首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spectrophotometry of hemoglobin: a comparison of dog and man   总被引:1,自引:0,他引:1  
1. The absorptivity at 540 nm of hemiglobincyanide (epsilon 540HiCN) from dog blood was determined on the basis of iron and found to be within the range formerly obtained for human hemoglobin. 2. Consequently, epsilon 540HiCN = 11.0, the established value for human hemoglobin, may be used for dog hemoglobin. 3. On this basis the absorption spectra of oxyhemoglobin, de-oxygenated hemoglobin, carboxyhemoglobin, hemiglobin (methemoglobin) and hemiglobincyanide were determined for dog hemoglobin. 4. No significant differences were found between dog and human hemoglobin, except that dog hemiglobin binds less OH- as reflected in a difference between the absorption spectra of dog and human hemiglobin at the same pH.  相似文献   

2.
A system is described for in vivo noninvasive measurements of hemoglobin oxygen saturation (HbO2Sat) at the microscopic level. The spectroscopic basis for the application is resonant Raman enhancement of Hb in the violet/ultraviolet region, allowing simultaneous identification of oxy- and deoxyhemoglobin with the same excitation wavelength. The heme vibrational bands are well known, but the technique has never been used to determine microvascular HbO2Sat in vivo. A diode laser light (power: 0.3 mW) was focused onto sample areas 15-30 microm in diameter. Raman spectra were obtained in backscattering geometry by using a microscope coupled to a spectrometer and a cooled detector. Calibration was performed in vitro by using glass capillaries containing blood at several Hb concentrations, equilibrated at various oxygen tensions. HbO2Sat was estimated using the Raman band intensities at 1,360 and 1,375 cm(-1). Glass capillary path length and Hb concentration had no effect on HbO2Sat estimated from Raman spectra. In vivo observations were made in blood flowing in microvessels of the rat mesentery. The Hb Raman peaks observed in oxygenated and deoxygenated blood were consistent with earlier Raman studies that used Hb solutions and isolated cells. The method allowed HbO2Sat determinations in the whole range of arterioles, venules, and capillaries. Tissue transillumination allowed diameter and erythrocyte velocity measurements in the same vessels. Raman microspectroscopy offers distinct advantages over other currently used techniques by providing noninvasive and reliable in vivo determinations of HbO2Sat in thin tissues as well as in solid organs and tissues, which are unsuitable for techniques requiring transillumination.  相似文献   

3.
Using a newly developed perfused rat brain model, we examined direct effects of each change in cerebral blood flow (CBF) and oxygen metabolic rate on cerebral hemoglobin oxygenation to interpret near-infrared spectroscopy signals. Changes in CBF and total hemoglobin (tHb) were in parallel, although tHb showed no change when changes in CBF were small (< or =10%). Increasing CBF caused an increase in oxygenated hemoglobin (HbO(2)) and a decrease in deoxygenated hemoglobin (deoxy-Hb). Decreasing CBF was accompanied by a decrease in HbO(2), whereas changes in direction of deoxy-Hb were various. Cerebral blood congestion caused increases in HbO(2), deoxy-Hb, and tHb. Administration of pentylenetetrazole without increasing the flow rate caused increases in HbO(2) and tHb with a decrease in deoxy-Hb. There were no significant differences in venous oxygen saturation before vs. during seizure. These results suggest that, in activation studies with near-infrared spectroscopy, HbO(2) is the most sensitive indicator of changes in CBF, and the direction of changes in deoxy-Hb is determined by the degree of changes in venous blood oxygenation and volume.  相似文献   

4.
Optimal monitor wavelengths and differential millimolar extinction coefficients (m delta epsilon) for rate determination of reactions catalyzed by adenosine deaminases on several substrates have been investigated as a function of pH in the range from 6.5 to 12. The values found are in some cases at variance with those quoted in the biochemical literature. The effect of pH on m delta epsilon values is shown to be clearly related to acid-base properties of product and/or substrate in the reaction. Experimental data are in most cases used to derive analytical functions describing the pH dependence of m delta epsilon. For the conversion of adenosine to inosine at pH 6.5, the following values of m delta epsilon +/- SE were obtained: at 263 nm, 8.27 +/- 0.02; at 264 nm, 8.36 +/- 0.02; at 265 nm, 8.27 +/- 0.03. These represent absolute maximal values as a function of pH.  相似文献   

