首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The presence of amyloid plaques in the brain is a typical characteristic of Alzheimer's disease (AD). Amyloid plaques are formed from the deposits of aggregated amyloid β peptide (Aβ). The toxicity induced by Aβ aggregates is correlated with Aβ-membrane interactions. The mutual influences between aggregation and membranes are complicated and unclear. In recent years advanced experiments and findings are emerging to give us more detailed information on Aβ-membrane interactions. In this review, we mainly focus on the Aβ-membrane interactions and membrane-induced Aβ structures. The mechanism of Aβ-membrane interactions is also summarized, which provides insights into the prevention and treatment of AD.  相似文献   

2.
Compelling evidence shows a strong correlation between accumulation of neurotoxic β-amyloid (Aβ) peptides and oxidative stress in the brains of patients afflicted with Alzheimer disease (AD). One hypothesis for this correlation involves the direct and harmful interaction of aggregated Aβ peptides with enzymes responsible for maintaining normal, cellular levels of reactive oxygen species (ROS). Identification of specific, destructive interactions of Aβ peptides with cellular anti-oxidant enzymes would represent an important step toward understanding the pathogenicity of Aβ peptides in AD. This report demonstrates that exposure of human neuroblastoma cells to cytotoxic preparations of aggregated Aβ peptides results in significant intracellular co-localization of Aβ with catalase, an anti-oxidant enzyme responsible for catalyzing the degradation of the ROS intermediate hydrogen peroxide (H(2)O(2)). These catalase-Aβ interactions deactivate catalase, resulting in increased cellular levels of H(2)O(2). Furthermore, small molecule inhibitors of catalase-amyloid interactions protect the hydrogen peroxide-degrading activity of catalase in Aβ-rich environments, leading to reduction of the co-localization of catalase and Aβ in cells, inhibition of Aβ-induced increases in cellular levels of H(2)O(2), and reduction of the toxicity of Aβ peptides. These studies, thus, provide evidence for the important role of intracellular catalase-amyloid interactions in Aβ-induced oxidative stress and propose a novel molecular strategy to inhibit such harmful interactions in AD.  相似文献   

3.
Deposits of amyloid peptide Aβ and intracellular aggregates of hyperphosphorylated tau protein in the brain of patients are major neuropathological features of Alzheimer’s disease (AD). For a long time, the possibility of horizontal transmission of Aβ aggregates from cell to cell and from person to person remained hypothetical, since there was no experimental evidence. However, in 1993, the formation of senile plaques was confirmed in the brains of animals after intracerebral injections of AD patient brain homogenates. or homogenates of the brain of transgenic mice enriched with Aβ aggregates Other experiments indicate that amyloid peptide Aβ and intracellular aggregates of hyperphosphorylated tau protein may be transferred from cell to cell like prions. In 2015 and 2016, it was reported that AD could be transmitted to humans during medical procedures, i.e., that this disease might be iatrogenic. This review discusses the mechanisms by which pathogenic Aβ protein can be transmitted between cells and analyzes the current evidence concerning the possibility of horizontal Aβ transmission from person to person.  相似文献   

4.
Alzheimer’s disease (AD) is characterized by the buildup of insoluble aggregated amyloid-β protein (Aβ) into plaques that accumulate between the neural cells in the brain. AD is the sixth leading cause of death in the United States and is the only cause of death among the top ten that cannot currently be treated or cured (Alzheimer’s Association, 2011; Selkoe, 1996). Researchers have focused on developing small molecules and peptides to prevent Aβ aggregation; however, while some compounds appear promising in vitro, the research has not resulted in a viable therapeutic treatment. We previously reported a peptoid-based mimic (JPT1) of the peptide KLVFF (residues 16–20 of Aβ) that modulates Aβ40 aggregation, specifically reducing the total number of fibrillar, β-sheet structured aggregates formed. In this study, we investigate two new variants of JPT1 that probe the importance of aromatic side chain placement (JPT1s) and side chain chirality (JPT1a). Both JPT1s and JPT1a modulate Aβ40 aggregation by reducing total β-sheet aggregates. However, JPT1a also has a pronounced effect on the morphology of fibrillar Aβ40 aggregates. These results suggest that Aβ40 aggregation may follow a different pathway in the presence of peptoids with different secondary structures. A better understanding of the interactions between peptoids and Aβ will allow for improved design of AD treatments.  相似文献   

