首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The myelin of central and peripheral nervous system of UDP-galactose-ceramide galactosyltransferase deficient mice (cgt -/-) is completely depleted of its major lipid constituents, galactocerebrosides and sulfatides. The deficiency of these glycolipids affects the biophysical properties of the myelin sheath and causes the loss of the rapid saltatory conduction velocity of myelinated axons. With the onset of myelination, null mutant cgt -/- mice develop fatal neurological defects. CNS and PNS analysis of cgt -/- mice revealed (1) hypomyelination of axons of the spinal cord and optic nerves, but no apoptosis of oligodendrocytes, (2) redundant myelin in younger mice leading to vacuolated nerve fibers in cgt -/- mice, (3) the occurrence of multiple myelinated CNS axons, and (4) severely distorted lateral loops in CNS paranodes. The loss of saltatory conduction is not associated with a randomization of voltage-gated sodium channels in the axolemma of PNS fibers. We conclude that cerebrosides (GalC) and sulfatides (sGalC) play a major role in CNS axono-glial interaction. A close axono-glial contact is not a prerequisite for the spiraling and compaction process of myelin. Axonal sodium channels remain clustered at the nodes of Ranvier independent of the change in the physical properties of myelin membrane devoid of galactosphingolipids. Increased intracellular concentrations of free ceramides do not trigger apoptosis of oligodendrocytes.  相似文献   

2.
The jimpy mutation of the X-linked proteolipid protein (Plp) gene causes dysmyelination and premature death of the mice. The established phenotype is characterised by severe hypomyelination, increased numbers of dead oligodendrocytes and astrocytosis. The purpose of this study was to define the earliest cellular abnormalities in the cervical spinal cord. We find that on the first and third postnatal days the amount of myelin in jimpy spinal cord is approximately 20% of wild-type. However, the total glial cell density, the number of dead glial cells and the number and distribution of Plp-positive cells, as assessed by in situ hybridization, are similar to wild-type during the first week of life. Immunostaining of cryosections has identified that jimpy spinal cords express on schedule, a variety of antigens associated with mature oligodendrocytes. Dissociated oligodendrocytes, cultured for 18 hours to reflect their in vivo differentiation, express MBP and surface myelin-associated glycoprotein at the same frequency as wild-type. By comparison, the proportion of jimpy oligodendrocytes expressing surface myelin/oligodendrocyte glycoprotein is reduced by approximately 34%. In vivo, however, only a small minority of axons is surrounded by a collar of myelin-associated glycoprotein, suggesting that the majority of jimpy oligodendrocytes fail to make appropriate ensheathment of axons. Although the DM20 isoform is expressed in the embryonic CNS prior to myelin formation, the cellular abnormalities appear to correspond to the time at which the Plp isoform becomes predominant. The results suggest that the primary abnormality in jimpy is the inability of oligodendrocytes to properly associate with, and then ensheath, axons and that oligodendrocyte death compounds, rather than initiates, the established phenotype.  相似文献   

3.
Although glia have been historically classified as the structurally supporting cells of the central nervous system, their role in tissue mechanics is still largely unstudied. The influence of myelin and glia on the mechanical properties of spinal cord tissue was examined by testing embryonic day 18 chick embryo spinal cords in uniaxial tension following disruption of the glial matrix using either ethidium bromide (EB) or an antibody against galactocerebroside (αGalC) in the presence of complement. Demyelination was confirmed by myelin basic protein immunoreactivity and quantified using osmium tetroxide staining. A substantial loss of astrocytes and oligodendrocytes concurrent with demyelination was observed following EB injection but not αGalC injection. No morphological changes were observed following injection of saline or IgG with complement as controls for EB and αGalC. Demyelinated spinal cords demonstrated significantly lower stiffness and ultimate tensile stress than myelinated spinal cords. No significant differences were observed in the tensile response between the two demyelinating protocols. The results demonstrate that the glial matrix provides significant mechanical support to the spinal cord, and suggests that myelin and cellular coupling of axons via the glial matrix in large part dictates the tensile response of the tissue.  相似文献   

