首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Four lactococcal abortive infection mechanisms were introduced into strains which were sensitive hosts for P335 type phages and plaque assay experiments performed to assess their effect on five lactococcal bacteriophages from this family. Results indicate that AbiA inhibits all five P335 phages tested, while AbiG affects phiP335 itself and phiQ30 but not the other P335 species phages. AbiA was shown to retard phage Q30 DNA replication as previously reported for other phages. It was also demonstrated that AbiG, previously shown to act at a point after DNA replication in the cases of c2 type and 936 type phages, acts at the level of, or prior to phage Q30 DNA replication. AbiE and AbiF had no effect on the P335 type phages examined.  相似文献   

2.
Lactococcal dairy starter strains are under constant threat from phages in dairy fermentation facilities, especially by members of the so-called 936, P335, and c2 species. Among these three phage groups, members of the P335 species are the most genetically diverse. Here, we present the complete genome sequences of two P335-type phages, Q33 and BM13, isolated in North America and representing a novel lineage within this phage group. The Q33 and BM13 genomes exhibit homology, not only to P335-type, but also to elements of the 936-type phage sequences. The two phage genomes also have close relatedness to phages infecting Enterococcus and Clostridium, a heretofore unknown feature among lactococcal P335 phages. The Q33 and BM13 genomes are organized in functionally related clusters with genes encoding functions such as DNA replication and packaging, morphogenesis, and host cell lysis. Electron micrographic analysis of the two phages highlights the presence of a baseplate more reminiscent of the baseplate of 936 phages than that of the majority of members of the P335 group, with the exception of r1t and LC3.  相似文献   

3.
Three genetically distinct groups of Lactococcus lactis phages are encountered in dairy plants worldwide, namely, the 936, c2, and P335 species. The multiplex PCR method was adapted to detect, in a single reaction, the presence of these species in whey samples or in phage lysates. Three sets of primers, one for each species, were designed based on conserved regions of their genomes. The c2-specific primers were constructed using the major capsid protein gene (mcp) as the target. The mcp sequences for three phages (eb1, Q38, and Q44) were determined and compared with the two available in the databases, those for phages c2 and bIL67. An 86.4% identity was found over the five mcp genes. The gene of the only major structural protein (msp) was selected as a target for the detection of 936-related phages. The msp sequences for three phages (p2, Q7, and Q11) were also established and matched with the available data on phages sk1, bIL170, and F4-1. The comparison of the six msp genes revealed an 82. 2% identity. A high genomic diversity was observed among structural proteins of the P335-like phages suggesting that the classification of lactococcal phages within this species should be revised. Nevertheless, we have identified a common genomic region in 10 P335-like phages isolated from six countries. This region corresponded to orfF17-orf18 of phage r1t and orf20-orf21 of Tuc2009 and was sequenced for three additional P335 phages (Q30, P270, and ul40). An identity of 93.4% within a 739-bp region of the five phages was found. The detection limit of the multiplex PCR method in whey was 10(4) to 10(7) PFU/ml and was 10(3) to 10(5) PFU/ml with an additional phage concentration step. The method can also be used to detect phage DNA in whey powders and may also detect prophage or defective phage in the bacterial genome.  相似文献   

4.
We present here the results of an exploration of the bacteriophage content of dairy wheys collected from milk plants localized in various regions of Poland. Thirty-three whey samples from 17 regions were analyzed and found to contain phages active against L. lactis strains. High phage titer in all whey samples suggested phage-induced lysis to be the main cause of fermentation failures. In total, over 220 isolated phages were examined for their restriction patterns, genome sizes, genetic groups of DNA homology, and host ranges. Based on DNA digestions the identified phages were classified into 34 distinct DNA restriction groups. Phage genome sizes were estimated at 14-35 kb. Multiplex PCR analysis established that the studied phages belong to two out of the three main lactococcal phage types--c2 and 936, while P335-type phages were not detected. Yet, analyses of bacterial starter strains revealed that the majority of them are lysogenic and carry prophages of P335-type in their chromosome. Phage geographical distribution and host range are additionally discussed.  相似文献   