5.
Alzheimer's disease (AD) is a devastating disease affecting predominantly the aging population. One of the characteristic pathological hallmarks of AD are neuritic plaques, consisting of amyloid-β peptide (Aβ). While there has been some advancement in diagnostic classification of AD patients according to their clinical severity, no fully reliable method for pre-symptomatic diagnosis of AD is available. To enable such early diagnosis, which will allow the initiation of treatments early in the disease progress, neuroimaging tools are under development, making use of Aβ-binding ligands that can visualize amyloid plaques in the living brain. Here we investigate the properties of a newly designed series of D-enantiomeric peptides which are derivatives of ACI-80, formerly called D1, which was developed to specifically bind aggregated Aβ1-42. We describe ACI-80 derivatives with increased stability and Aβ binding properties, which were characterized using surface plasmon resonance and enzyme-linked immunosorbent assays. The specific interactions of the lead compounds with amyloid plaques were validated by ex vivo immunochemistry in transgenic mouse models of AD. The novel compounds showed increased binding affinity and are promising candidates for further development into in vivo imaging compounds.  相似文献   

6.
We report a fluorinated and iodinated radiotracer as a probe for PET/SPECT to detect of β-amyloid (Aβ) plaques in the brain of patients with Alzheimer's disease (AD). We successfully designed and synthesized the fluorinated and iodinated aurone derivative (3) and its radiolabels ([(125)I]3 and [(18)F]3). In binding experiments in vitro, 3 showed high affinity for Aβ aggregates (K(i)=6.81nM). In brain sections of AD model mice, 3 intensely stained Aβ plaques. Furthermore, a specific plaque labeling signal was observed on the autoradiography of postmortem AD brain sections using [(125)I]3. In biodistribution experiments using normal mice, [(125)I]3 and [(18)F]3 displayed good uptake into and a rapid washout from the brain, properties highly desirable for Aβ imaging agents. These results suggest that 3 may function as a PET/SPECT dual imaging agent for detecting Aβ plaques in AD brains.  相似文献   

7.
《Journal of lipid research》2017,58(12):2239-2254
Alzheimer's disease (AD) is the most common form of dementia in older adults. Currently, there is no cure for AD. The hallmark of AD is the accumulation of extracellular amyloid plaques composed of amyloid-β (Aβ) peptides (especially Aβ1-42) and neurofibrillary tangles, composed of hyperphosphorylated tau and accompanied by chronic neuroinflammation. Aβ peptides are derived from the amyloid precursor protein (APP). The oligomeric form of Aβ peptides is probably the most neurotoxic species; its accumulation eventually forms the insoluble and aggregated amyloid plaques. ApoE is the major apolipoprotein of the lipoprotein(s) present in the CNS. ApoE has three alleles, of which the Apoe4 allele constitutes the major risk factor for late-onset AD. Here we describe the complex relationship between ApoE4, oligomeric Aβ peptides, and cholesterol homeostasis. The review consists of four parts: 1) key elements involved in cellular cholesterol metabolism and regulation; 2) key elements involved in intracellular cholesterol trafficking; 3) links between ApoE4, Aβ peptides, and disturbance of cholesterol homeostasis in the CNS; 4) potential lipid-based therapeutic targets to treat AD. At the end, we recommend several research topics that we believe would help in better understanding the connection between cholesterol and AD for further investigations.  相似文献   

8.
β-淀粉样蛋白(Amyloid-β,Aβ)是阿尔茨海默症(Alzheimer’s disease,AD)病人大脑中淀粉样斑块的主要组成部分。β-淀粉样蛋白级联假说指出,Aβ在脑实质的沉积是最终导致阿尔茨海默症的一个关键步骤。目前的大量研究表明,相对于高度聚集的Aβ,可溶性的Aβ低聚物可能与认知功能障碍的关联性更强。血红素(heme)的代谢在AD患者大脑中发生了改变。近来发现heme可与Aβ结合,形成一个复合物Aβ-heme,该复合物拥有显著高于heme的过氧化物酶活性,具有比heme更强的催化蛋白质酪氨酸硝化的能力。这个结果提示,Aβ-heme可能是联系Aβ与AD中大量蛋白质发生硝化的关键分子。同时,Aβ与heme的结合改变了heme催化蛋白质硝化的位点选择性。这些研究对于阐明Aβ和heme在体内可能的生理作用具有重要意义。  相似文献   