5.
Enthalpy and conformational volume changes in photolyses of oxy-hemoglobin (HbO(2)) of human, bovine, pig, horse and rabbit are investigated by photoacoustic calorimetry. In the experiment, a pulsed Nd:YAG laser is used as an exciting source, and a PVDF film transducer and a PZT transducer are used to detect the photoacoustic signals. Based on the time scales of the excitation and detection systems as well as the photolysis processes of HbO(2), it can be indicated that the measured enthalpy and conformational volume changes are related to slow geminate recombination and tertiary relaxation in photolyses of HbO(2), which are with the time scale of 30-40 ns and 100-150 ns, respectively. The results show that the enthalpy and conformational volume changes are different for both photolysis processes of HbO(2) and also for various mammals. The different results among the five mammals are analyzed and discussed briefly.  相似文献   

6.
Mukai M  Savard PY  Ouellet H  Guertin M  Yeh SR 《Biochemistry》2002,41(12):3897-3905
A new truncated hemoglobin (HbO) from Mycobacterium tuberculosis has been expressed and purified. Sequence alignment of HbO with other hemoglobins suggests that the proximal F8 residue is histidine and the distal E7 and the B10 positions are occupied by alanine and tyrosine, respectively. The highly conserved residue at the CD1 position, surprisingly, is tyrosine, making HbO the first exception in the hemoglobin family that does not contain phenylalanine at this position. Resonance Raman data suggest that a strong hydrogen bonding network, involving the B10 Tyr and the CD1 Tyr, stabilizes the heme-bound O2 and CO as evidenced by the relatively low frequency of the Fe-O2 stretching mode (559 cm(-1)) and the high frequency of the Fe-CO stretching mode (527 cm(-1)). The presence of this hydrogen bonding network is supported by mutagenesis studies with the B10 tyrosine or the CD1 tyrosine mutated to phenylalanine. Taken together, these data demonstrate a rigid and polar distal pocket in HbO, which is significantly different from that of HbN, the other hemoglobin from M. tuberculosis. The distinct features in the heme active site structures and the temporal expression patterns of HbO and HbN suggest that these two hemoglobins may have very different physiological functions.  相似文献   

7.
Current methods for measuring cerebral blood volume (CBV) in newborn infants are unsatisfactory. A new method is described in which the effect of a small change (5-10%) in arterial oxygen saturation (SaO2) on cerebral oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] concentration is observed by near-infrared (NIR) spectroscopy. Previous experiments in which the NIR absorption characteristics of HbO2 and Hb and the pathlength of NIR light through the brain were defined allowed changes in [HbO2] and [Hb] to be quantified from the Beer-Lambert law. It is shown here that CBV can then be derived from the expression CBV = (delta[HbO2] - delta[Hb])/(2. delta SaO2.H.R.), where H is the large vessel total hemoglobin concentration and R to the cerebral-to-large vessel hematocrit ratio. Observations on 12 newborn infants with normal brains, born at 25-40 wk of gestation and aged 10-240 h, gave a mean value for CBV of 2.22 +/- 0.40 (SD) ml/100 g, whereas mean CBV was significantly higher 3.00 +/- 1.04 ml/100 g in 10 infants with brain injury born at 24 to 42 wk of gestation and aged 4-168 h (P less than 0.05).  相似文献   