4.
Injured CNS axons fail to regenerate and often retract away from the injury site. Axons spared from the initial injury may later undergo secondary axonal degeneration. Lack of growth cone formation, regeneration, and loss of additional myelinated axonal projections within the spinal cord greatly limits neurological recovery following injury. To assess how central myelinated axons of the spinal cord respond to injury, we developed an ex vivo living spinal cord model utilizing transgenic mice that express yellow fluorescent protein in axons and a focal and highly reproducible laser-induced spinal cord injury to document the fate of axons and myelin (lipophilic fluorescent dye Nile Red) over time using two-photon excitation time-lapse microscopy. Dynamic processes such as acute axonal injury, axonal retraction, and myelin degeneration are best studied in real-time. However, the non-focal nature of contusion-based injuries and movement artifacts encountered during in vivo spinal cord imaging make differentiating primary and secondary axonal injury responses using high resolution microscopy challenging. The ex vivo spinal cord model described here mimics several aspects of clinically relevant contusion/compression-induced axonal pathologies including axonal swelling, spheroid formation, axonal transection, and peri-axonal swelling providing a useful model to study these dynamic processes in real-time. Major advantages of this model are excellent spatiotemporal resolution that allows differentiation between the primary insult that directly injures axons and secondary injury mechanisms; controlled infusion of reagents directly to the perfusate bathing the cord; precise alterations of the environmental milieu (e.g., calcium, sodium ions, known contributors to axonal injury, but near impossible to manipulate in vivo); and murine models also offer an advantage as they provide an opportunity to visualize and manipulate genetically identified cell populations and subcellular structures. Here, we describe how to isolate and image the living spinal cord from mice to capture dynamics of acute axonal injury.  相似文献   

5.
The peroxidase-antiperoxidase technique was used for immunocytochemical localization of carbonic anhydrase in the mouse spinal cord to detect whether this antigen was normally present in myelinated fibers, in oligodendrocytes in both white and gray matter, and in astrocytes, and to determine where the carbonic anhydrase might be localized in the spinal cords of dysmyelinating mutant (shiverer) mice. The most favorable methods for treating tissue were: 1) immersion in formalin-ethanol-acetic acid followed by paraffin embedding, or 2) light fixation with paraformaldehyde and preparation of vibratome sections. Carnoy's solution, followed by paraffin embedding, extracted myelin from the tissue, while aqueous aldehydes, when used before paraffin embedding, reduced staining everywhere except at sites of compact myelin. The latter conclusion was based, in part, on the almost complete loss of this antigen from the shiverer cord, where compact myelin is known to be virtually absent but where membrane-bound carbonic anhydrase was demonstrated enzymatically. When the optimal methods were used with normal mouse cords, carbonic anhydrase was found throughout the white matter columns and in the oligodendrocytes in gray and white matter. The staining of the white matter was attributed to myelinated fibers because of the similarity in distribution to both a histological myelin stain and the immunocytochemical staining for myelin basic protein. In the mutant mice the oligodendrocyte cell bodies and processes, which were stained in all areas of the spinal cord, were particularly numerous at the periphery of the sections. In contrast to the oligodendrocytes, the fibrous astrocytes appeared to lack carbonic anhydrase, or to have lower than detectable levels, since the astrocyte marker, glial fibrillary acidic protein, had a very different distribution from that of carbonic anhydrase. Even finer localization was obtained in vibratome sections, where the antibody against carbonic anhydrase permitted visualization of the processes connecting oligodendrocytes to myelinated fibers in the normal adult spinal cord.  相似文献   

6.
PTPα interacts with F3/contactin to form a membrane-spanning co-receptor complex to transduce extracellular signals to Fyn tyrosine kinase. As both F3 and Fyn regulate myelination, we investigated a role for PTPα in this process. Here, we report that both oligodendrocytes and neurons express PTPα that evenly distributes along myelinated axons of the spinal cord. The ablation of PTPα in vivo leads to early formation of transverse bands that are mainly constituted by F3 and Caspr along the axoglial interface. Notably, PTPα deficiency facilitates abnormal myelination and pronouncedly increases the number of non-landed oligodendrocyte loops at shortened paranodes in the spinal cord. Small axons, which are normally less myelinated, have thick myelin sheaths in the spinal cord of PTPα-null animals. Thus, PTPα may be involved in the formation of axoglial junctions and ensheathment in small axons during myelination of the spinal cord.  相似文献   

