首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously we have purified and characterized a major glutathione S-transferase (GST) activity, GST-4a, from the Thai mosquito Anopheles dirus B, a model mosquito for study of anopheline malaria vectors [Prapanthadara, L. Koottathep, S., Promtet, N., Hemingway, J. and Ketterman, A.J. (1996) Insect Biochem. Mol. Biol. 26:3, 277-285]. In this report we have purified an isoenzyme, GST-4c, which has the greatest DDT-dehydrochlorinase activity. Three additional isoenzymes, GST-4b, GST-5 and GST-6, were also partially purified and characterized for comparison. All of the Anopheles GST isoenzymes preferred 1-chloro-2,4-dinitrobenzene (CDNB) as an electrophilic substrate. In kinetic studies with CDNB as an electrophilic substrate, the V(max) of GST-4c was 24.38 micromole/min/mg which was seven-fold less than GST-4a. The two isoenzymes also possessed different K(m)s for CDNB and glutathione. Despite being only partially pure GST-4b had nearly a four-fold greater V(max) for CDNB than GST-4c. In contrast, GST-4c possessed the greatest DDT-dehydrochlorinase specific activity among the purified insect GST isoenzymes and no activity was detected for GST-5. Seven putative GST substrates used in this study were not utilized by An. dirus GSTs, although they were capable of inhibiting CDNB conjugating activity to different extents for the different isoenzymes. Bromosulfophthalein and ethacrynic acid were the most potent inhibitors. The inhibition studies demonstrate different degrees of interaction of the An. dirus isoenzymes with various insecticides. The GSTs were inhibited more readily by organochlorines and pyrethroids than by the phosphorothioates and carbamate. In a comparison between An. dirus and previous data from An. gambiae the two anopheline species possess a similar pattern of GST isoenzymes although the individual enzymes differ significantly at the functional level. The available data suggests there may be a minimum of three GST classes in anopheline insects.  相似文献   

2.
Glutathione S-transferases (GST) form an important family of biotransformation enzymes catalyzing the conjugation of glutathione to a great variety of xenobiotic compounds. The objective of this study was to compare the different characteristics of GST from freshly isolated rainbow trout hepatocytes with those corresponding to the total liver of the same fish, in order to establish the similarities. GST was purified by affinity chromatography and enzymatic activity was determined towards two substrates, 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (ETHA). The different isoenzymes were determined by HPLC associated with SDS-PAGE. Slight differences between the samples were obtained when the results corresponding to the enzyme activity were compared. HPLC results showed that all GST isoforms present in the total liver samples were represented in the isolated cells too, corresponding to isoforms with molecular masses of approximately 25.5 and 23.0 kDa.  相似文献   

3.
Glutathione S-transferases (GST) in insects play an important role in the detoxification of many substances including allelochemicals from plants. Induction of GST activity in Myzus persicae in response to secondary metabolites from Brassica plants was determined using different host plant species and confirmed using artificial diet with pure allelochemicals added. The 2,4-dinitro-1-iodobenzene (DNIB) was found to be a useful substrate for identifying particular GSTs in insects. GSTs from M. persicae were purified using different affinity chromatography columns and related kinetic parameters were calculated. GST isoenzymes were characterised using electrophoretic methods. Although SDS-PAGE results indicated similarity among the purified enzymes from each affinity column, biochemical studies indicated significant differences in kinetic parameters. Finally, the GST pattern of M. persicae was discussed in terms of insect adaptation to the presence of plant secondary substances such as the glucosinolates and the isothiocyanates, from Brassicaceae host plants.  相似文献   