8.
The iron(II)-dioxygen bond in myoglobin and hemoglobin is a subject of wide interest. Studies range from examinations of physical-chemical properties dependent on its electronic structure, to investigations of the stability as a function of oxygen supply. Among these, stability properties are of particular importance in vivo. Like all known dioxygen carriers synthesized so far with transition metals, the oxygenated forms of myoglobin and hemoglobin are known to be oxidized easily to their ferric met-forms, which cannot bind molecular oxygen and are therefore physiologically inactive. The mechanistic details of this autoxidation reaction, which are of clinical, as well as of physical-chemical, interest, have long been investigated by a number of authors, but a full understanding of the heme oxidation has not been reached so far. Recent kinetic and thermodynamic studies of the stability of oxymyoglobin (MbO2) and oxyhemoglobin (HbO2) have revealed new features in the FeO2 bonding. In vivo, the iron center is always subject to a nucleophilic attack of the water molecule or hydroxyl ion, which can enter the heme pocket from the surrounding solvent and thereby irreversibly displace the bound dioxygen from MbO2 or HbO2 in the form of O2- so that the iron is converted to the ferric met-form. Since the autoxidation reaction of MbO2 or HbO2 proceeds through a nucleophilic displacement following one-electron transfer from iron(II) to the bound O2, this reaction may be viewed as a meeting point of the stabilization and the activation of molecular oxygen performed by hemoproteins. Along with these lines of evidence, we finally discuss the stability property of human HbO2 and provide with the most recent state of hemoglobin research. The HbA molecule contains two types of alphabeta contacts and seems to differentiate them quite properly for its functional properties. The alpha1beta2 or alpha2beta1 contact is associated with the cooperative oxygen binding, whereas the alpha1beta1 or alpha2beta2 contact is used for controlling the stability of the bound O2. We can thus form a unified picture for hemoglobin function by closely integrating the cooperative and the stable binding of molecular oxygen with iron(II) in aqueous solvent. These new views on the nature of FeO2 bonding and the possible role of globin moiety in stabilizing MbO2 and HbO2 are of primary importance, not only for a full understanding of various hemoprotein reactions with O2, but also for planning new molecular designs for synthetic oxygen carriers which may be able to function in aqueous solvent and at physiological temperature.  相似文献   

9.
During the reaction of oxyhemoglobin (HbO2) with nitrite, the concentration of residual nitrite, nitrate, oxygen, and methemoglobin (Hb+) was determined successively. The results obtained at various pH values indicate the following stoichiometry for the overall reaction: 4HbO2 + 4NO2- 4H+ leads to 4Hb+ + 4NO3- + O2 + 2H2 O (Hb denotes hemoglobin monomer). NO2- binds with methemoglobin noncooperatively with a binding constant of 340 M-1 at pH 7.4 and 25 degrees C. Thus, the major part of Hb+ produced is aquomethemoglobin, not methemoglobin nitrite, when less than 2 equivalents of nitrite is used for the oxidation.  相似文献   

10.
P P Moh  F G Fiamingo  J O Alben 《Biochemistry》1987,26(19):6243-6249
The SH vibrational absorption of cysteine F9(beta-93) in concentrated aqueous solutions of native liganded hemoglobin (human HbA, horse, and bovine) has been observed by use of Fourier transform infrared spectroscopy. The pattern of beta-93 SH absorption intensity is ligand dependent. In bovine hemoglobin derivatives the SH absorption intensity pattern is (carbonmonoxy)hemoglobin (HbCO) greater than oxyhemoglobin (HbO2) = cyanomethemoglobin (HbCN) much greater than aquomethemoglobin (metHb) and deoxyhemoglobin (deoxyHb). In horse and human hemoglobin derivatives the pattern is HbCO greater than or equal to HbO2 greater than HbCN greater than metHb. The bovine metHb beta-93 SH shows a much lower absorptivity than that of horse or human metHb, and thus it has a different local tertiary equilibrium conformation than does horse or human hemoglobin. X-ray diffraction studies have shown the beta-93 SH in carbon monoxide or oxygen bound hemoglobin to be situated within a nonpolar pocket between the F, G, and H helices. The higher than usual SH absorption frequency (2592 cm-1) that we observe implies there is no hydrogen bonding for this thiol group while situated within this nonpolar pocket. A similar beta-93 SH absorption has been observed in the beta-chain tetramer (thalassemic hemoglobin H in vivo). The beta-112 SH stretching band, previously observed in the alpha 2 beta 2 tetramer, was observed for the first time in the beta-chain tetramer. A band at 2610 cm-1 that is not due to SH was resolved and found to be ligand dependent.  相似文献   

