein domains containing these newly identified sites bound to acidic phospholipids in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号