首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Hoxc8 early enhancer is a 200 bp region that controls the early phase of Hoxc8 expression during mouse embryonic development. This enhancer defines the domain of Hoxc8 expression in the neural tube and mesoderm of the posterior regions of the developing embryo. Five distinct cis-acting elements, A-E, were previously shown to govern early phase Hoxc8 expression. Significant divergence between mammalian and fish Hoxc8 early enhancer sequences and activities suggested additional cis-acting elements. Here we describe four additional cis-acting elements (F-I) within the 200 bp Hoxc8 early enhancer region identified by comparative regulatory analysis and transgene-mutation studies. These elements affect posterior neural tube and mesoderm expression of the reporter gene, either singly or in combination. Surprisingly, these new elements are missing from the zebrafish and Fugu Hoxc8 early enhancer sequences. Considering that fish enhancers direct robust reporter expression in transgenic mouse embryos, it is tempting to postulate that fish and mammalian Hoxc8 early enhancers utilize different sets of elements to direct Hoxc8 early expression. These observations reveal a remarkable plasticity in the Hoxc8 early enhancer, suggesting different modes of initiation and establishment of Hoxc8 expression in different species. We postulate that extensive restructuring and remodeling of Hox cis-regulatory regions occurring in different taxa lead to relatively different Hox expression patterns, which in turn may act as a driving force in generating diverse axial morphologies.  相似文献   

2.
3.
Smads oppose Hox transcriptional activities   总被引:2,自引:0,他引:2  
  相似文献   

4.
5.
6.
Tight control over gene expression is essential for precision in embryonic development and acquisition of the regulatory elements responsible is the predominant driver for evolution of new structures. Tbx5 and Tbx4, two genes expressed in forelimb and hindlimb-forming regions respectively, play crucial roles in the initiation of limb outgrowth. Evolution of regulatory elements that activate Tbx5 in rostral LPM was essential for the acquisition of forelimbs in vertebrates. We identified such a regulatory element for Tbx5 and demonstrated Hox genes are essential, direct regulators. While the importance of Hox genes in regulating embryonic development is clear, Hox targets and the ways in which each protein executes its specific function are not known. We reveal how nested Hox expression along the rostro-caudal axis restricts Tbx5 expression to forelimb. We demonstrate that Hoxc9, which is expressed in caudal LPM where Tbx5 is not expressed, can form a repressive complex on the Tbx5 forelimb regulatory element. This repressive capacity is limited to Hox proteins expressed in caudal LPM and carried out by two separate protein domains in Hoxc9. Forelimb-restricted expression of Tbx5 and ultimately forelimb formation is therefore achieved through co-option of two characteristics of Hox genes; their colinear expression along the body axis and the functional specificity of different paralogs. Active complexes can be formed by Hox PG proteins present throughout the rostral-caudal LPM while restriction of Tbx5 expression is achieved by superimposing a dominant repressive (Hoxc9) complex that determines the caudal boundary of Tbx5 expression. Our results reveal the regulatory mechanism that ensures emergence of the forelimbs at the correct position along the body. Acquisition of this regulatory element would have been critical for the evolution of limbs in vertebrates and modulation of the factors we have identified can be molecular drivers of the diversity in limb morphology.  相似文献   

7.
Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes   总被引:9,自引:0,他引:9  
We present a detailed study of the genetic basis of mesodermal axial patterning by paralogous group 8 Hox genes in the mouse. The phenotype of Hoxd8 loss-of-function mutants is presented, and compared with that of Hoxb8- and Hoxc8-null mice. Our analysis of single mutants reveals common features for the Hoxc8 and Hoxd8 genes in patterning lower thoracic and lumbar vertebrae. In the Hoxb8 mutant, more anterior axial regions are affected. The three paralogous Hox genes are expressed up to similar rostral boundaries in the mesoderm, but at levels that strongly vary with the axial position. We find that the axial region affected in each of the single mutants mostly corresponds to the area with the highest level of gene expression. However, analysis of double and triple mutants reveals that lower expression of the other two paralogous genes also plays a patterning role when the mainly expressed gene is defective. We therefore conclude that paralogous group 8 Hox genes are involved in patterning quite an extensive anteroposterior (AP) axial region. Phenotypes of double and triple mutants reveal that Hoxb8, Hoxc8 and Hoxd8 have redundant functions at upper thoracic and sacral levels, including positioning of the hindlimbs. Interestingly, loss of functional Hoxb8 alleles partially rescues the phenotype of Hoxc8- and Hoxc8/Hoxd8-null mutants at lower thoracic and lumbar levels. This suggests that Hoxb8 affects patterning at these axial positions differently from the other paralogous gene products. We conclude that paralogous Hox genes can have a unique role in patterning specific axial regions in addition to their redundant function at other AP levels.  相似文献   

