首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A model system for studying double-strand-break (DSB)-induced genetic recombination in vivo based on the ets1 segCDelta strain of bacteriophage T4 was developed. The ets1, a 66-bp DNA fragment of phage T2L containing the cleavage site for the T4 SegC site-specific endonuclease, was inserted into the proximal part of the T4 rIIB gene. Under segC(+) conditions, the ets1 behaves as a recombination hotspot. Crosses of the ets1 against rII markers located to the left and to the right of ets1 gave similar results, thus demonstrating the equal and symmetrical initiation of recombination by either part of the broken chromosome. Frequency/distance relationships were studied in a series of two- and three-factor crosses with other rIIB and rIIA mutants (all segC(+)) separated from ets1 by 12-2100 bp. The observed relationships were readily interpretable in terms of the modified splice/patch coupling model. The advantages of this localized or focused recombination over that distributed along the chromosome, as a model for studying the recombination-replication pathway in T4 in vivo, are discussed.  相似文献   

2.
The effects of mutations in bacteriophage T4 genes uvsX and 49 on the double-strand break (DSB)-promoted recombination were studied in crosses, in which DSBs were induced site-specifically within the rIIB gene by SegC endonuclease in the DNA of only one of the parents. Frequency of rII+ recombinants was measured in two-factor crosses of the type i×ets1 and in three-factor crosses of the type i×ets1 a6, where ets1 is an insertion in the rIIB gene carrying the cleavage site for SegC; i's are rIIB or rIIA point mutations located at various distances (12-2040 bp) from the ets1 site, and a6 is rIIA point mutation located at 2040 bp from ets1. The frequency/distance relationships were obtained in crosses of the wild-type phage and of the amber mutant S17 (gene uvsX) and the double mutant S17 E727 (genes uvsX and 49). These data provide information about the frequency and distance distribution of the single-exchange (splices) and double-exchange (patches) events. The extended variant of the splice/patch coupling (SPC) model of recombination, which includes transition to the replication resolution (RR) alternative is substantiated and used for interpretation of the frequency/distance relationships. We conclude that the uvsX mutant executes recombination-dependent replication but does it by a qualitatively different way. In the absence of UvsX function, the DSB repair runs largely through the RR subpathway because of inability of the mutant to form a Holliday junction. In the two-factor crosses, the double uvsX 49- is recombinationally more proficient than the single uvsX mutant (partial suppression of the uvsX deficiency), while the patch-related double exchanges are virtually eliminated in this background.  相似文献   

3.
The role of 3'-5' exonucleases in double-strand break (DSB)-promoted recombination was studied in crosses of bacteriophage T4, in which DSBs were induced site specifically within the rIIB gene by SegC endonuclease in the DNA of only one of the parents. Frequency of rII+ recombinants was measured in two-factor crosses of the type i x ets1, where ets1 designates an insertion in the rIIB gene carrying the cleavage site for SegC and i's are rIIB or rIIA point mutations located at various distances (12-2040 bp) from the ets1 site. The frequency/distance relationship was obtained in crosses of the wild-type phage and dexA1 (deficiency in deoxyribonuclease A), D219A (deficiency in the proofreading exonuclease of DNA polymerase), and tsL42 (antimutator allele of DNA polymerase) mutants. In all the mutants, recombinant frequency in crosses with the i-markers located at 12 and 33 bp from ets1 was significantly enhanced, implying better preservation of 3'-terminal sequences at the ends of the broken DNA. The effects of dexA1 and D219A were additive, suggesting an independent action of the corresponding nucleases in the DSB repair pathway. The recombination enhancement in the dexA1 mutant was limited to short distances (<100 bp from ets1), whereas in the D219A mutant a significant enhancement was seen at all the tested distances. From the character of the frequency/distance relationship, it is inferred that the synthesis-dependent strand-annealing pathway may operate in the D219A mutant. The recombination-enhancing effect of the tsL42 mutation could be explained by the hypothesis that the antimutator 43Exo removes a shorter stretch of paired nucleotides than the wild-type enzyme does during hydrolysis of the unpaired terminus in the D-loop intermediate. The role of the proofreading exonuclease in the formation of a robust replicative fork is discussed.  相似文献   