5.
Recently, eight lytic small isometric-headed bacteriophages were isolated from cheese-manufacturing plants throughout North America. The eight phages were different, but all propagated on one strain, Lactococcus lactis NCK203. On the basis of DNA homology, they were classified in the P335 species. Digestion of their genomes in vitro with restriction enzymes resulted in an unusually high number of type II endonuclease sites compared with the more common lytic phages of the 936 (small isometric-headed) and c2 (prolate-headed) species. In vivo, the P335 phages were more sensitive to four distinct lactococcal restriction and modification (R/M) systems than phages belonging to the 936 and c2 species. A significant correlation was found between the number of restriction sites for endonucleases (purified from other bacterial genera) and the relative susceptibility of phages to lactococcal R/M systems. Comparisons among these three phage species indicate that the P335 species may have emerged most recently in the dairy industry.  相似文献   

6.
7.
We report the genetic organisation of six prophages present in the genome of Lactococcus lactis IL1403. The three larger prophages (36–42 kb), belong to the already described P335 group of temperate phages, whereas the three smaller ones (13–15 kb) are most probably satellites relying on helper phage(s) for multiplication. These data give a new insight into the genetic structure of lactococcal phage populations. P335 temperate phages have variable genomes, sharing homology over only 10–33% of their length. In contrast, virulent phages have highly similar genomes sharing homology over >90% of their length. Further analysis of genetic structure in all known groups of phages active on other bacterial hosts such as Escherichia coli, Bacillus subtilis, Mycobacterium and Streptococcus thermophilus confirmed the existence of two types of genetic structure related to the phage way of life. This might reflect different intensities of horizontal DNA exchange: low among purely virulent phages and high among temperate phages and their lytic homologues. We suggest that the constraints on genetic exchange among purely virulent phages reflect their optimal genetic organisation, adapted to a more specialised and extreme form of parasitism than temperate/lytic phages.  相似文献   

8.
Comparative genomics of 11 lactococcal 936-type phages combined with host range analysis allowed subgrouping of these phage genomes, particularly with respect to their encoded receptor binding proteins. The so-called pellicle or cell wall polysaccharide of Lactococcus lactis, which has been implicated as a host receptor of (certain) 936-type phages, is specified by a large gene cluster, which, among different lactococcal strains, contains highly conserved regions as well as regions of diversity. The regions of diversity within this cluster on the genomes of lactococcal strains MG1363, SK11, IL1403, KF147, CV56, and UC509.9 were used for the development of a multiplex PCR system to identify the pellicle genotype of lactococcal strains used in this study. The resulting comparative analysis revealed an apparent correlation between the pellicle genotype of a given host strain and the host range of tested 936-type phages. Such a correlation would allow prediction of the intrinsic 936-type phage sensitivity of a particular lactococcal strain and substantiates the notion that the lactococcal pellicle polysaccharide represents the receptor for (certain) 936-type phages while also partially explaining the molecular reasons behind the observed narrow host range of such phages.  相似文献   

9.
10.
AIMS: To develop PCR assays able to distinguish between groups within lactococcal 936-species bacteriophages, as defined by their different receptor-binding protein (RBP) genes. METHODS AND RESULTS: DNA sequences of RBP genes from 17 lactococcal bacteriophages of the 936-species were compared, and six phage groups were identified. For each phage group a specific primer pair targeting a variable region of the RBP genes was designed. In nine of 20 whey samples, from dairies with recorded phage problems, between one and six phage groups were identified by conventional PCR. The sensitivity and specificity of the method was improved by magnetic capture hybridization (MCH)-PCR using a capture probe targeting an 80-bp highly conserved region just upstream from the RBP gene in all the investigated phages. The MCH-PCR was performed on 100 microl whey samples and the detection limit of the assay was 10(2)-10(3) PFU ml(-1) as opposed to the detection limit of 10(4) PFU ml(-1) for conventional PCR performed on 1-microl whey samples. CONCLUSIONS: In this study, PCR assays have been developed to detect six different types of RBP genes in lactococcal 936-species bacteriophages. SIGNIFICANCE AND IMPACT OF THE STUDY: The PCR assays have practical applications at cheese plants for detection of 936-species phages with different RBP and thereby potentially with different host ranges. This knowledge will make it possible to improve starter culture rotation systems in the dairy industry.  相似文献   

11.
Aims: Characterization of four virulent Lactococcus lactis phages (CHD, QF9, QF12 and QP4) isolated from whey samples obtained from Argentinean cheese plants. Methods and Results: Phages were characterized by means of electron microscopy, host range and DNA studies. The influence of Ca2+, physiological cell state, pH and temperature on cell adsorption was also investigated. The double‐stranded DNA genomes of these lactococcal phages showed distinctive restriction patterns. Using a multiplex PCR, phage QP4 was classified as a member of the P335 polythetic species while the three others belong to the 936 group. Ca2+ was not needed for phage adsorption but indispensable to complete cell lysis by phage QF9. The lactococci phages adsorbed normally between pH 5 and pH 8, and from 0°C to 40°C, with the exception of phage QF12 which had an adsorption rate significantly lower at pH 8 and 0°C. Conclusions: Lactococcal phages from Argentina belong to the same predominant groups of phages found in other countries and they have the same general characteristics. Significance and Impact of the Study: This work is the first study to characterize Argentinean L. lactis bacteriophages.  相似文献   