9.
A series of chaclone derivatives containing an indole moiety were evaluated in competitive binding assays with Aβ1-42 aggregates versus [125I]IMPY. The affinity of these compounds ranged from 4.46 to >1008 nM, depending on the substitution on the phenyl ring. Fluorescent staining in vitro showed that one compound with a N,N-dimethylamino group intensely stained Aβ plaques within brain sections of AD transgenic mice. The radioiodinated probe [125I]-(E)-3-(1H-indol-5-yl)-1-(4-iodophenyl)prop-2-en-1-one, [125I]4, was prepared and autoradiography in sections of brain tissue from an animal model of AD showed that it labeled Aβ plaques specifically. However, experiments with normal mice indicated that [125I]4 exhibited a low uptake into the brain in vivo (0.41% ID/g at 2 min). Additional chemical modifications of this indole-chalcone structure may lead to more useful imaging agents for detecting β-amyloid plaques in the brains of AD patients.  相似文献   

10.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by pathological deposits of β‐amyloid (Aβ) in senile plaques, intracellular neurofibrillary tangles (NFTs) comprising hyperphosphorylated aggregated tau, synaptic dysfunction and neuronal death. Substantial evidence indicates that disrupted neuronal calcium homeostasis is an early event in AD that could mediate synaptic dysfunction and neuronal toxicity. Sodium calcium exchangers (NCXs) play important roles in regulating intracellular calcium, and accumulating data suggests that reduced NCX function, following aberrant proteolytic cleavage of these exchangers, may contribute to neurodegeneration. Here, we show that elevated calpain, but not caspase‐3, activity is a prominent feature of AD brain. In addition, we observe increased calpain‐mediated cleavage of NCX3, but not a related family member NCX1, in AD brain relative to unaffected tissue and that from other neurodegenerative conditions. Moreover, the extent of NCX3 proteolysis correlated significantly with amounts of Aβ1–42. We also show that exposure of primary cortical neurons to oligomeric Aβ1–42 results in calpain‐dependent cleavage of NCX3, and we demonstrate that loss of NCX3 function is associated with Aβ toxicity. Our findings suggest that Aβ mediates calpain cleavage of NCX3 in AD brain and therefore that reduced NCX3 activity could contribute to the sustained increases in intraneuronal calcium concentrations that are associated with synaptic and neuronal dysfunction in AD.  相似文献   

11.
We report the synthesis and evaluation of a series of N-benzoylindole derivatives as novel potential imaging agents for β-amyloid plaques. In vitro binding studies using Aβ(1-40) aggregates versus [(125)I]TZDM showed that all these derivatives demonstrated high binding affinities (K(i) values ranged from 8.4 to 121.6 nM). Moreover, two radioiodinated compounds [(125)I]7 and [(125)I]14 were prepared. Autoradiography for [(125)I]14 displayed intense and specific labeling of Aβ plaques in the brain sections of AD model mice (C57, APP/PS1) with low background. In vivo biodistribution in normal mice exhibited sufficient initial brain uptake for imaging (2.19% and 2.00%ID/g at 2 min postinjection for [(125)I]7 and [(125)I]14, respectively). Although additional modifications are necessary to improve brain uptake and clearance from the brain, the N-benzoylindole may be served as a backbone structure to develop novel β-amyloid imaging probes.  相似文献   

12.
We synthesized a novel series of phenylindole (PI) derivatives and evaluated their biological activities as probes for imaging Aβ plaques in vivo. The affinity for Aβ plaques was assessed by an in vitro-binding assay using pre-formed synthetic Aβ aggregates. 2-Phenyl-1H-indole (2-PI) derivatives showed high affinity for Aβ42 aggregates with Ki values ranging from 4 to 32 nM. 2-PI derivatives clearly stained Aβ plaques in an animal model of AD. In biodistribution experiments using normal mice, 2-PI derivatives displayed sufficient uptake for imaging, ranging from 1.1% to 2.6% ID/g. Although additional modifications are necessary to improve uptake by and clearance from the brain, 2-PI derivatives may be useful as a backbone structure to develop novel Aβ imaging agents.  相似文献   