8.
The Hoxc8 early enhancer that controls the initiation and establishment of Hoxc8 expression in the developing mouse embryo is found in different vertebrate lineages including mammals, birds and fish. Mouse and Fugu Hoxc8 early enhancers (200 bp) have diverged in the composition of elements located towards the 3' region. However, they share cis-acting elements A-E located in the 5' region. Mutations at these elements in the context of the mouse Hoxc8 early enhancer affect reporter gene expression in the posterior neural tube, somites and lateral plate mesoderm of day 9.5 mouse embryos. Here, we demonstrate that mutations introduced at the same elements but in the context of the Fugu Hoxc8 early enhancer had different consequences on the reporter gene expression in transgenic mouse embryos. Furthermore, in contrast to the mouse enhancer the Fugu enhancer does not utilize elements D and E in achieving posterior neural tube and somite expression. These results suggest that the diverged sequences prevent regulatory interactions at conserved cis-acting elements. We propose that divergent sequences modify regulatory interactions at conserved elements by providing a "contextual change". Our finding that the enhancer elements do not act in a unitary fashion but function in the context of the surrounding sequence brings a new dimension to the study of cis-regulatory evolution.  相似文献   

9.
目的:胚胎生育过程中因肢体发育异常造成的出生缺陷比率不低,其相关基因表达模式尚不明确。本实验通过建立实时定量PCR芯片(Real-time quantitative polymerasechain reaction array,qPCR array)检测方案,研究C57BL/6品系小鼠后肢发育相关基因的表达谱。方法:以同源异形盒基因家族(Hox)、Wnt5a、配对同源结构域基因(Pitx1)、成纤维生长因子(Fgf8)、音猬因子(Shh)等小鼠肢体发育相关的重要基因制作基因检测表达谱,以C57BL/6品系怀孕雌鼠为材料,取胚胎肢芽发育的四个关键时期(E10.5,E11.5,E12.5,E13.5)的胎鼠后肢,利用qPCR array方案检测表达谱中基因的相对表达水平差异。结果:通过已建立的qPCR array检测了C57BL/6品系小鼠胚胎后肢发育时期Hox家族、Wnt5a、Pitx1、Fgf8、Shh等基因的表达差异。以E10.5为对照,检测出在后肢发育时期基因呈三种表达模式,即Hoxb6、Hoxb8、Hoxc8、Hoxc9、Hoxc10、Hoxd9和Shh基因的表达水平呈上调;Hoxa11、Hoxa13、Hoxc12、Hoxc13、Hoxd13等基因表达出现下调;Hoxc9、Hoxc10、Hoxc11、Hoxd9、Hoxd12、Fgf8和Pitx1等基因的相对表达量呈先上调后下调的曲线表达模式,且有少部分基因在小鼠后肢发育时期表达水平无明显变化。结论:Hox家族、Wnt5a、Pitx1、Fgf8、Shh等基因在小鼠后肢发育时期表达,并且表达模式存在明显差异。  相似文献   