7.
Plaques of subpial demyelination were induced in adult cat spinal cords by repeated withdrawal and reinjection of cerebrospinal fluid. Peripheral cord was fixed by replacing cerebrospinal fluid available at cisternal puncture with 3 per cent buffered OsO4. Following extirpation, surface tissue was further fixed in 2 per cent buffered OsO4, dehydrated in ethanol, and embedded in araldite. Normal subpial cord consists mainly of myelinated axons and two types of macroglia, fibrous astrocytes and oligodendrocytes. Twenty-nine hours after lesion induction most myelin sheaths are deteriorating and typical macroglia are no longer visible. Phagocytosis of myelin debris has begun. In 3-day lesions, axons are intact and their mitochondria and neurofibrils appear normal despite continued myelin breakdown. All axons are completely demyelinated by 6 days. They lack investments only briefly, however, for at 10 and 14 days, macroglial processes appear and embrace them. These macroglia do not resemble either one of the normally occurring glia; their dense cytoplasm contains fibrils in addition to the usual organelles. It is proposed that these macroglia, which later accomplish remyelination, are the hypertrophic or swollen astrocytes of classical neuropathology. The suggestion that these astrocytes possess the potential to remyelinate axons in addition to their known ability to form cicatrix raises the possibility of pharmacological control of their expression.  相似文献   

8.
Different types of sensory neurons in the dorsal root ganglia project axons to the spinal cord to convey peripheral information to the central nervous system. Whereas most proprioceptive axons enter the spinal cord medially, cutaneous axons typically do so laterally. Because heavily myelinated proprioceptive axons project to the ventral spinal cord, proprioceptive axons and their associated oligodendrocytes avoid the superficial dorsal horn. However, it remains unclear whether their exclusion from the superficial dorsal horn is an important aspect of neural circuitry. Here we show that a mouse null mutation of Sema6d results in ectopic placement of the shafts of proprioceptive axons and their associated oligodendrocytes in the superficial dorsal horn, disrupting its synaptic organization. Anatomical and electrophysiological analyses show that proper axon positioning does not seem to be required for sensory afferent connectivity with motor neurons. Furthermore, ablation of oligodendrocytes from Sema6d mutants reveals that ectopic oligodendrocytes, but not proprioceptive axons, inhibit synapse formation in Sema6d mutants. Our findings provide new insights into the relationship between oligodendrocytes and synapse formation in vivo, which might be an important element in controlling the development of neural wiring in the central nervous system.  相似文献   

9.
Summary The tail of the gymnotid Sternarchus albifrons, including the spinal cord, regenerates following amputation. Regenerated spinal cord shows a rostro-caudal gradient of differentiation. Cross sections of the most distal regenerated cord show radially enlarged ependymal cells, relatively undifferentiated cells, and numerous blood vessels. More anterior sections contain well differentiated electromotor neurons, glial cells, and myelinated axons. The number of electromotor-neuron cell bodies in cross sections of regenerated spinal cord is three to six times the number in nonregenerated cord. Distinct tracts of axons, easily identifiable in normal cord, are not distinguishable in cross sections of regenerated cord. Some reorganization of the spinal cord also appears to take place anterior to the site of transection.Individual electromotor neurons in the regenerated spinal cord have morphologies largely similar to those of normal electrocytes, i.e., cell bodies are rounded, lack dendrites, have synapses characterized by gap junctions with presynaptic axons, and lack an unmyelinated initial segment. The presence of electromotor neurons with normal morphology in regenerated spinal cord correlates with the re-establishment of relatively normal electrocyte axonSchwann cell relationships in the regenerating electric organ of this sternarchid.Supported in part by the Medical Research Service, Veterans Administration and by a grant from the National Institutes of Health. We also thank the Paralyzed Veterans of America for their support. We thank Mary E. Smith and Susan Cameron for excellent technical support  相似文献   

10.
Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic protein expression in both cerebral cortex and spinal cord. Together these data suggest that, unlike Schwann cells, oligodendrocytes do not have an intrinsic requirement for neuronal dystonin for differentiation and myelination.  相似文献   