11.
Sickle cell disease is characterized by microvascular occlusion and hemolytic anemia, factors that impair tissue oxygen delivery. We use visible reflectance hyperspectral imaging to quantitate skin tissue hemoglobin oxygen saturation (HbO2) and to determine whether changes in blood flow during nitric oxide (NO) stimulation or gas administration (therapies proposed for this disease) improve skin tissue oxygen saturation in five patients with sickle cell disease. Compared with six healthy African-American subjects, sickle cell patients exhibited higher forearm blood flows (7.4 +/- 1.8 vs. 3.2 +/- 0.4 ml.min-1.100 ml tissue-1, P = 0.037) but significantly reduced percentages of skin HbO2 (61.0 +/- 0.2 vs. 77.5 +/- 0.2%, P < 0.001). Administration of acetylcholine to patients increased blood flow by 15.1 +/- 3.8 ml.min-1.100 ml tissue-1 and the percentage of skin HbO2 by 4.1 +/- 0.3% (P = 0.02, P < 0.001, respectively, from baseline values). Sodium nitroprusside, a direct NO donor, increased blood flow by 3.9 +/- 1.1 ml/min and the percentage of skin HbO2 by 2.9 +/- 0.3% (P = 0.02, P < 0.001, respectively). NO inhalation had no effect on forearm blood flow, yet increased the percentage of skin HbO2 by 2.3 +/- 0.3% (P < 0.001). Percentages of skin HbO2 were exponentially related to blood flow (R = 0.97, P < 0.001), indicating a limit to skin tissue oxygen saturation at high blood flows. Thus, for acetylcholine infusion leading to blood flows sevenfold greater than those of healthy resting African-American subjects, patients still exhibited lower percentages of skin HbO2 (65.2 +/- 0.2 vs. 77.5 +/- 0.2%, P < 0.001). Visible reflectance hyperspectral imaging demonstrates that either the stimulation or the administration of NO pharmacologically or by gas inhalation improves, but does not normalize, skin tissue oxygen saturation in patients with sickle cell disease.  相似文献   

12.
Silver(I) ion has been shown to produce aggregation effect on bovine oxyhemoglobin (HbO(2)) in Tris buffer even when taken in amounts corresponding to only two or less silver ions per one HbO(2) tetramer. The extent of produced effect is comparable to those previously observed for Hg(II), Cd, Zn, and Ni in spite of significantly different electronic configurations of the ions in question. Aggregation effect of the silver is ascribed to an interaction of the reactive thiol group sulfur-bound silver atom with the carboxylate residues surrounding the reactive thiol group-bearing cysteine beta93 group of hemoglobin. Mercury ligands, in particular, Tris molecules and OH(-) anions markedly suppress the protein coagulation, thereby supporting the proposed protein aggregation mechanism.  相似文献   

13.
The dynamics of the enthalpy and volume changes related to the photo-dissociation of oxygen from human and bovine oxyhemoglobin are investigated by nanosecond time-resolved photoacoustic calorimetry (PAC). The values of enthalpy and volume change associated with the above process are deltaH = 37.8 +/- 3 kcal/mol, deltaV = 5.0 +/- 1 ml/mol for human HbO(2); and deltaH = 35.7 +/- 3.5 kcal/mol, deltaV = 4.8 +/- 1 ml/mol for bovine HbO(2), respectively. A possible explanation for the similar values between both human and bovine oxyhemoglobin is proposed. In addition, the PAC results for human HbO(2) and HbCO are compared and discussed.  相似文献   

14.
Ferric sigma-phenyl complexes of hemoglobin and liver cytochrome P-450 are formed in vivo upon administration of C6H5NHNH2 to rats. Small amounts of the sigma-methyl complex of hemoglobin were also detected in vivo upon treatment of rats with CH3NHNH2. At the doses used for CH3NHNH2 (25 and 50 mg/kg) the states and levels of hemoglobin in the blood and spleen, and of cytochrome P-450 in the liver were almost unchanged. On the contrary, C6H5NHNH2 (25-100 mg/kg) led to a decrease of the HbO2 blood level (10-50%), together with an increase in the HbFe(III) level and the appearance of the HbFe(III)-C6H5 complex. The concentration of this complex reaches its maximum value (2 mM) 1 h after C6H5NHNH2 administration (20% of total hemoglobin). At the same time large amounts of HbO2, HbFe(III) and HbFe(III)-C6H5 appeared in the spleen, and remained high up to 24 h after treatment. Treatment of rats with C6H5NHNH2 (25-100 mg/kg) led to a significant decrease in the level of liver cytochrome P-450 (a 70% decrease 2 h after treatment with 100 mg/kg C6H5NHNH2). About 15% of the remaining cytochrome P-450 existed as a cyt.-P-450-Fe(III)-C6H5 complex, a new example of cytochrome P-450-Fe-metabolite complex which is stable in vivo.  相似文献   