12.
Virulent phage 1358 is the reference member of a rare group of phages infecting Lactococcus lactis. Electron microscopy revealed a typical icosahedral capsid connected to one of the smallest noncontractile tails found in a lactococcal phage of the Siphoviridae family. Microbiological characterization identified a burst size of 72 virions released per infected host cell and a latent period of 90 min. The host range of phage 1358 was limited to 3 out of the 60 lactococcal strains tested. Moreover, this phage was insensitive to four Abi systems (AbiK, AbiQ, AbiT, and AbiV). The genome of phage 1358 consisted of a linear, double-stranded, 36,892-bp DNA molecule containing 43 open reading frames (ORFs). At least 14 ORFs coded for structural proteins, as identified by SDS-PAGE coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. The genomic organization was similar to those of other siphophages. All genes were on the same coding strand and in the same orientation. This lactococcal phage was unique, however, in its 51.4% GC content, much higher than those of other phages infecting this low-GC Gram-positive host. A bias for GC-rich codons was also observed. Comparative analyses showed that several phage 1358 structural proteins shared similarity with two Listeria monocytogenes phages, P35 and P40. The possible origin and evolution of lactococcal phage 1358 is discussed.The first sequenced genome of a phage infecting Lactococcus lactis (bIL67) was reported in 1994 (57). Its genomic characterization was performed with the prospect of a better understanding of lactococcal phage biology. L. lactis is a Gram-positive bacterium added to milk to produce an array of fermented dairy products. In this human-made environment, substantial amounts of lactococcal cells are cultivated on a daily basis in large fermentation vats, and these added cells randomly encounter virulent phages present in heat-treated but nonsterile milk. Moreover, it is widely acknowledged that the increased use of the same bacterial strains within existing dairy facilities inevitably leads to milk fermentation failures due to the multiplication of virulent phages. This biotechnological problem reduces yields and lowers the quality of fermented products (51).Over 700 lactococcal phage isolates have been reported in the literature (3). To date, more than 25 complete genome sequences of lactococcal phages are publicly available in the NCBI database, and the sequencing of others is under way. These numbers indicate that Lactococcus phages are among the most studied of the bacterial viruses. All lactococcal phages belong to the order Caudovirales and are included within two families according to their tail morphology: the Siphoviridae (long noncontractile tail [most lactococcal phages]) and the Podoviridae (short noncontractile tail [few lactococcal phages]) (14). Currently, phages infecting L. lactis strains have been divided into 10 genetically distinct groups (14). The complete genomic sequence is available for at least one representative of 8 of the groups.Early sequencing efforts concentrated on the genomes of lactococcal phages belonging to the 936, c2, and P335 groups (Siphoviridae), because members of these groups were regularly isolated in dairy plants (8, 36, 50). PCR-based methods were also devised to rapidly classify these phages (41). These Siphoviridae phages pose a significant risk to the dairy industry, and their characterization is important for developing adapted antiphage strategies to limit their propagation and evolution.In recent years, representatives of the less recognized lactococcal phage groups have been characterized, including phages Q54 (22), KSY1 (13), 1706 (23), asccφ28 of the P034 group (39), and P087 (63). Their molecular characterizations were aimed at understanding why some phage groups (936, c2, and P335) predominate while the others have remained marginal, at best. However, it was recently reported that P034-like phages may be emerging in certain regions (52). Genomic and microbiological analyses indicated that members of these rare phage groups were likely the result of recombination between different lactococcal phages and phages infecting other Gram-positive bacteria, and they may not be fit to multiply rapidly in milk. For example, lactococcal phage 1706 shares similarities with Ruminococcus and Clostridium prophages (23). Similarly, L. lactis phage P087 structural proteins share identity with gene products found in a prophage in the Enterococcus faecalis genome (63). It was also shown previously that lactococcal phage asccφ28 was related to Streptococcus pneumoniae phage Cp-1 and Bacillus subtilis φ29-like phages (39). It was suggested that phages 1706, asccφ28, and P087 acquired a receptor-binding protein complex from another lactococcal phage that enabled them to infect a L. lactis host.Here, we report the complete genome sequence and analysis of phage 1358, a virulent representative of the 9th lactococcal phage group.  相似文献   

