首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Islet1 cardiovascular progenitors: a single source for heart lineages?   总被引:5,自引:0,他引:5  
The creation of regenerative stem cell therapies for heart disease requires that we understand the molecular mechanisms that govern the fates and differentiation of the diverse muscle and non-muscle cell lineages of the heart. Recently, different cardiac cell types have been reported to arise from a common, multipotent Islet1 (Isl1)-positive progenitor, suggesting that a clonal model of heart lineage diversification might occur that is analogous to hematopoiesis. The ability to isolate, renew and differentiate Isl1(+) precursors from postnatal and embryonic hearts and from embryonic stem cells provides a powerful cell-based system for characterizing the signaling pathways that control cardiovascular progenitor formation, renewal, lineage specification and conversion to specific differentiated progeny.  相似文献   

2.
Retrospective clonal analysis in mice suggested that the vertebrate heart develops from two sources of cells called first and second lineages, respectively. Cells of the first lineage enter the linear heart tube and initiate terminal differentiation earlier than cells of the second lineage. It is thought that both heart lineages arise from a common progenitor cell population prior to the cardiac crescent stage (E7.5 of mouse development). The timing of segregation of different lineages as well as the molecular mechanisms underlying this process is not yet known. Furthermore, gene expression data for those lineages are very limited. Here we provide the first comparative study of cardiac marker gene expression during Xenopus laevis embryogenesis complemented by single cell RT-PCR analysis. In addition we provide fate mapping data of cardiac progenitor cells at different stages of development. Our analysis indicates an early segregation of cardiac lineages and a fairly complex heterogeneity of gene expression in the cardiac progenitor cells. Furthermore, this study sets a reference for all further studies analyzing cardiac development in X. laevis.  相似文献   

3.
The atrioventricular heart valve leaflets and chordae tendineae are composed of diverse cell lineages and highly organized extracellular matrices that share characteristics with cartilage and tendon cell types in the limb buds and somites. During embryonic chicken valvulogenesis, aggrecan and sox9, characteristic of cartilage cells, are observed in the AV valve leaflets, in contrast to tendon-associated genes scleraxis and tenascin, present in the chordae tendineae. In the limb buds and somites, cartilage cell lineage differentiation is regulated by BMP2, while FGF4 controls tendon cell fate. The ability of BMP2 and FGF4 to induce similar patterns of gene expression in heart valve precursor cells was examined. In multiple assays of cells from prefused endocardial cushions, BMP2 is sufficient to activate Smad1/5/8 phosphorylation and induce sox9 and aggrecan expression, while FGF4 treatment increases phosphorylated MAPK (dpERK) signaling and promotes expression of scleraxis and tenascin. However, these treatments do not alter differentiated lineage gene expression in valve progenitors from fused cushions of older embryos. Together, these studies define regulatory pathways of AV valve progenitor cell diversification into leaflets and chordae tendineae that share inductive interactions and differentiation phenotypes with cartilage and tendon cell lineages.  相似文献   

4.
Haemopoietic stem cells in vivo proliferate and develop in association with stromal cells of the bone marrow. Proliferation and differentiation of haemopoietic stem cells also occurs in vitro, either in association with stromal cells or in response to soluble growth factors. Many of the growth factors that promote growth and development of haemopoietic cells in vitro have now been molecularly cloned and purified to homogeneity and various techniques have been described that allow enrichment (to near homogeneity) of multipotential stem cells. This in turn, has facilitated studies at the mechanistic level regarding the role of such growth factors in self-renewal and differentiation of stem cells and their relevance in stromal-cell mediated haemopoiesis. Our studies have shown that at least some multipotential cells express receptors for most, if not all, of the haemopoietic cell growth factors already characterized and that to elicit a response, several growth factors often need to be present at the same time. Furthermore, lineage development reflects the stimuli to which the cells are exposed, that is, some stimuli promote differentiation and development of multipotential cells into multiple cell lineages, whereas others promote development of multipotential cell into only one cell lineage. We suggest that, in the bone marrow environment, the stromal cells produce or sequester different types of growth factors, leading to the formation of microenvironments that direct cells along certain lineages. Furthermore, a model system has been used to show the possibility that the self-renewal probability of multipotential cells can also be modulated by the range and concentrations of growth factors present in the environment. This suggests that discrete microenvironments, preferentially promoting self-renewal rather than differentiation of multipotential cells, may also be provided by marrow stromal cells and sequestered growth factors.  相似文献   

5.
The major myeloid blood cell lineages are generated from hematopoietic stem cells by differentiation through a series of increasingly committed progenitor cells. Precise characterization of intermediate progenitors is important for understanding fundamental differentiation processes and a variety of disease states, including leukemia. Here, we evaluated the functional in vitro and in vivo potentials of a range of prospectively isolated myeloid precursors with differential expression of CD150, Endoglin, and CD41. Our studies revealed a hierarchy of myeloerythroid progenitors with distinct lineage potentials. The global gene expression signatures of these subsets were consistent with their functional capacities, and hierarchical clustering analysis suggested likely lineage relationships. These studies provide valuable tools for understanding myeloid lineage commitment, including isolation of an early erythroid-restricted precursor, and add to existing models of hematopoietic differentiation by suggesting that progenitors of the innate and adaptive immune system can separate late, following the divergence of megakaryocytic/erythroid potential.  相似文献   

