首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coronavirus nucleoproteins (N proteins) localize to the cytoplasm and the nucleolus, a subnuclear structure, in both virus-infected primary cells and in cells transfected with plasmids that express N protein. The nucleolus is the site of ribosome biogenesis and sequesters cell cycle regulatory complexes. Two of the major components of the nucleolus are fibrillarin and nucleolin. These proteins are involved in nucleolar assembly and ribosome biogenesis and act as chaperones for the import of proteins into the nucleolus. We have found that fibrillarin is reorganized in primary cells infected with the avian coronavirus infectious bronchitis virus (IBV) and in continuous cell lines that express either IBV or mouse hepatitis virus N protein. Both N protein and a fibrillarin-green fluorescent protein fusion protein colocalized to the perinuclear region and the nucleolus. Pull-down assays demonstrated that IBV N protein interacted with nucleolin and therefore provided a possible explanation as to how coronavirus N proteins localize to the nucleolus. Nucleoli, and proteins that localize to the nucleolus, have been implicated in cell growth-cell cycle regulation. Comparison of cells expressing IBV N protein with controls indicated that cells expressing N protein had delayed cellular growth. This result could not to be attributed to apoptosis. Morphological analysis of these cells indicated that cytokinesis was disrupted, an observation subsequently found in primary cells infected with IBV. Coronaviruses might therefore delay the cell cycle in interphase, where maximum translation of viral mRNAs can occur.  相似文献   

2.
Nucleolin and fibrillarin are two histone-like major proteins in the nucleolus that were found to be overexpressed in proliferating cells. Using specific antibodies to either nucleolin or fibrillarin flow cytometric, measurements were carried out to demonstrate quantitative changes of these proteins during lymphocyte mitogenic activation and differentiation of HL-60 promyelocytic leukaemia cells. The expression of nucleolin increased during lymphocyte stimulation and decreased slowly but constantly in the course of differentiation of HL-60 cells. Expression of fibrillarin reached a maximum in the first cell cycle and then dropped to a basic level in stimulated lymphocytes. Compared to nucleolin, the level of fibrillarin decreased more rapidly and more extensively in differentiating HL-60 cells. The data support other observations that nucleolin is a stabile structural protein at the ribosomal genes while fibrillarin may have a more specific functional role in nucleologenesis and ribosome production.  相似文献   

3.
4.
We used a biochemical screen to identify nucleolin, a key factor in ribosome biogenesis, as a high-affinity binding partner for the heterotrimeric human replication protein A (hRPA). Binding studies in vitro demonstrated that the two proteins physically interact, with nucleolin using an unusual contact with the small hRPA subunit. Nucleolin significantly inhibited both simian virus 40 (SV-40) origin unwinding and SV-40 DNA replication in vitro, likely by nucleolin preventing hRPA from productive interaction with the SV-40 initiation complex. In vivo, use of epifluorescence and confocal microscopy showed that heat shock caused a dramatic redistribution of nucleolin from the nucleolus to the nucleoplasm. Nucleolin relocalization was concomitant with a tenfold increase in nucleolin-hRPA complex formation. The relocalized nucleolin significantly overlapped with the position of hRPA, but only poorly with sites of ongoing DNA synthesis. We suggest that the induced nucleolin-hRPA interaction signifies a novel mechanism that represses chromosomal replication after cell stress.  相似文献   

5.
6.
7.
Unlike nuclear nucleolin, surface-expressed and cytoplasmic nucleolin exhibit Tn antigen. Here, we show localization-dependent differences in the glycosylation and proteolysis patterns of nucleolin. Our results provide evidence for different paths of nucleolin proteolysis in the nucleus, in the cytoplasm, and on the cell surface. We found that full-length nucleolin and some proteolytic fragments coexist within live cells and are not solely the result of the preparation procedure. Extranuclear nucleolin undergoes N- and O-glycosylation, and unlike cytoplasmic nucleolin, membrane-associated nucleolin is not fucosylated. Here, we show for the first time that nucleolin and endogenous galectin-3 exist in the same complexes in the nucleolus, the cytoplasm, and on the cell surface of melanoma cells. Assessments of the interaction of nucleolin with galectin-3 revealed nucleolar co-localization in interphase, suggesting that galectin-3 may be involved in DNA organization and ribosome biogenesis.  相似文献   