4.
The double-strand break (DSB) repair via homologous recombination is generally construed as a high-fidelity process. However, some molecular genetic observations show that the recombination and the recombinational DSB repair may be mutagenic and even highly mutagenic. Here we developed an effective and precise method for studying the fidelity of DSB repair in vivo by combining DSBs produced site-specifically by the SegC endonuclease with the famous advantages of the recombination analysis of bacteriophage T4 rII mutants. The method is based on the comparison of the rate of reversion of rII mutation in the presence and in the absence of a DSB repair event initiated in the proximity of the mutation. We observed that DSB repair may moderately (up to 6-fold) increase the apparent reversion frequency, the effect of being dependent on the mutation structure. We also studied the effect of the T4 recombinase deficiency (amber mutation in the uvsX gene) on the fidelity of DSB repair. We observed that DSBs are still repaired via homologous recombination in the uvsX mutants, and the apparent fidelity of this repair is higher than that seen in the wild-type background. The mutator effect of the DSB repair may look unexpected given that most of the normal DNA synthesis in bacteriophage T4 is performed via a recombination-dependent replication (RDR) pathway, which is thought to be indistinguishable from DSB repair. There are three possible explanations for the observed mutagenicity of DSB repair: (1) the origin-dependent (early) DNA replication may be more accurate than the RDR; (2) the step of replication initiation may be more mutagenic than the process of elongation; and (3) the apparent mutagenicity may just reflect some non-randomness in the pool of replicating DNA, i.e., preferential replication of the sequences already involved in replication. We discuss the DSB repair pathway in the absence of UvsX recombinase.  相似文献   

5.
An 873 base-pair DNA sequence from the rII region of bacteriophage T4 is presented. The sequence encodes 139 carboxyl-terminal amino acids of rIIA and the amino-terminal 146 amino acids of rIIB. Eleven base-pairs separate the rIIA stop codon (UAA) and the rIIB AUG.An extensive genetic map is superimposed on the DNA sequence, showing the deduced locations of many of the mutations (base-pair substitutions, frameshifts, deletions) found in previous rII genetic studies.  相似文献   

6.
A method for in vivo studying the fidelity of DNA double-strand break (DSB) repair in bacteriophage T4 has been developed. The frequency of reversion of rII mutations to the wild phenotype was measured in i segC + × i ets1 segCΔ crosses, where ets1 is an insertion in the initial part of the rIB gene carrying a sequence recognized by SegC endonuclease; i designates a rIIB or rIIA mutation located at some distance from ets1, and segCΔ is a deletion in the segC gene. In such cross, a DSB occurs in the site of ets1. Their repair involves genetic recombination and DNA replication in the neighborhood of ets1. In parallel, the frequency of reversion of the same i mutant in the absence of DSBs is measured in i × i self-crosses. Reversions of different types (base substitutions, deletions, insertions) can be studied with the use of structurally different i mutations located at varying distances from ets1. The reversion frequencies were determined for three rIIB mutations and one rIIA mutation. The results obtained suggest that DSB repair in bacteriophage T4 is a process of high fidelity with the rate of errors that does not essentially exceed that in the case of usual phage multiplication.  相似文献   

7.
The effect of the rIIB gene on genetic recombination in bacteriophage T4 was studied. Relationships between recombination frequency and the physical distance were determined in three series of isomarker two-factor crosses between rII mutants. In the first series of intergenic crosses (rIIa x rIIb), the rII gene function was restored owing to complementation. In the second series of crosses, identical to the first one, the rIIB gene function was suppressed, because the rIIa parent carried an additional amberlike mutation in the rIIB gene. The recombinants were scored by plating lysates on the amber-suppressor Escherichia coli strain, on which an amberlike mutation was not expressed phenotypically. In the third series, all crosses were intragenic (rIIb x rIIb). In two series of crosses in the absence of the rIIB function, the relationships between recombination frequency and the physical distance were identical, whereas enhanced recombination frequencies were observed in the rIIB+ background. The magnitude of the rIIB-related effect depended on distance, reaching the maximum in the region located 100 to 200 bp from the beginning of the rIIB gene. The possible role of the rIIB protein in genetic recombination is discussed.  相似文献   

8.
P. Daegelen  E. Brody 《Genetics》1990,125(2):249-260
When the rII genes are first introduced into cells which had been previously infected by T4 phage deleted for these genes, the kinetics of synthesis of rIIA and rIIB RNA are rapid and identical. We show that this rapid synthesis depends on a functional motA gene for rIIB, but not for rIIA, RNA synthesis. By primer-extension mapping of T4 messenger RNA, we find three promoters close to the rIIA gene. One of them is an early promoter just before the rIIA.1 gene; it is used under all conditions tested. Another is in the coding portion of the rIIA.1 gene; it is weak, primarily because of a 19-bp spacing between the -10 and -35 elements, and its use is stimulated by T4 functions. The third is a motA-dependent (middle) promoter which has an unusual CCCGCTT box at -33. We present results which suggest that none of these promoters is likely to be the site at which the motB and motC gene products exercise their major influence on rIIA RNA synthesis.  相似文献   