4.
Fluoroacetate-specific defluorinase (FSD) is a critical enzyme in the detoxication of fluoroacetate. This study investigated whether FSD can be classed as a glutathione S-transferase (GST) isoenzyme with a high specificity for fluoroacetate detoxication metabolism. The majority of FSD and GST activity, using 1-chloro-2,4-dinitrobenzene (CDNB) and 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) as GST substrates, in rat liver was cytosolic. GSTT1 specific substrate, EPNP caused a slight non-competitive inhibition of FSD activity. CDNB, a general substrate of GST isoenzyme, was a more potent non-competitive inhibitor of FSD activity. The fluoroacetate defluorination activity by GST isoenzymes was determined in this study. The results showed that the GSTZ1C had the highest fluoroacetate defluorination activity of the various GST isoenzymes studied, while GSTA2 had a limited activity toward fluoroacetate. The human GSTZ1C recombinant protein then was purified from a human GSTZ1C cDNA clone. Our experiments showed that GSTZ1C catalysed fluoroacetate defluorination. GSTZ1 shares many of the characteristics of FSD; however, it accounts only for 3% of the total cytosolic FSD activity. GSTZ1C based enzyme kinetic studies has low affinity for fluoroacetate. The evidence suggests that GSTZ1 may not be the major enzyme defluorinating fluoroacetate, but it does detoxify the fluoroacetate. To clarify the identity of enzymes responsible for fluoroacetate detoxication, further studies of the overall FSD activity are needed.  相似文献   

5.
A novel GST isoenzyme was purified from hepatopancreas cytosol of Atactodea striata with a combination of affinity chromatography and reverse-phase HPLC. The molecular weight of the enzyme was determined to be 24 kDa by SDS-PAGE electrophoresis and 48 kDa by gel chromatography, in combination with GST information from literature revealed that the native enzyme was homodimeric with a subunit of M(r) 24 kDa. The purified enzyme, exhibited high activity towards 1-chloro-2,4-dinitrobenzene (CDNB) and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl). Kinetic analysis with respect to CDNB as substrate revealed a K(m) of 0.43 mM and V(max) of 0.24 micromol/min/mg and a specific activity of 108.9 micromol/min/mg. The isoelectric point of the enzyme was 5.5 by isoelectric focusing and its optimum temperature was 38 degrees C and the enzyme had a maximum activity at approximately pH 8.0. The amino acid composition was also determined for the purified enzyme.  相似文献   

6.
Glutathione transferase (GST) activity towards racemic as well as the resolved enantiomers of 7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a] pyrene (anti-BPDE) and 1-chloro-2,4-dinitrobenzene (CDNB) was measured in post-microsomal supernatants (PMS) obtained from eight human skin samples. All preparations showed significant activity towards anti-BPDE and an almost exclusive preference for the more tumourigenic (+)-enantiomer. The specific activity towards (+)-anti-BPDE varied about five-fold between different PMS (range 147-781 pmol/min per mg protein) whereas the variation in specific activities towards CDNB was about two-fold (range 30-71 nmol/min per mg protein). The activities obtained with PMS at saturating concentrations of racemic anti-BPDE were about half of the activity towards the (+)-enantiomer indicating that (-)-anti-BPDE competitively inhibits conjugation of the (+)-form. No correlation was evident between the activities towards (+)-anti-BPDE and CDNB implying that different classes of GST isoenzymes participated in the two different reactions. Immunoblot analysis revealed the presence of Class Alpha and Pi isoenzymes whereas Class Mu isoenzymes seemed to be absent in the human skin samples analyzed. Quantitatively, the Class Pi isoenzyme(s) predominated in all skin samples and the amount of enzyme was about 1-3 micrograms GST Pi/mg PMS protein. The almost exclusive conjugation of (+)-anti-BPDE by PMS and previous results with GST Pi enzymes from human placenta suggested that this type of enzymes catalysed the conjugation reaction. The five-fold variation in specific activity towards (+)-anti-BPDE observed among the different PMS may be explained by individual differences in GST Pi content or by the presence of endogenous modifiers of GST activity towards the diol-epoxide.  相似文献   

7.
8.
The hepatic cytosolic glutathione S-transferase (GST) activity in four strains of the mouse and one strain of the rat was studied with the substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethachrynic acid (ETHA), cumene hydroperoxide (CU) and atrazine as the in vitro substrates. In the mouse, significant gender, strain and age-related differences in the GST activity towards CDNB and atrazine were found between adolescent and sexually mature males and females of the CD-1, C57BL/6, DBA/2 and Swiss-Webster strains, and the differences were larger with atrazine as the substrate. With DCNB and CU a similar tendency was observed, however not significant for all strains. The GST activity towards ETHA was also gender and strain specific, but revealed no age-related differences. The herbicide atrazine seems to be a useful substrate in the study of strain and age-related differences in the mouse GST class Pi.  相似文献   