11.
At least three proteins present in CNS myelin, Nogo, MAG and OMgp are capable of causing growth cone collapse and inhibiting neurite outgrowth in vitro. Surprisingly, Nogo and OMgp are also strongly expressed by many neurons (including neocortical projection cells). Nogo expression is increased by some cells at the borders of CNS lesion sites and by cells in injured peripheral nerves, but Nogo and CNS myelin are largely absent from spinal cord injury sites, which are none the less strongly inhibitory to axonal regeneration. Nogo is found on growing axons during development, suggesting possible functions for neuronal Nogo in axon guidance. Although Nogo, MAG and OMgp lack sequence homologies, they all bind to the Nogo receptor (NgR), a GPI-linked cell surface molecule which, in turn, binds p75 to activate RhoA. NgR is strongly expressed by cerebral cortical neurons but many other neurons express NgR weakly or not at all. Some neurons, such as DRG cells, respond to Nogo and CNS myelin in vitro although they express little or no NgR in vivo which, with other data, indicates that other receptors are available for NgR ligands. NgR expression is unaffected by injury to the nervous system, and there is no clear correlation between NgR expression by neurons and lack of regenerative ability. In the injured spinal cord, interactions between NgR and its ligands are most likely to be important for limiting regeneration of corticospinal and some other descending tracts; other receptors may be more important for ascending tracts. Antibodies to Nogo, mainly the poorly-characterised IN-1 or its derivatives, have been shown to enhance recovery from partial transections of the spinal cord. They induce considerable plasticity from the axons of corticospinal neurons, including sprouting across the midline and, to a limited extent, regeneration around the lesion. Regeneration of corticospinal axons induced by Nogo antibodies has not yet been demonstrated after complete transections or contusion injuries of the spinal cord. It is not clear whether antibodies against Nogo act on oligodendrocytes/myelin or by binding to neuronal Nogo, or whether they can stimulate regeneration of ascending axons in the spinal cord, most of which express little or no NgR. Despite these uncertainties, however, NgR and its ligands offer important new targets for enhancing plasticity and regeneration in the nervous system.  相似文献   

12.
This report presents ultrastructural observations on the cytological events that attend myelin formation occurring in the wake of demyelination in adult cat spinal cord. Lesions were induced in subpial cord by cerebrospinal fluid (c.s.f.) exchange (1, 2). Tissue from eleven cats at nine intervals from 19 to 460 days was fixed in situ by replacing c.s.f. with buffered OsO4 and embedded in Araldite. After demyelination, axons are embraced by sheet-like glial processes. An occasional myelin sheath is first seen at 19 days; by 64 days, all axons are at least thinly myelinated. The cytoplasm of the myelin-forming cells, unlike that of either oligodendrocyte or fibrous astrocyte in normal cord, is dense with closely packed organelles and fine fibrils. Many of the myelinogenic cells become scarring astrocytes and at 460 days the lesion teems with their fibril-filled processes. Oligodendrocytes appear in the lesion after remyelination is under way. Phagocytes disappear gradually. A myelin sheath is formed by spiral wrapping of a sheet-like glial process around an axon. Where the first turn of the spiral is completed, a mesaxon is formed. As cytoplasm is lost from the process, the plasma membrane comes together along its outer and cytoplasmic surfaces to form compact myelin. Only a small amount of cytoplasm is retained; it is confined to the paramesaxonal region and, on the sheath exterior, to a longitudinal ridge which appears in profile as a small loop. This outer loop has the same rotational orientation as the inner mesaxon. These vestiges of spiral membrane wrapping are also found in normal adult and new-born cat cord. Nodes are present in all stages of remyelination and in normal adult cat and kitten cord. These observations suggest that myelin is reformed in the lesion in the same way it is first formed during normal development. The mechanism of myelin formation is basically similar to that proposed for peripheral nerve and amphibian and mammalian optic nerve; it does not agree with present views on the mechanism of myelinogenesis in mammalian brain and cord. This is the first demonstration of remyelination in adult mammalian central nervous tissue.  相似文献   

13.
14.
Recently, several in vitro studies have shown that the golli–myelin basic proteins regulate Ca2+ homoeostasis in OPCs (oligodendrocyte precursor cells) and immature OLs (oligodendrocytes), and that a number of the functions of these cells are affected by cellular levels of the golli proteins. To determine the influence of golli in vivo on OL development and myelination, a transgenic mouse was generated in which the golli isoform J37 was overexpressed specifically within OLs and OPCs. The mouse, called JOE (J37-overexpressing), is severely hypomyelinated between birth and postnatal day 50. During this time, it exhibits severe intention tremors that gradually abate at later ages. After postnatal day 50, ultrastructural studies and Northern and Western blot analyses indicate that myelin accumulates in the brain, but never reaches normal levels. Several factors appear to underlie the extensive hypomyelination. In vitro and in vivo experiments indicate that golli overexpression causes a significant delay in OL maturation, with accumulation of significantly greater numbers of pre-myelinating OLs that fail to myelinate axons during the normal myelinating period. Immunohistochemical studies with cell death and myelin markers indicate that JOE OLs undergo a heightened and extended period of cell death and are unable to effectively myelinate until 2 months after birth. The results indicate that increased levels of golli in OPC/OLs delays myelination, causing significant cell death of OLs particularly in white matter tracts. The results provide in vivo evidence for a significant role of the golli proteins in the regulation of maturation of OLs and normal myelination.  相似文献   