13.
The imaging of β-amyloid (Aβ) aggregates in the brain may lead to the early detection of Alzheimer’s disease (AD) and monitoring of the progression and effectiveness of treatment. The purpose of this study was to develop dual modality SPECT and fluorescent probes based on boron dipyrromethane (BODIPY) as a core structure. We designed and synthesized an 125I-labeled derivative of BODIPY (BODIPY7). BODIPY7 had a Ki value of 108 nM for Aβ(1–42) aggregates and exhibited peaks of absorption/emission at 606/613 nm. It detected Aβ plaques in sections of brain tissue from an animal model of AD and displayed low uptake in the brain and high uptake in the liver in normal mice. Although additional modifications of the BODIPY scaffold are necessary to improve brain uptake, these results should aid the development of dual functional SPECT/fluorescent probes for the imaging of Aβ plaques in the brain.  相似文献   

14.
Modulation of abnormal amyloid β (Aβ) aggregation is considered to be a potential therapeutic target for Alzheimer’s disease (AD). Recent in vitro and in vivo experiments suggest that inhibition of Aβ aggregation by curcumin would exert favorable effects for preventing or treating AD. We have previously synthesized a series of novel curcumin derivatives. In this study, we investigated the effects of our curcumin derivatives on Aβ aggregation and the cell toxicities of Aβ aggregates. According to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) profiles, 14 of 41 compounds showed a significant increase in the densities of the bands of Aβ (1–42) by incubation during the aggregation process relative to those of Aβ (1–42) prepared in the presence of the vehicle control. Of the 14 compounds, four compounds additionally reduced cell toxicity of the Aβ aggregates by incubation during the aggregation process. A significant positive correlation was observed between the cell viability and densities of the bands at ranges of 15–20, 20–37, 37–75, and 75–200 kDa in SDS-PAGE. On the basis of these results, we propose four curcumin derivatives with potential for preventing AD. These curcumin derivatives exhibited high inhibitory effects on Aβ aggregation and induced the formation of lower molecular size Aβ species that have weaker cell toxicity. These compounds may exert therapeutic effects on AD in future in vivo studies.  相似文献   

15.
Pathways governing protein homeostasis are involved in maintaining the structural, quantitative, and functional stability of intracellular proteins and involve the ubiquitin–proteasome system, autophagy, endoplasmic reticulum, and mTOR pathway. Due to the broad physiological implications of protein homeostasis pathways, dysregulation of proteostasis is often involved in the development of multiple pathological conditions, including Alzheimer's disease (AD). Similar to other neurodegenerative diseases that feature pathogenic accumulation of misfolded proteins, Alzheimer's disease is characterized by two pathological hallmarks, amyloid‐β (Aβ) plaques and tau aggregates. Knockout or transgenic overexpression of various proteostatic components in mice results in AD‐like phenotypes. While both Aβ plaques and tau aggregates could in turn enhance the dysfunction of these proteostatic pathways, eventually leading to apoptotic or necrotic neuronal death and pathogenesis of Alzheimer's disease. Therefore, targeting the components of proteostasis pathways may be a promising therapeutic strategy against Alzheimer's disease.  相似文献   

16.
Zhang  Yidan  Zhao  Yuan  Zhang  Jian  Yang  Guofeng 《Neurochemical research》2020,45(11):2560-2572

Alzheimer’s disease (AD) is a common neurodegenerative disease of progressive dementia which is characterized pathologically by extracellular neuritic plaques containing aggregated amyloid beta (Aβ) and intracellular hyperphosphorylated tau protein tangles in cerebrum. It has been confirmed that microglia-specific nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome-mediated chronic neuroinflammation plays a crucial role in the pathogenesis of AD. Stimulated by Aβ deposition, NLRP3 assembles and activates within microglia in the AD brain, leading to caspase-1 activation along with downstream interleukin (IL)-1β secretion, and subsequent inflammatory events. Activation of the NLRP3 inflammasome mediates microglia to exhibit inflammatory M1 phenotype, with high expression of caspase-1 and IL-1β. This leads to Aβ deposition and neuronal loss in the amyloid precursor protein (APP)/human presenilin-1 (PS1) mouse model of AD. However, NLRP3 or caspase-1 deletion in APP/PS1 mice promotes microglia to transform to an anti-inflammatory M2 phenotype, with decreased secretion of caspase-1 and IL-1β. It also results in improved cognition, enhanced Aβ clearance, and a lower cerebral inflammatory response. This result suggests that the NLRP3 inflammasome may be an appropriate target for reducing neuroinflammation and alleviating pathological processes in AD. In the present review, we summarize the generally accepted regulatory mechanisms of NLRP3 inflammasome activation, and explore its role in neuroinflammation. Furthermore, we speculate on the possible roles of microglia-specific NLRP3 activation in AD pathogenesis and consider potential therapeutic interventions targeting the NLRP3 inflammasome in AD.