9.
We have investigated suppressors of the bacteriophage T4 rIIB toxic polypeptide encoded by the rIIB frameshift mutation FC238. We have found suppressors that eliminate the toxic polypeptide by creating new translational termination codons, that diminish the toxicity of the polypeptide by altering the amino acid sequence of the toxic protein, that alter the rIIA protein so as to influence toxicity, and that diminish the amount of toxic polypeptide by reducing the quantity of gene expression from the rIIB (FC238) gene. We propose that the toxicity of the FC238 polypeptide derives from its peculiar, bipartite structure and high membrane avidity. Suppressors that detoxify the FC238 polypeptide by missense probably disturb the bipartite structure and/or the affinity for the membrane. The distribution of transition mutations obtained with a variety of mutagens contributes to an appreciation of intrinsic mutability differences. Lastly, although suppressors of FC238 toxicity might emerge in phage genes other than rIIB and rIIA, none have been found.  相似文献   

10.
11.
M. Kumagai  T. Yamashita  M. Honda    H. Ikeda 《Genetics》1993,135(2):255-264
We have characterized tandem duplications in the rII regions of phage T4. The rII deletion r1589 blocks only the function of the rIIA cistron, although it extends into the B cistron. Another rII deletion, r1236, blocks the function of the rIIB cistron and overlaps r1589. When a cross is made between r1589 and r1236, true rII(+) progeny cannot form. Instead, anomalous phenotypically rII(+) phages are detected carrying an rII region from each parent. Analyses of nucleotide sequences of the recombination junctions indicate that recombination takes place between short regions of homology (from 2 to 10 bp). Open reading frames of the recombinants deduced from the nucleotide sequences reveal that they contain a normal rIIA cistron and one of a variety of fused, duplicated rIIB cistrons. The T4 uvsX and uvsY genes, which participate in homologous recombination, are involved in this duplication formation. T4 DNA topoisomerase is encoded by genes 39, 52 and 60. Mutations in 52 and 60 reduced the frequency of such duplications, but mutations in gene 39 and some in gene 52 did not. Hence, the effects of topoisomerase mutations are allele-specific. Models are proposed in which these proteins are involved in tandem duplication.  相似文献   

12.
Temperature-sensitive (ts) mutants of the T4 phage rII gene were islated and used in temperature shift experiments that revelaed two different expressions for the normal rII (rII+) gene function in vivo: (i) an early expression (0 to 12 min postinfection at 30 C) that prevents restriction of T4 growth in Escherichia coli hosts lysogenic for gamma phage, and (ii) a later expression (12 to 18 min postinfection at 30 C) that results in restriction of T4 growth when the phage DNA ligase (gene 30) is missing. The earlier expression appeared to coincide with the period of synthesis of the protein product of the T4 rIIA cistron, whereas the later expression occurred after rIIA protein synthesis had stopped. The synthesis of the protein product of the rIIB cistron continues for several minutes after rIIA protein synthesis ceases (O'Farrell and Gold, 1973). The two rII+ gene expressions might require different molar ratios of the rIIA and rIIB proteins. It is possible that the separate expressions of rII+ gene function are manifestations of different associations between the two rII proteins and other T4-induced proteins that are synthesized or activated at different times after phage infection.  相似文献   

13.
14.
15.
Temperature-sensitive (ts) mutants representative of a number of genes of phage T4 were crossed with rII mutants to allow isolation of ts, rII double-mutant recombinants. The rII mutations used were characterized as frameshift mutations primarily on the basis of their revertability by proflavine. For each ts, rII double mutant, the effect of the ts mutation on spontaneous reversion of the rII mutation was determined over a range of incubation temperatures. A strong enhancement in reversion of two different rII mutants was detected when they were combined with tsL56, a mutation in gene 43 [deoxyribonucleic acid (DNA) polymerase]. Three other mutants defective in gene 43 enhanced reversion about fourfold. Two mutations in gene 32, which specifies a protein necessary for DNA replication, enhanced reversion about 5-fold and 18-fold, respectively. Two additional mutations in gene 43 and two in gene 32 had no effect. Fivefold and threefold enhancements in reversion were also found with mutations in genes 44 (DNA synthesis) and 47 (deoxyribonuclease), respectively. No significant effect was found with mutations in seven additional genes. The results of other workers suggest that frameshift mutations arise from errors in strand alignment during repair synthesis occurring at chromosome tips. Our results show that such errors can be enhanced by mutations in the DNA polymerase, the gene 32 protein, and the enzymes specified by genes 44 and 47. This implies that these proteins are employed in the repair process occurring at chromosome tips and that mutational errors in these proteins can lead to loss of ability to recognize and reject strand misalignments.  相似文献   