15.
This study investigated electrophysiological and histological changes as well as alterations of myelin relevant proteins of descending motor tracts in rat pups. Motor‐evoked potentials (MEPs) represent descending conducting responses following stimulation of the motor cortex to responses being elicited from the lower extremities. MEP responses were recorded biweekly from postnatal (PN) week 1 to week 9 (adult). MEP latencies in PN week 1 rats averaged 23.7 ms and became shorter during early maturation, stabilizing at 6.6 ms at PN week 4. During maturation, the conduction velocity (CV) increased from 2.8 ± 0.2 at PN week 1 to 35.2 ± 3.1 mm/ms at PN week 8. Histology of the spinal cord and sciatic nerves revealed progressive axonal myelination. Expression of the oligodendrocyte precursor markers PDGFRα and NG2 were downregulated in spinal cords, and myelin‐relevant proteins such as GalC, CNP, and MBP increased during maturation. Oligodendrocyte‐lineage markers Olig2 and MOG, expressed in myelinated oligodendrocytes, peaked at PN week 3 and were downregulated thereafter. A similar expression pattern was observed in neurofilament M/H subunits that were extensively phosphorylated in adult spinal cords but not in neonatal spinal cords, suggesting an increase in axon diameter and myelin formation. Ultrastructural morphology in the ventrolateral funiculus (VLF) showed axon myelination of the VLF axons (99.3%) at PN week 2, while 44.6% were sheathed at PN week 1. Increased axon diameter and myelin thickness in the VLF and sciatic nerves were highly correlated to the CV (rs > 0.95). This suggests that MEPs could be a predicator of morphological maturity of myelinated axons in descending motor tracts. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 713–722, 2013  相似文献   

16.
Hindshaker (hsh) is a novel, spontaneous, autosomal recessive mouse mutation displaying a myelin deficit, predominantly in the spinal cord. It is characterized by developmentally dependent hypomyelination, first evident at postnatal day (P) 10, followed by progressive but incomplete recovery by P42. Hypomyelination is associated with a decreased number of mature oligodendrocytes, which fail to form complete myelin sheaths. Heterozygotes are phenotypically normal, and the hsh mutation shows considerable variation in penetrance and expression depending on genetic background, indicating the influence of modifying loci. Here, we followed an outcross/backcross breeding strategy in conjunction with genotyping for microsatellites and a novel marker for the gene S100a4. We describe the genomic mapping of the hsh mutation to within a 1.2-cM region near the centromere of mouse chromosome 3. We found that hsh is flanked between D3Mit187 proximally and S100a4 distally. The area containing hsh is gene-rich, with a high proportion of the genes specific to nervous tissue. Identification of the hsh mutation will aid our understanding of processes important in regional control of oligodendrocyte development and myelination.  相似文献   

17.
跨膜蛋白63A(transmembrane protein 63,TMEM63A)是一种机械敏感性离子通道(mechanosensitive ion channel,MSC),在髓鞘形成过程中发挥重要作用。TMEM63A于2019年与髓鞘形成低下性脑白质营养不良19型(hypomyelinating leukodystrophy 19,HLD19)相关联,确定为HLD19的致病基因。髓鞘是神经系统中由少突胶质细胞形成的兼具营养轴突和加速动作电位传导的结构,髓鞘形成障碍可表现为髓鞘形成低下、髓鞘囊性化和髓鞘变性。髓鞘中脂质含量丰富,不同脂质参与髓鞘形成、修复和胶质细胞与轴突识别等重要过程。TMEM63A变异导致的HLD19为髓鞘形成低下性疾病。TMEM63A变异可引起渗透压改变,细胞上TMEM63A跨膜蛋白受机械刺激产生电流,从而影响少突胶质细胞分化、成熟,导致髓鞘形成异常;同时,TMEM63A变异也可引起细胞膜脂质的分布异常,影响脂质正常功能,异常的脂质通过参与不同的髓鞘形成环节最终导致了髓鞘形成障碍。  相似文献   