15.
Acute normovolemic hemodilution (ANH) compromizes intestinal microcirculatory oxygenation; however, the underlying mechanisms are incompletely understood. We hypothesized that contributors herein include redistribution of oxygen away from the intestines and shunting of oxygen within the intestines. The latter may be due to the impaired ability of erythrocytes to off-load oxygen within the microcirculation, thus yielding low tissue/plasma Po(2) but elevated microcirculatory hemoglobin oxygen (HbO(2)) saturations. Alternatively, oxygen shunting may also be due to reduced erythrocyte deformability, hindering the ability of erythrocytes to enter capillaries. Anesthetized pigs underwent ANH (20, 40, 60, and 90 ml/kg hydroxyethyl starch; ANH group: n = 10; controls: n = 5). We measured systemic and mesenteric perfusion. Microvascular intestinal oxygenation was measured independently by remission spectrophotometry [microcirculatory HbO(2) saturation (muHbO(2))] and palladium-porphyrin phosphorescence quenching [microcirculatory oxygen pressure in plasma/tissue (muPo(2))]. Microcirculatory oxygen shunting was assessed as the disparity between mucosal and mesenteric venous HbO(2) saturation (HbO(2)-gap). Erythrocyte deformability was measured as shear stress-induced cell elongation (LORCA difractometer). ANH reduced hemoglobin concentration from 8.1 to 2.2 g/dl. Relative mesenteric perfusion decreased (decreased mesenteric/systemic perfusion fraction). A paralleled reduction occurred in mucosal muHbO(2) (68 +/- 2 to 41 +/- 3%) and muPo(2) (28 +/- 1 to 17 +/- 1 Torr). Thus the proposed constellation indicative for oxygen off-load deficits (sustained muHbO(2) at decreased muPo(2)) did not develop. A twofold increase in the HbO(2)-gap indicated increasing intestinal microcirculatory oxygen shunting. Significant impairment in erythrocyte deformability developed during ANH. We conclude that reduced intestinal oxygenation during ANH is, in addition to redistribution of oxygen delivery away from the intestines, associated with oxygen shunting within the intestines. This shunting appears to be not primarily caused by oxygen off-load deficit but rather by oxygen/erythrocytes bypassing capillaries, wherein a potential contributor is impaired erythrocyte deformability.  相似文献   

16.
The absorptivity at 540 nm of bovine hemiglobincyanide (cyanmethemoglobin) was determined on the basis of the iron content and found to be equal to the established value for human hemiglobincyanide (11.0 L · mmol−1 · cm−1). On this basis the absorption spectra of the common derivatives were determined for bovine hemoglobin. There proved to be only slight differences in the oxyhemoglobin, deoxyhemoglobin, and carboxyhemoglobin spectra between bovine and human hemoglobin. For comparison of the methemoglobin spectra a new series of measurements was made for human hemoglobin. As also found in the rat, the methemoglobin spectrum of bovine blood differed considerably from that in the human. These differences should be taken into account in multicomponent analysis.  相似文献   