10.
Hox genes are organized as clusters and specify regional identity along the anteroposterior body axis by sequential expression at a specific time and region during embryogenesis. However, the precise mechanisms underlying the sequential spatio-temporal, collinear expression pattern of Hox genes are not fully understood. Since epigenetic modifications such as chromatin architecture and histone modifications have become crucial mechanisms for highly coordinated gene expressions, we examined such modifications. E14.5 mouse embryos were dissected into three parts along the anteroposterior axis: brain, trunk-anterior, and trunk-posterior. Then, structural changes and epigenetic modifications were analyzed along the Hoxc cluster using chromosome conformation capture and chromatin immunoprecipitation-PCR methods. Hox non-expressing brain tissues had more compact, heterochromatin-like structures together with the strong repressive mark H3K27me3 than trunk tissues. In the trunk, however, a more loose euchromatin-like topology with a reduced amount of H3K27me3 modifications were observed along the whole cluster, regardless of their potency in gene activation. The active mark H3K4me3 was rather closely associated with the collinear expression of Hoxc genes; at trunk-anterior tissues, only 3' anterior Hoxc genes were marked by H3K4me3 upon gene activation, whereas whole Hoxc genes were marked by H3K4me3 and showed expression in trunk-posterior tissues. Altogether, these results indicated that loosening of the chromatin architecture and removing H3K27me3 were not sufficient for, but rather the concomitant acquisition of H3K4me3 drove the collinear expression of Hoxc genes.  相似文献   

11.
12.
13.
14.
Studying the roles of Hox genes in normal and pathological development of skin and hair requires identification of downstream target genes in genetically defined animal models. We show that transgenic mice overexpressing Hoxc13 in differentiating keratinocytes of hair follicles develop alopecia, accompanied by a progressive pathological skin condition that resembles ichthyosis. Large-scale analysis of differential gene expression in postnatal skin of these mice identified 16 previously unknown and 13 known genes as presumptive Hoxc13 targets. The majority of these targets are downregulated and belong to a subgroup of genes that encode hair-specific keratin-associated proteins (KAPs). Genomic mapping using a mouse hamster radiation hybrid panel showed these genes to reside in a novel KAP gene cluster on mouse chromosome 16 in a region of conserved linkage with human chromosome 21q22.11. Furthermore, data obtained by Hoxc13/lacZ reporter gene analysis in mice that overexpress Hoxc13 suggest negative autoregulatory feedback control of Hoxc13 expression levels, thus providing an entry point for elucidating currently unknown mechanisms that are required for regulating quantitative levels of Hox gene expression. Combined, these results provide a framework for understanding molecular mechanisms of Hoxc13 function in hair growth and development.  相似文献   

15.
We examine the Hoxc12 RNA expression pattern during both hair follicle morphogenesis and cycling in direct comparison to its only upstream neighbor, Hoxc13. Expression of both genes is restricted to the epidermal part of the follicle excluding the outer root sheath and interfollicular epidermis in a distinct stage-dependent and cyclical manner. During the progressive growth phase (anagen) of developing and cycling follicles, the distinct proximo-distal expression domain of Hoxc12 overlaps only proximally, at the upper-most region of the bulb, with the more proximally restricted Hoxc13 domain. This arrangement of the expression domains of the two genes along the proximal-toward-distal axis of increasing follicular differentiation correlates with the sequential expression of first Hoxc13 and then Hoxc12. This indicates a reversal of the typical temporal colinearity of Hox gene activation otherwise observed along the anterior-posterior morphogenetic axis of the embryo (review: Cell 78 (1994) 191).  相似文献   

16.
17.
18.
19.
Hoxc8 early enhancer controls the initiation and establishment phase of Hoxc8 expression in the mouse. Comparative studies indicate the presence of Hoxc8 early enhancer sequences in different vertebrate clades including mammals, birds and fish. Previous studies have shown differences between teleost and mammalian Hoxc8 early enhancers with respect to sequence and organization of protein binding elements. This raises the question of when the Hoxc8 early enhancer arose and how it has become modified in different vertebrate lineages. Here, we describe Hoxc8 early enhancer from the Indonesian coelacanth, Latimeria menadoensis. Coelacanths are the only extant lobefinned fish whose genome is tractable to genome analysis. The Latimeria Hoxc8 early enhancer sequence more closely resembles that of the mouse than that of Fugu or zebrafish. When assayed for enhancer activity by reporter gene analysis in transgenic mouse embryos, Latimeria Hoxc8 early enhancer directs expression to the posterior neural tube and mesoderm similar to that of the mouse enhancer. These observations support a close relationship between coelacanths and tetrapods and place the origin of a common Hoxc8 early enhancer sequence within the sarcopterygian lineage. The divergence of teleost (actinopterygii) Hoxc8 early enhancer may reflect a case of relaxed selection or other forms of instability induced by genome duplication events.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号