8.
9.
10.
Lo SJ  Lee CC  Lai HJ 《Cell research》2006,16(6):530-538
The nucleolus is the most prominent compartment in the nucleus and known as the site for ribosome biogenesis ineucaryotes.In contrast,there is no such equivalent structure for ribosome synthesis in procaryotes.This raises twoconcerns that how does the nucleolus evolve and that whether the nucleolus remains playing a single role in ribosomebiogenesis along the evolution.Increasing data support new nucleolus functions,including signal recognition particleassembly,small RNA modification,telomerase maturation,cell-cycle and aging control,and cell stress sensor.Multiplefunctions of the nucleolus possibly result from the plurifunctionality of nucleolar proteins,such as nucleolin and Nopp 140.Proteomic analyses of human and Arabidopsis nucleolus lead a remarkable progress in understanding the evolution andnew functions of nucleoli.In this review,we present a brief history of nucleolus research and new concepts and unre-solved questions.Also,we introduce hepatitis D virus for studying the communication between the nucleolus and othersubnuclear compartments,and Caenorhabditis elegans for the role of nucleolus in the development and the epistaticcontrol of nucleologenesis.  相似文献   

11.
Animal and yeast nucleolin function as global regulators of ribosome synthesis, and their expression is tightly linked to cell proliferation. Although Arabidopsis contains two genes for nucleolin, AtNuc-L1 is the predominant if not only form of the protein found in most tissues, and GFP-AtNuc-L1 fusion proteins were targeted to the nucleolus. Expression of AtNuc-L1 was strongly induced by sucrose or glucose but not by non-metabolizable mannitol or 2-deoxyglucose. Sucrose also caused enhanced expression of genes for subunits of C/D and H/ACA small nucleolar ribonucleoproteins, as well as a large number of genes for ribosomal proteins (RPs), suggesting that carbohydrate availability regulates de novo ribosome synthesis. In sugar-starved cells, induction of AtNuc-L1 occurred with 10 mM glucose, which seemed to be a prerequisite for resumption of growth. Disruption of AtNuc-L1 caused an increased steady-state level of pre-rRNA relative to mature 25S rRNA, and resulted in various phenotypes that overlap those reported for several RP gene mutants, including a reduced growth rate, prolonged lifetime, bushy growth, pointed leaf, and defective vascular patterns and pod development. These results suggest that the rate of ribosome synthesis in the meristem has a strong impact not only on the growth but also the structure of plants. The AtNuc-L1 disruptant exhibited significantly reduced sugar-induced expression of RP genes, suggesting that AtNuc-L1 is involved in the sugar-inducible expression of RP genes.  相似文献   

12.
13.
We have identified a gene (NPI46) encoding a new prolyl cis-trans isomerase within the nucleolus of the yeast Saccharomyces cerevisiae. The protein encoded by NPI46 was originally found by us in a search for proteins that recognize nuclear localization sequences (NLSs) in vitro. Thus, NPI46 binds to affinity columns that contain a wild-type histone H2B NLS but not a mutant H2B NLS that is incompetent for nuclear localization in vivo. NPI46 has two domains, a highly charged NH2 terminus similar to two other mammalian nucleolar proteins, nucleolin and Nopp140, and a COOH terminus with 45% homology to a family of mammalian and yeast proline isomerases. NPI46 is capable of catalyzing the prolyl cis-trans isomerization of two small synthetic peptides, succinyl-Ala-Leu-Pro-Phe-p-nitroanilide and succinyl-Ala-Ala-Pro-Phe-p- nitroanilide, as measured by a chymotrypsin-coupled spectrophotometric assay. By indirect immunofluorescence we have shown that NPI46 is a nucleolar protein. NPI46 is not essential for cell viability.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Fibrillarin and plant nucleolin homologue NopA64 are two important nucleolar proteins involved in pre-rRNA processing. To understand better the effects of the altered gravity environment on the nucleolus functioning we have investigated the location of fibrillarin and NopA64 in nucleolar subcomponents of cress (Lepidium sativum L.) root meristematic cells grown under simulated microgravity that was compared to the control cells grown in normal conditions at I g. Cress fibrillarin was first shown to have the molecular weight 41 kDa. Both fibrillarin and NopA64 in the cress cell nucleolus are located in the zones known to contain processing pre-rRNA molecules as it has been previously reported in other species. The data confirm participation of these proteins in processomes--RNP complex particles involved in pre-rRNA processing. Under altered gravity a decrease in the quantity of both fibrillarin and NopA64 in the transition zone between fibrillar centres and the dense fibrillar component was observed, compared to control, which could point out to a lowering of the level of early pre-rRNA processing in these experimental conditions. This decrease was also detected in the bulk of the dense fibrillar component. These data support the idea that altered (reduced) gravity results in lowering the level of functional activity of the nucleolus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号