  相似文献   

17.
Alzheimer's disease (AD) is hallmarked by amyloid‐β (Aβ) peptides accumulation and aggregation in extracellular plaques, preceded by intracellular accumulation. We examined whether intracellular Aβ can be cleared by cytosolic peptidases and whether this capacity is affected during progression of sporadic AD (sAD) in humans and in the commonly used APPswePS1dE9 and 3xTg‐AD mouse models. A quenched Aβ peptide that becomes fluorescent upon degradation was used to screen for Aβ‐degrading cytoplasmic peptidases cleaving the aggregation‐prone KLVFF region of the peptide. In addition, this quenched peptide was used to analyze Aβ‐degrading capacity in the hippocampus of sAD patients with different Braak stages as well as APPswePS1dE9 and 3xTg‐AD mice. Insulin‐degrading enzyme (IDE) was found to be the main peptidase that degrades cytoplasmic, monomeric Aβ. Oligomerization of Aβ prevents its clearance by IDE. Intriguingly, the Aβ‐degrading capacity decreases already during the earliest Braak stages of sAD, and this decline correlates with IDE protein levels, but not with mRNA levels. This suggests that decreased IDE levels could contribute to early sAD. In contrast to the human data, the commonly used APPswePS1dE9 and 3xTg‐AD mouse models do not show altered Aβ degradation and IDE levels with AD progression, raising doubts whether mouse models that overproduce Aβ peptides are representative for human sAD.  相似文献   

18.
After three decades of false hopes and failures, a pipeline of therapeutic drugs that target the actual root cause of Alzheimer's disease (AD) is now available. Challenging the old paradigm that focused on β‐amyloid peptide (Aβ) aggregation in amyloid plaques, these compounds are designed to prevent the neurotoxicity of Aβ oligomers that form Ca2+ permeable pores in the membranes of brain cells. By triggering an intracellular Ca2+ overdose, Aβ oligomers induce a cascade of neurotoxic events including oxidative stress, tau hyperphosphorylation, and neuronal loss. Targeting any post‐Ca2+ entry steps (e.g., tau) will not address the root cause of the disease. Thus, preventing Aβ oligomers formation and/or blocking their toxicity is by essence the best approach to stop any progression of AD. Three categories of anti‐oligomer compounds are already available: antibodies, synthetic peptides, and small drugs. Independent in silico‐based designs of a peptide (AmyP53) and a monoclonal antibody (PMN310) converged to identify a histidine motif (H13/H14) that is critical for oligomer neutralization. This “histidine trick” can be viewed as the Achilles' heel of Aβ in the fight against AD. Moreover, lipid rafts and especially gangliosides play a critical role in the formation and toxicity of Aβ oligomers. Recognizing AD as a membrane disorder and gangliosides as the key anti‐oligomer targets will provide innovative opportunities to find an efficient cure. A “full efficient” solution would also need to be affordable to anyone, as the number of patients has been following an exponential increase, affecting every part of the globe.  相似文献   

19.
Among the pathological hallmarks of Alzheimer's disease (AD) is the deposition of amyloid‐β (Aβ) peptides, primarily Aβ (1–40) and Aβ (1–42), in the brain as senile plaques. A large body of evidence suggests that cognitive decline and dementia in AD patients arise from the formation of various aggregated forms of Aβ, including oligomers, protofibrils and fibrils. Hence, there is increasing interest in designing molecular agents that can impede the aggregation process and that can lead to the development of therapeutically viable compounds. Here, we demonstrate the ability of the specifically designed α,β‐dehydroalanine (ΔAla)‐containing peptides P1 (K‐L‐V‐F‐ΔA‐I‐ΔA) and P2 (K‐F‐ΔA‐ΔA‐ΔA‐F) to inhibit Aβ (1–42) aggregation. The mechanism of interaction of the two peptides with Aβ (1–42) seemed to be different and distinct. Overall, the data reveal a novel application of ΔAla‐containing peptides as tools to disrupt Aβ aggregation that may lead to the development of anti‐amyloid therapies not only for AD but also for many other protein misfolding diseases. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 456–465, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号