9.
Analogues of GSH in which either the gamma-glutamyl or the glycyl moiety is modified were synthesized and tested as both substrates for and inhibitors of glutathione S-transferases (GSTs) 7-7 and 8-8. Acceptor substrates for GST 7-7 were 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (ETA) and for GST 8-8 CDNB, ETA and 4-hydroxynon-trans-2-enal (HNE). The relative ability of each combination of enzyme and GSH analogue to catalyse the conjugation of all acceptor substrates was similar with the exception of the combination of GST 7-7 and gamma-L-Glu-L-Cys-L-Asp, which used CDNB but not ETA as acceptor substrate. In general, GST 7-7 was better than GST 8-8 in utilizing these analogues as substrates, and glycyl analogues were better than gamma-glutamyl analogues as both substrates and inhibitors. These results are compared with those obtained earlier with GSH analogues and GST isoenzymes 1-1, 2-2, 3-3 and 4-4 [Adang, Brussee, Meyer, Coles, Ketterer, van der Gen & Mulder (1988) Biochem. J. 255, 721-724] and the implications with respect to the nature of their active sites are discussed.  相似文献   

10.
We investigated the pattern of glutathione S-transferase (GST) activity in the course of the development of Apis mellifera macedonica. GST activity is present in all developmental stages of A. mellifera macedonica. The highest activity towards the substrate 1-chloro-2,4-dinitrobenzene (CDNB) is found in the adult stage and the lowest in the egg. The kinetic characteristics of the whole enzyme change as the insect develops. Significant changes are observed in substrate specificity, inhibitor sensitivity and V(max). The number of isoenzymes and their rate of expression vary as the insect develops. However, two main isoenzymes are present in all developmental stages, one in the alkaline area and the other in the acidic. While in the larval stage the acidic isoenzyme is expressed at a slightly higher rate (52.2% over 47.8% for the alkaline isoenzyme), in the adult stage, the rate is reversed dramatically (13.24% and 84.2%, respectively).  相似文献   

11.
12.
Two homodimeric isozymes, glutathione S-transferase (GST) 25 kDa and GST 27 kDa, in equal proportion comprise the majority (greater than 75%) of the pulmonary cytosolic GST of untreated rabbits. The subunits of GST 25 kDa and GST 27 kDa are distinguishable by electrophoretic mobility (25 and 27 kDa, respectively), apparent isoelectric points (pI 7.4 and pI 9.1, respectively), and immunoreactivity. Immunoblots indicated that these subunits may be minor components in hepatic cytosol. The pulmonary isozymes could not be distinguished by their activities toward chloro-2,4-dinitrobenzene (CDNB) or activity and stereoselectivity toward pyrene 4,5-oxide (PyO). The purified GST fractions represented less than or equal to 16% of the PyO activity for pulmonary cytosol. The stereoselectivity of the cytosolic GST for the pro-S-configured oxirane carbon of PyO was not maintained in the purified preparations which were virtually nonstereoselective. Immunoprecipitation of pulmonary cytosolic GST with anti-GST 27 kDa and anti-GST 25 kDa indicated that at least 84 and 60% of the activity toward CDNB and PyO, respectively, is mediated by the two isozymes. The specific PyO activities of GST 27 kDa, GST 25 kDa, and the rabbit hepatic preparations (approximately 0.2 unit/mg) were similar to that of hepatic GST purified from horse, cow, and pig, and to human placental GST pi (0.02-0.5 unit/mg) but one-tenth that of rat hepatic GST or human hepatic GST mu. However, the activity of the hepatic cytosol from rat and human was similar to that of rabbit. Thus, some GST isozymes may be particularly susceptible to modulation of activity/stereoselectivity that can be discerned with arene oxide substrates such as PyO.  相似文献   