17.
The abnormal human hemoglobin Malm? (beta97FG4 His leads to Gln) has been studied and its properties are compared with those of normal adult hemoglobin A. The data presented here show that the ring-current shifted proton resonances of both HbCO and HbO2 Malm? are very different from the corresponding forms of Hb A. The hyperfine shifted proton resonances of deoxy-Hb Malm? do not differ drastically from those of deoxy-Hb A. This result, together with the finding that the exchangeable proton resonances of the deoxy form of the two hemoglobins are similar, suggests that unliganded Hb Malm? can assume a deoxy-like quaternary structure both in the absence and presence of organic phosphates We have also compared the properties of Hb Malm? with those of Hb Chesapeake (alpha92FG4 Arg leads to Leu). This allows us to study the properties of two abnormal human hemoglobins with mutations at homologous positions of the alpha and beta chains in the three-dimenstional structure of the hemoglobin molecule. Our present results suggest that the mutaion at betaFG4 has its greatest effect on the teritiary structure of the heme pocket of the liganded forms of the hemoglobin while the mutation at alphaFG4 alters the deoxy structure of the hemoglogin molecule but does not alter the teriary structure of the heme pockets of the liganded form of the hemoglobin molecule. Both hemoglobins undergo a transition from the deoxy (T) to the oxy (R) quaternary structure upon ligation. The abnormally high oxygen affinities and low cooperativities of these two hemoglobins must therefore be due to either the structural differences which we have observed and/or to an altered transition between the T and R structures.  相似文献   

18.
Regulation of chloroplastic carbonic anhydrase : effect of magnesium   总被引:2,自引:2,他引:0  
It was previously reported that magnesium ion inhibited carbonic anhydrase (Bamberger and Avron 1975 Plant Physiol 56: 481-485). Studies with partially purified carbonic anhydrase from spinach (Spinacia oleracea L.) chloroplasts show that the effect was the result of the chloride counterion and not the magnesium ion. Enzyme activity was reduced 50% upon addition of 3 to 10 millimolar MgCl2 or KCl while all additions of MgSO4 between 0.3 and 10 millimolar were mildly stimulatory.  相似文献   

19.
The oxygen transport capacity of nonhypertensive polyethylene glycol (PEG)-conjugated hemoglobin solutions were investigated in the hamster chamber window model. Microvascular measurements were made to determine oxygen delivery in conditions of extreme hemodilution [hematocrit (Hct) 11%]. Two isovolemic hemodilution steps were performed with a 6% Dextran 70 (70-kDa molecular mass) plasma expander until Hct was 35% of control. Isovolemic blood volume exchange was continued using two surface-modified PEGylated hemoglobins (P5K2, P(50) = 8.6, and P10K2, P(50) = 8.3; P(50) is the hemoglobin Po(2) corresponding to its 50% oxygen saturation) until Hct was 11%. P5K2 and P10K2 are PEG-conjugated hemoglobins that maintain most of the hemoglobin allosteric properties and have a cooperativity index of n = 2.2. The effects of these molecular solutions were compared with those obtained in a previous study using MP4, a PEG-modified hemoglobin whose P(50) was 5.4 and cooperativity was 1.2 (Tsai et al., Am J Physiol Heart Circ Physiol 285: H1411-H1419, 2003). Tissue oxygen levels were higher after P5K2 (7.0 +/- 2.5 mmHg) and P10K2 (6.3 +/- 2.3 mmHg) versus MP4 (1.7 +/- 0.5 mmHg) or the nonoxygen carrier Dextran 70 (1.3 +/- 1.2 mmHg). Microvascular oxygen delivery was higher after P5K2 and P10K2 (2.22 and 2.34 ml O(2)/dl blood) compared with MP4 (1.41 ml O(2)/dl blood) or Dextran 70 (0.90 ml O(2)/dl blood); however, all these values were lower than control (7.42 ml O(2)/dl blood). The total hemoglobin in blood was similar in all cases; therefore, the improvement in tissue Po(2) and oxygen delivery appears to be due to the increased cooperativity of the new molecules.  相似文献   

20.
A method to determine protein concentrations and absorptivities based on absorbance measurements of proteinase K digests has been developed. Molar absorptivities of proteinase K digests at 56 degrees C can be predicted by using the following equation: epsilon (M)(280)=5318 x (No.of Trp) + 1227 x (No.of Tyr) + 133 x (No.of Cys-Cys). Protein concentration in the digest can be determined by dividing the corrected digest solution absorbance by the calculated epsilon(M)(280). The absorptivity of a native protein can then be calculated by dividing the absorbance of the intact protein solution by the concentration value obtained for the digest solution. Precision of the experimental data is within +/-3%, and the error of the method does not exceed 4.5%. The accuracy of determination does not depend on the size of the protein, Trp/Tyr ratio, presence or absence of certain chromophores, or other structural factors. The method requires amounts of protein routinely used for absorbance measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号