13.
Phages of the P335 group have recently emerged as important taxa among lactococcal phages that disrupt dairy fermentations. DNA sequencing has revealed extensive homologies between the lytic and temperate phages of this group. The P335 lytic phage phi31 encodes a genetic switch region of cI and cro homologs but lacks the phage attachment site and integrase necessary to establish lysogeny. When the putative cI repressor gene of phage phi31 was subcloned into the medium-copy-number vector pAK80, no superinfection immunity was conferred to the host, Lactococcus lactis subsp. lactis NCK203, indicating that the wild-type CI repressor was dysfunctional. Attempts to clone the full-length cI gene in Lactococcus in the high-copy-number shuttle vector pTRKH2 were unsuccessful. The single clone that was recovered harbored an ochre mutation in the cI gene after the first 128 amino acids of the predicted 180-amino-acid protein. In the presence of the truncated CI construct, pTRKH2::CI-per1, phage phi31 was inhibited to an efficiency of plaquing (EOP) of 10(-6) in NCK203. A pTRKH2 subclone which lacked the DNA downstream of the ochre mutation, pTRKH2::CI-per2, confirmed the phenotype and further reduced the phi31 EOP to <10(-7). Phage phi31 mutants, partially resistant to CI-per, were isolated and showed changes in two of three putative operator sites for CI and Cro binding. Both the wild-type and truncated CI proteins bound the two wild-type operators in gel mobility shift experiments, but the mutated operators were not bound by the truncated CI. Twelve of 16 lytic P335 group phages failed to form plaques on L. lactis harboring pTRKH2::CI-per2, while 4 phages formed plaques at normal efficiencies. Comparisons of amino acid and DNA level homologies with other lactococcal temperate phage repressors suggest that evolutionary events may have led to inactivation of the phi31 CI repressor. This study demonstrated that a number of different P335 phages, lytic for L. lactis NCK203, have a common operator region which can be targeted by a truncated derivative of a dysfunctional CI repressor.  相似文献   

14.
15.
The dairy industry adds starter bacterial cultures to heat-treated milk to control the fermentation process during the manufacture of many cheeses. These highly concentrated bacterial populations are susceptible to virulent phages that are ubiquitous in cheese factories. In this study, the dissemination of these phages by the airborne route and their presence on working surfaces were investigated in a cheese factory. Several surfaces were swabbed, and five air samplers (polytetrafluoroethylene filter, polycarbonate filter, BioSampler, Coriolis cyclone sampler, and NIOSH two-stage cyclone bioaerosol personal sampler) were tested. Samples were then analyzed for the presence of two Lactococcus lactis phage groups (936 and c2), and quantification was done by quantitative PCR (qPCR). Both lactococcal phage groups were found on most swabbed surfaces, while airborne phages were detected at concentrations of at least 10(3) genomes/m(3) of air. The NIOSH sampler had the highest rate of air samples with detectable levels of lactococcal phages. This study demonstrates that virulent phages can circulate through the air and that they are ubiquitous in cheese manufacturing facilities.  相似文献   

16.
AIMS: To characterize a group of closely related Lactococcus lactis subsp. lactis casein starter strains used commercially, which differ in their sensitivity to bacteriophages isolated from the same industrial environment. METHODS AND RESULTS: Nine strains of L. lactis, six of which had been used as starter cultures for lactic casein manufacture, were shown to be closely related by pulsed-field gel electrophoresis and total DNA profiles. Nineteen phages which propagated on one or more of these starter strains were isolated from industrial casein whey samples. The phages were all small isometric-headed and could be divided into five groups on the basis of host range on the nine strains. Most of the phages did not give a PCR product with primers designed to detect the two most common lactococcal small isometric phage species (936 and P335). The hosts could be divided into six groups depending on their phage sensitivity. Plasmids encoding genes for the cell envelope associated PI-type proteinase, lactose metabolism and specificity subunits of a type I restriction/modification system were identified. CONCLUSIONS: This work demonstrates how isolates of the same starter strain may come to be regarded as separate cultures because of their different origins, and how these closely related strains may differ in some of their industrially relevant characteristics. SIGNIFICANCE AND IMPACT OF THE STUDY: This situation may be very common among lactococci used as dairy starter cultures, and implies that the dairy industry worldwide depends on a small number of different strains.  相似文献   