6.
During embryogenesis, the liver is the site of hepatogenesis and hematopoiesis and contains many cell lineages derived from the endoderm and mesoderm. However, the characteristics and developmental programs of many of these cell lineages remain unclear, especially in humans. Here, we performed single-cell RNA sequencing of whole human and mouse fetal livers throughout development. We identified four cell lineage families of endoderm-derived, erythroid, non-erythroid hematopoietic, and mesoderm-derived non-hematopoietic cells, and defined the developmental pathways of the major cell lineage families. In both humans and mice, we identified novel markers of hepatic lineages and an ID3+ subpopulation of hepatoblasts as well as verified that hepatoblast differentiation follows the “default-directed” model. Additionally, we found that human but not mouse fetal hepatocytes display heterogeneity associated with expression of metabolism-related genes. We described the developmental process of erythroid progenitor cells during human and mouse hematopoiesis. Moreover, despite the general conservation of cell differentiation programs between species, we observed different cell lineage compositions during hematopoiesis in the human and mouse fetal livers. Taken together, these results reveal the dynamic cell landscape of fetal liver development and illustrate the similarities and differences in liver development between species, providing an extensive resource for inducing various liver cell lineages in vitro.Subject terms: Developmental biology, Stem-cell differentiation, Stem-cell differentiation, Developmental biology  相似文献   

7.
8.
It is thought that small intestinal epithelial stem cell progeny, via Notch signaling, yield a Hes1-expressing columnar lineage progenitor and an Atoh1 (also known as Math1)-expressing common progenitor for all granulocytic lineages including enteroendocrine cells, one of the body's largest populations of endocrine cells. Because Neurogenin 3 (Neurog3) null mice lack enteroendocrine cells, Neurog3-expressing progenitors derived from the common granulocytic progenitor are thought to produce the enteroendocrine lineage, although more recent work indicates that Neurog3+ progenitors also contribute to non-enteroendocrine lineages. We aimed to test this model and better characterize the progenitors leading from the stem cells to the enteroendocrine lineage. We investigated clones derived from enteroendocrine precursors and found no evidence of a common granulocytic progenitor that routinely yields all granulocytic lineages. Rather, enteroendocrine cells are derived from a short-lived bipotential progenitor whose offspring, probably via Notch signaling, yield a Neurog3+ cell committed to the enteroendocrine lineage and a progenitor committed to the columnar lineage. The Neurog3+ cell population is heterogeneous; only about 1/3 are slowly cycling progenitors, the rest are postmitotic cells in early stages of enteroendocrine differentiation. No evidence was found that Neurog3+ cells contribute to non-enteroendocrine lineages. Revised lineage models for the small intestinal epithelium are introduced.  相似文献   

9.
All blood cell lineages derive from a common hematopoietic stem cell (HSC). The current model implicates that the first lineage commitment step of adult pluripotent HSCs results in a strict separation into common lymphoid and common myeloid precursors. We present evidence for a population of cells which, although sustaining a high proliferative and combined lympho-myeloid differentiation potential, have lost the ability to adopt erythroid and megakaryocyte lineage fates. Cells in the Lin-Sca-1+c-kit+ HSC compartment coexpressing high levels of the tyrosine kinase receptor Flt3 sustain granulocyte, monocyte, and B and T cell potentials but in contrast to Lin-Sca-1+c-kit+Flt3- HSCs fail to produce significant erythroid and megakaryocytic progeny. This distinct lineage restriction site is accompanied by downregulation of genes for regulators of erythroid and megakaryocyte development. In agreement with representing a lymphoid primed progenitor, Lin-Sca-1+c-kit+CD34+Flt3+ cells display upregulated IL-7 receptor gene expression. Based on these observations, we propose a revised road map for adult blood lineage development.  相似文献   

10.
Hematopoietic stem cells have the potential to develop into multipotent and different lineage-restricted progenitor cells that subsequently generate all mature blood cell types. The classical model of hematopoietic lineage commitment proposes a first restriction point at which all multipotent hematopoietic progenitor cells become committed either to the lymphoid or to the myeloid development, respectively. Recently, this model has been challenged by the identification of murine as well as human hematopoietic progenitor cells with lymphoid differentiation capabilities that give rise to a restricted subset of the myeloid lineages. As the classical model does not include cells with such capacities, these findings suggest the existence of alternative developmental pathways that demand the existence of additional branches in the classical hematopoietic tree. Together with some phenotypic criteria that characterize different subsets of multipotent and lineage-restricted progenitor cells, we summarize these recent findings here.  相似文献   