18.
In mammals, the oligodendrocyte population includes morphological and molecular varieties. We reported previously that an antiserum against the T4-O molecule labels a subgroup of oligodendrocytes related to large myelinated axons in adult chicken white matter. We also reported that T4-O immunoreactive cells first appear in the developing ventral funiculus (VF) at embryonic day (E)15, subsequently increasing rapidly in number. Relevant fine structural data for comparison are not available in the literature. This prompted the present morphological analysis of developing and mature VF white matter in the chicken. The first axon-oligodendrocyte connections were seen at E10 and formation of compact myelin had started at E12. Between E12 and E15 the first myelinating oligodendrocytes attained a Schwann cell-like morphology. At hatching (E21) 60% of all VF axons were myelinated and in the adult this proportion had increased to 85%. The semilunar or polygonal oligodendrocytes associated with adult myelinated axons contained many organelles indicating a vivid metabolic activity. Domeshaped outbulgings with gap junction-like connections to astrocytic profiles were frequent. Oligodendrocytes surrounded by large myelinated axons and those surrounded by small myelinated axons were cytologically similar. But, thick and thin myelin sheaths had dissimilar periodicities and Marchi-positive myelinoid bodies occurred preferentially in relation to large myelinated axons. We conclude that early oligodendrocytes contact axons and form myelin well before the first expression of T4-O and that emergence of a T4-O immunoreactivity coincides in time with development of a Type IV phenotype. Our data also show that oligodendrocytes associated with thick axons are cytologically similar to cells related to thin axons. In addition, the development of chicken VF white matter was found to be similar to the development of mammalian white matter, except for the rapid time course.  相似文献   

19.
SYNOPSIS. A protozoon was found in myelinated axons of the spinal cord and brain of the toad, Bufo arenarum. Examination with the light microscope using Giemsa, Feulgen, PAS and methylene blue technics revealed a primary cell as large as 30 μ in diameter and containing up to 80 nuclei. Electron micrographs showed that the protozoon ranged from 2 μ to 30 μ in diameter and that larger specimens contained numerous secondary cells (2 μ) in addition to multiple nuclei. A few specimens were found in which the secondary cells had long processes with microtubules. Multiple nuclei together with secondary cells suggest that it may be a schizont form of a sporozoon.
The protozoon was found most frequently in axons of the perimedullary plexus just beneath the pia. These axons are without degenerative changes, are up to 3 times the diameter of the largest normal myelinated fibers. The myelin appears normal altho there are fewer laminae than in myelin of other large nerve fibers. The protozoon apparently causes axonal swelling but does not block the fibers completely.
Light microscopic attempts to locate similar forms or other stages in the life cycle by examining blood, skin lesions, spleen, liver, small intestine, dorsal and ventral roots, or sensory ganglia were unsuccessful.
Examination of spinal cords which had been mechanically severed excluded the possibility of confusing the protozoa with multinucleated macrophages. Altho observations do not prove their mode of entrance to the nervous system, the preponderance of protozoa in the peripherally located perimedullary plexus suggests that the path may be by way of the cerebrospinal fluid or along the endoneurium.  相似文献   

20.
Multiple sclerosis (MS) is a common neurological disease and a major cause of disability, particularly affecting young adults. It is characterized by patches of damage occurring throughout the brain and spinal cord, with loss of myelin sheaths - the insulating material around nerve fibres that allows normal conduction of nerve impulses - accompanied by loss of cells that make myelin (oligodendrocytes). In addition, we now know that there is damage to nerve cells (neurones) and their fibres (axons) too, and that this occurs both within these discrete patches and in tissue between them. The cause of MS remains unknown, but an autoimmune reaction against oligodendrocytes and myelin is generally assumed to play a major role, and early acute MS lesions almost invariably show prominent inflammation. Efforts to develop cell therapy in MS have long been directed towards directly implanting cells capable of replacing lost oligodendrocytes and regenerating myelin sheaths. Accordingly, the advent of techniques to generate large numbers of oligodendrocytes from embryonic stem cells appeared a significant step towards new stem cell treatments for MS; while the emerging consensus that adult stem cells from, for example, the bone marrow had far less potential to turn into oligodendrocytes was thought to cast doubt on their potential value in this disease. A number of scientific and medical concerns, not least the risk of tumour formation associated with embryonic stem cells, have however, prevented any possible clinical testing of these cells in patients. More recently, increasing understanding of the complexity of tissue damage in MS has emphasized that successful cell therapy may need to achieve far more than simply offering a source of replacement myelin-forming cells. The many and varied reparative properties of bone marrow-derived (mesenchymal) stem cells may well offer new and attractive possibilities for developing cell-based treatments for this difficult and disabling condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号