17.
18.
The aim of this work was to identify genes responsible for host recognition in the lactococcal phages sk1 and bIL170 belonging to species 936. These phages have a high level of DNA identity but different host ranges. Bioinformatic analysis indicated that homologous genes, orf18 in sk1 and orf20 in bIL170, could be the receptor-binding protein (RBP) genes, since the resulting proteins were unrelated in the C-terminal part and showed homology to different groups of proteins hypothetically involved in host recognition. Consequently, chimeric bIL170 phages carrying orf18 from sk1 were generated. The recombinant phages were able to form plaques on the sk1 host Lactococcus lactis MG1614, and recombination was verified by PCR analysis directly with the plaques. A polyclonal antiserum raised against the C-terminal part of phage sk1 ORF18 was used in immunogold electron microscopy to demonstrate that ORF18 is located at the tip of the tail. Sequence analysis of corresponding proteins from other lactococcal phages belonging to species 936 showed that the N-terminal parts of the RBPs were very similar, while the C-terminal parts varied, suggesting that the C-terminal part plays a role in receptor binding. The phages investigated could be grouped into sk1-like phages (p2, fd13, jj50, and phi 7) and bIL170-like phages (P008, P113G, P272, and bIL66) on the basis of the homology of their RBPs to the C-terminal part of ORF18 in sk1 and ORF20 in bIL170, respectively. Interestingly, sk1-like phages bind to and infect a defined group of L. lactis subsp. cremoris strains, while bIL170-like phages bind to and infect a defined group of L. lactis subsp. lactis strains.  相似文献   

19.
The complete genome sequences of two dairy phages, Streptococcus thermophilus phage 7201 and Lactobacillus casei phage A2, are reported. Comparative genomics reveals that both phages are members of the recently proposed Sfi21-like genus of Siphoviridae, a widely distributed phage type in low-GC-content gram-positive bacteria. Graded relatedness, the hallmark of evolving biological systems, was observed when different Sfi21-like phages were compared. Across the structural module, the graded relatedness was represented by a high level of DNA sequence similarity or protein sequence similarity, or a shared gene map in the absence of sequence relatedness. This varying range of relatedness was found within Sfi21-like phages from a single species as demonstrated by the different prophages harbored by Lactococcus lactis strain IL1403. A systematic dot plot analysis with 11 complete L. lactis phage genome sequences revealed a clear separation of all temperate phages from two classes of virulent phages. The temperate lactococcal phages share DNA sequence homology in a patchwise fashion over the nonstructural gene cluster. With respect to structural genes, four DNA homology groups could be defined within temperate L. lactis phages. Closely related structural modules for all four DNA homology groups were detected in phages from Streptococcus or Listeria, suggesting that they represent distinct evolutionary lineages that have not uniquely evolved in L. lactis. It seems reasonable to base phage taxonomy on data from comparative genomics. However, the peculiar modular nature of phage evolution creates ambiguities in the definition of phage taxa by comparative genomics. For example, depending on the module on which the classification is based, temperate lactococcal phages can be classified as a single phage species, as four distinct phage species, or as two if not three different phage genera. We propose to base phage taxonomy on comparative genomics of a single structural gene module (head or tail genes). This partially phylogeny-based taxonomical system still mirrors some aspects of the current International Committee on Taxonomy in Virology classification system. In this system the currently sequenced lactococcal phages would be grouped into five genera: c2-, sk1, Sfi11-, r1t-, and Sfi21-like phages.  相似文献   

20.
Analysis of the complete nucleotide sequence of the lactococcal phage 4268, which is lytic for the cheese starter Lactococcus lactis DPC4268, is presented. Phage 4268 has a linear genome of 36,596 bp, which is modularly organised and encompasses 49 open reading frames. Putative functions were assigned to approximately 45% of the predicted products of these open reading frames based on sequence similarity with known proteins, N-terminal sequence analysis and identification of conserved domains. Significantly, a segment of the genome has homology to the recently sequenced lysogenic module in lactococcal phage phi31 that contains a lytic switch but no phage integrase or attachment site. This suggests that it is derived from a prophage. A phage 4268-encoded and a host-encoded methylase were found to be highly similar, having only two nucleotide mismatches, suggesting that the phage acquired the methylase gene to protect it from a host endonuclease. Comparative genomic analysis revealed significant homology between phage 4268 and the lactococcal phage BK5-T. The comparative analysis also supported the classification of phage 4268 and other BK5-T-related phage as separate from the proposed P335 species of lactococcal phage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号