13.
This paper deals with the purification and the partial characterization of glutathione S-transferase (GST) isoforms from the clam Ruditapes decussatus. For the first step of purification, two affinity columns, reduced glutathione (GSH)-agarose and S-hexyl GSH-agarose, were mounted in series. Four affinity fractions were thus recovered. Further purification was performed using anion exchange chromatography. Seven fractions, which present a GST activity with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate, were collected and analyzed by RP-HPLC. Seven distinct GST isoforms were purified, six of them were homodimers, the last one was a heterodimer consisting of the subunits 3 and 6. Kinetic parameters were studied. Results showed that isoforms have distinct affinity and Vmax for GSH and CDNB as substrates. The catalytic activity of the heterodimer isoform appeared to be a combination of the ability of each subunit. The immunological properties of each purified isoform were investigated using three antisera anti-pi, anti-mu and anti-alpha mammalian GST classes. Three isoforms (3-3, 6-6 and 3-6) seem to be closely related to the pi-class GST. Both isoforms 1-1 and 2-2 cross-reacted with antisera to pi and alpha classes and the isoform 5-5 cross-reacted with the antisera to mu and pi classes. Subunit 4 was recognized by the three antisera used, and its N-terminal amino acid analysis showed high identity (53%) with a conserved sequence of an alpha/m micro /pi GST from Fasciola hepatica.  相似文献   

14.
15.
Modeling methods allow the identification and analysis of determinants of reactivity and specificity in enzymes. The reaction between glutathione and 1-chloro-2,4-dinitrobenzene (CDNB) is widely used as a standard activity assay for glutathione S-transferases (GSTs). It is important to understand the causes of differences between catalytic GST isoenzymes and the effects of mutations and genetic polymorphisms. Quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations have been performed here to investigate the addition of the glutathione anion to CDNB in the wild-type M1-1 GST isoenzyme from rat and in three single point mutant (Tyr6Phe, Tyr115Phe, and Met108Ala) M1-1 GST enzymes. We have developed a specifically parameterized QM/MM method (AM1-SRP/CHARMM22) to model this reaction by fitting to experimental heats of formation and ionization potentials. Free energy profiles were obtained from molecular dynamics simulations of the reaction using umbrella sampling and weighted histogram analysis techniques. The reaction in solution has also been simulated and is compared to the enzymatic reaction. The free energies are in excellent agreement with experimental results. Overall the results of the present study show that QM/MM reaction pathway analysis provides detailed insight into the chemistry of GST and can be used to obtain mechanistic insight into the effects of specific mutations on this catalytic process.  相似文献   

16.
The gene coding for glutathione S-transferase (GST) has been isolated from the Mytilus edulis hepatopancreas. Open reading frame analysis indicated that the M. edulis GST (meGST) gene encodes a protein of 206 amino acid residues with a calculated molecular mass of 23.68 kDa. The deduced amino acid sequence showed high sequence similarity with the sequence of the pi class GST. The meGST was expressed in Escherichia coli, and the recombinant meGST was purified by affinity chromatography and characterized. The recombinant meGST exhibited high activity towards the substrates ethacrynic acid (ECA) and 1-chloro-2,4-dinitrobenzene (CDNB). Kinetic analysis with respect to CDNB as substrate gave a K(m) of 0.68 mM and a V(max) of 0.10 mmol/min per mg protein. The recombinant meGST had a maximum activity at approximately pH 8.5, and its optimum temperature was 39 degrees C. The predicted three-dimensional structure of the meGST revealed the N-terminal domain possesses a thioredoxin fold and the six helices of the C-terminal domain make a alpha-helical bundle. These features indicate that the meGST belongs to pi class GST.  相似文献   

17.
We purified cytosolic glutathione S-transferase (GST) of adult Paragonimus westermani monitoring its activity with 1-chloro-2,4-dinitrobenzene (CDNB). The enzyme was purified 18.4-fold to electrophoretic homogeneity with 21% recovery rate through a three-step procedure. The purified enzyme (Pw28GST) has a subunit molecular weight of 28 kDa with an isoelectric point at 4.6. Monoclonal antibody (anti-Pw28GST) against Pw28GST did not cross-react with GSTs from other helminths. cDNA library was constructed in lambdaZAP II bacteriophage and screened with anti-Pw28GST. The corresponding gene containing a single open reading frame of 804 bp encoded 211 amino acids. The predicted amino acid sequence exhibited a higher homology with catalytic domain near N-terminus of class sigma GSTs (58%) than with schistosome 28-kDa GSTs (45-41%) or with class sigma GSTs themselves (33-31%). The sequence contained both Tyr-6 and Tyr-10 that are highly conserved in mammalian and helminth GSTs. The apparent K(m) value of a recombinant enzyme was 0.78 mM. Both native and recombinant enzymes showed the highest activity against CDNB, relatively weak activity against ethacrynic acid and reactive carbonyls, and no activity against epoxy-3-(p-nitrophenoxy)-propane. The activities were inhibited by bromosulfophthalein, cibacron blue, and albendazole, but not by praziquantel. These findings indicate that adult P. westermani has a class sigma GST.  相似文献   