11.
12.
Adult reserve stem cells and their potential for tissue engineering   总被引:6,自引:0,他引:6  
Tissue restoration is the process whereby multiple damaged cell types are replaced to restore the histoarchitecture and function to the tissue. Several theories, have been proposed to explain the phenomenon of tissue restoration in amphibians and in animals belonging to higher order. These theories include dedifferentiation of damaged tissues, transdifferentiation of lineage-committed progenitor cells, and activation of reserve, precursor cells. Studies by Young et al. and others demonstrated that connective tissue compartments throughout postnatal individuals contain reserve precursor cells. Subsequent repetitive single cell-cloning and cell-sorting studies revealed that these reserve precursor cells consisted of multiple populations of cells, including, tissue-specific progenitor cells, germ-layer lineage stem cells, and pluripotent stem cells. Tissue-specific progenitor cells display various capacities for differentiation, ranging from unipotency (forming a single cell type) to multipotency (forming multiple cell types). However, all progenitor cells demonstrate a finite life span of 50 to 70 population doublings before programmed cell senescence and cell death occurs. Germ-layer lineage stem cells can form a wider range of cell types than a progenitor cell. An individual germ-layer lineage stem cell can form all cells types within its respective germ-layer lineage (i.e., ectoderm, mesoderm, or endoderm). Pluripotent stem cells can form a wider range of cell types than a single germ-layer lineage stem cell. A single pluripotent stem cell can form cells belonging to all three germ layer lineages. Both germ-layer lineage stem cells and pluripotent stem cells exhibit extended capabilities for self-renewal, far surpassing the limited life span of progenitor cells (50–70 population doublings). The authors propose that the activation of quiescent tissue-specific progenitor cells, germ-layer lineage stem cells, and/or pluripotent stem cells may be a potential explanation, along with dedifferentiation and transdifferentiation, for the process of tissue restoration. Several model systems are currently being investigated to determine the possibilities of using these adult quiescent reserve precursor cells for tissue engineering.  相似文献   

13.
14.
The cerebral cortex is composed of a large variety of distinct cell‐types including projection neurons, interneurons, and glial cells which emerge from distinct neural stem cell lineages. The vast majority of cortical projection neurons and certain classes of glial cells are generated by radial glial progenitor cells in a highly orchestrated manner. Recent studies employing single cell analysis and clonal lineage tracing suggest that neural stem cell and radial glial progenitor lineage progression are regulated in a profound deterministic manner. In this review we focus on recent advances based mainly on correlative phenotypic data emerging from functional genetic studies in mice. We establish hypotheses to test in future research and outline a conceptual framework how epigenetic cues modulate the generation of cell‐type diversity during cortical development.  相似文献   

15.
16.
17.
18.
While it is clear that a single hematopoietic stem cell?(HSC) is capable of giving rise to all other hematopoietic cell types, the differentiation paths beyond HSC remain controversial. Contradictory reports on?the lineage potential of progenitor populations have questioned their physiological contribution of progenitor populations to multilineage differentiation. Here, we established a lineage tracing mouse model that enabled direct assessment of differentiation pathways in?vivo. We provide definitive evidence that differentiation into all hematopoietic lineages, including megakaryocyte/erythroid cell types, involves Flk2-expressing non-self-renewing progenitors. A Flk2+ stage was used during steady-state hematopoiesis, after irradiation-induced stress and upon HSC transplantation. In contrast, HSC origin and maintenance do not include a Flk2+ stage. These data demonstrate that HSC specification and maintenance are Flk2 independent, and that hematopoietic lineage separation occurs downstream of Flk2 upregulation.  相似文献   

19.
20.
Integrin alphaIIb is a cell adhesion molecule expressed in association with beta3 by cells of the megakaryocytic lineage, from committed progenitors to platelets. While it is clear that lymphohemopoietic cells differentiating along other lineages do not express this molecule, it has been questioned whether mammalian hemopoietic stem cells (HSC) and various progenitor cells express it. In this study, we detected alphaIIb expression in midgestation embryo in sites of HSC generation, such as the yolk sac blood islands and the hemopoietic clusters lining the walls of the major arteries, and in sites of HSC migration, such as the fetal liver. Since c-Kit, which plays an essential role in the early stages of hemopoiesis, is expressed by HSC, we studied the expression of the alphaIIb antigen in the c-Kit-positive population from fetal liver and adult bone marrow differentiating in vitro and in vivo into erythromyeloid and lymphocyte lineages. Erythroid and myeloid progenitor activities were found in vitro in the c-Kit(+)alphaIIb(+) cell populations from both origins. On the other hand, a T cell developmental potential has never been considered for c-Kit(+)alphaIIb(+) progenitors, except in the avian model. Using organ cultures of embryonic thymus followed by grafting into athymic nude recipients, we demonstrate herein that populations from murine fetal liver and adult bone marrow contain T lymphocyte progenitors. Migration and maturation of T cells occurred, as shown by the development of both CD4(+)CD8- and CD4-CD8(+) peripheral T cells. Multilineage differentiation, including the B lymphoid lineage, of c-Kit(+)alphaIIb(+) progenitor cells was also shown in vivo in an assay using lethally irradiated congenic recipients. Taken together, these data demonstrate that murine c-Kit(+)alphaIIb(+) progenitor cells have several lineage potentialities since erythroid, myeloid, and lymphoid lineages can be generated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号