16.
S. L. Holbeck  J. N. Strathern 《Genetics》1997,147(3):1017-1024
Recombinational repair of double-strand breaks (DSBs), traditionally believed to be an error-free DNA repair pathway, was recently shown to increase the frequency of mutations in a nearby interval. The reversion rate of trp1 alleles (either nonsense or frameshift mutations) near an HO-endonuclease cleavage site is increased at least 100-fold among cells that have experienced an HO-mediated DSB. We report here that in strains deleted for rev3 this DSB-associated reversion of a nonsense mutation was greatly decreased. Thus REV3, which encodes a subunit of the translesion DNA polymerase &, was responsible for the majority of these base substitution errors near a DSB. However, rev3 strains showed no decrease in HO-stimulated recombination, implying that another DNA polymerase also functioned in recombinational repair of a DSB. Reversion of trp1 frameshift alleles near a DSB was not reduced in rev3 strains, indicating that another polymerase could act during DSB repair to make these frameshift errors. Analysis of spontaneous reversion in haploid strains suggested that Rev3p had a greater role in making point mutations than in frameshift mutations.  相似文献   

17.
18.
The bacteriophage T4 rnh gene encodes T4 RNase H, a relative of a family of flap endonucleases. T4 rnh null mutations reduce burst sizes, increase sensitivity to DNA damage, and increase the frequency of acriflavin resistance (Acr) mutations. Because mutations in the related Saccharomyces cerevisiae RAD27 gene display a remarkable duplication mutator phenotype, we further explored the impact of rnh mutations upon the mutation process. We observed that most Acr mutants in an rnh+ strain contain ac mutations, whereas only roughly half of the Acr mutants detected in an rnhDelta strain bear ac mutations. In contrast to the mutational specificity displayed by most mutators, the DNA alterations of ac mutations arising in rnhDelta and rnh+ backgrounds are indistinguishable. Thus, the increase in Acr mutants in an rnhDelta background is probably not due to a mutator effect. This conclusion is supported by the lack of increase in the frequency of rI mutations in an rnhDelta background. In a screen that detects mutations at both the rI locus and the much larger rII locus, the r frequency was severalfold lower in an rnhDelta background. This decrease was due to the phenotype of rnh rII double mutants, which display an r+ plaque morphology but retain the characteristic inability of rII mutants to grow on lambda lysogens. Finally, we summarize those aspects of T4 forward-mutation systems which are relevant to optimal choices for investigating quantitative and qualitative aspects of the mutation process.  相似文献   

19.
We have studied the properties of presumptive point mutants in the D2a region of bacteriophage T4. Dominance tests showed that the D2a mutation was recessive to the wild-type allele. The mutations were shown to map in the D2a region by complementation against rII deletions. The D2a mutations were also located between gene 52 and rIIB by two- and three-factor crosses. The mutants are located at at least two distinct loci in the D2a region. The point mutants grow normally on all hosts tested and none of the mutants makes T4 endonuclease IV. We propose the name "denB" for the D2a locus.  相似文献   

20.
Ligase-Defective Bacteriophage T4 I. Effects on Mutation Rates   总被引:4,自引:4,他引:0       下载免费PDF全文
Temperature-sensitive mutations in bacteriophage T4 gene 30 (polynucleotide ligase) were examined for their effects on spontaneous and proflavine-induced frameshift mutagenesis in the rII and ac (acridine resistance) cistrons. Only small (fourfold or less) effects on mutation rates were observed, even when selection artifacts involving suppression of gene 30 mutations by rII mutations were taken into account. The deoxyribonucleic acid ligase gene of T4 therefore appears to be only a minor determinant of frameshift mutation rates. This result is consistent with the particular nature of frameshift mutagenesis in bacteriophage T4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号