18.
A predicted tau Glutathione S-transferase (GST) subunit encoding gene, named GhGST, was isolated from Gossypium hirsutum with RACE method from SSH library based on Verticillium dahliae stress. The data revealed an open reading frame of 678 bp encoding a protein of 225 amino acids with a molecular weight of 25.821 kDa. Semi-quantitative RT-PCR analysis showed that the mRNA of GhGST was expressed in root, stem and leaf. And the content of GhGST expression increased under Verticillium dahliae stress in root. The expression of GhGST gene was verified by transformation in E. coli BL21 (DE3) strain with the recombinant expression vector pET-32A. GST activity assay showed the crude GhGST protein had obvious activity to 1-chloro-2,4-dinitrobenzene (CDNB) substrate.  相似文献   

19.
Male reproductive organs are extremely sensitive to the negative influence of toxic environmental factors as well as drugs, and until now not many attempts have been made at studying the detoxication enzymes and the relationship between the activity of those enzymes and spermatozoa fertility. In the present work we studied cytosolic glutathione-S-transferases (GST, EC 2.5.1.18) from different parts (head, corpus and tail) of bull and boar epididymis. We isolated two molecular forms of GST from each part of epididymis, characterized their biochemical properties and examined the mechanism of the catalyzed reaction. On the basis of their substrate specificity and isoelectric point, the isoforms were found to belong to the near neutral GST class mi. All examined GST forms exhibited higher affinity towards GSH than towards 1-chloro-2,4-dinitrobenzene (CDNB) and bull epididymis GST forms showed biphasic Lineweaver-Burk double reciprocal curves in the presence of GSH as a variable substrate. Boar epididymis anionic GST had the -SH groups both in the GSH and the CDNB binding place, whereas the cationic GST form--arginine residues in the CDNB binding place. Bull epididymis GST forms contained neither thiol nor arginine residues essential for catalytic activity.  相似文献   

20.
The 9,10-mono-ozonide of methyl linoleate was shown to be a substrate for rat hepatic cytosolic, rat lung cytosolic and rat hepatic microsomal glutathione S-transferases (GST). The activities of lung cytosol and liver microsomes with methyl linoleate ozonide (MLO) were found to be high relative to the activity demonstrated by liver cytosol, as compared with their respective activities towards 1-chloro-2,4-dinitrobenzene (CDNB). Only a slight catalytic activity towards the ozonide was noticed for rat lung microsomes. Isoenzyme 2-2 exhibited the highest specific activity (208 nmol/min/mg) when isoenzymes 1-1, 1-2, 2-2, 3-3, 3-4, 4-4 and 7-7 were compared. This isoenzyme accounts for approx. 25% of cytosolic GST protein in rat lung, while in rat liver it represents approx. 9%. This may partly explain the high activity towards the ozonide noticed for rat lung cytosol. No stable conjugates were formed as products of the reaction of MLO with glutathione; although two glutathione-conjugates were noticed on TLC, they were only formed as intermediate compounds. Coupling of an aldehyde dehydrogenase assay or a glutathione reductase assay to the GST-catalyzed conjugation, demonstrated that oxidized glutathione and aldehydes are formed as the major products in the reaction. To further confirm the formation of aldehydes, the products of the GST-catalyzed reaction were incubated with 2,4-dinitrophenylhydrazine, which resulted in hydrazone formation. In conclusion, the activity of the GST towards the ozonide of methyl linoleate is similar to their peroxidase activity with lipid hydroperoxides as substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号