首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blood cells from the crab, Carcinus maenas, stimulated with calcium ionophore A23187, in the presence of exogenous fatty acid, produced cyclooxygenase, lipoxygenase and monooxygenase derivatives of eicosatetraenoic (20:4(n - 6)) and eicosapentaenoic (20:5(n - 3)) acids. Isolation, identification and quantification of these products was achieved using chiral and reverse phase-high performance liquid chromatography, gas-chromatography, radioimmunoassay and gas chromatography-mass spectrometry. The principle metabolites observed were 8-hydroxy fatty acids and 'E' series prostaglandins. Smaller amounts of thromboxane B2, 6-keto-prostaglandin F1 alpha and 5-, 9-, 11-, 12- and 15-hydroxy-eicosatetraenoic acids were also synthesised. Lipoxygenase, cyclooxygenase and cytochrome P-450 inhibitors were used to investigate the mode of product formation. Mixtures of hydroxy-fatty acid enantiomers were produced and the dominant chiral form varied with the position of the hydroxyl group. No leukotrienes or lipoxins were detected.  相似文献   

2.
1. The fatty acid composition of erythrocytes and leucocytes of the elasmobranch, Scyliorhinus canicula, was determined so as to indicate substrate availability for eicosanoid formation. 2. Leucocytes showed a greater degree of fatty acid unsaturation than the erythrocytes, with particularly high levels of docosahexaenoic acid (22:6,n-3). 3. The major eicosanoid precursors, arachidonic acid (20:4,n-6) and eicosapentaenoic acid (20:5,n-3), represented 13.9% and 5.2% of the total fatty acid, respectively, in erythrocytes compared with 10.7% and 6% in leucocytes. 4. Whole blood and isolated leucocytes were stimulated with calcium ionophore, A23187 and the resulting lipoxygenase products separated by reverse phase high performance liquid chromatography. 5. The main lipoxygenase products formed were 6-trans-leukotriene B4, 6-trans-12-epi-leukotriene B4, 5(S),6(R) dihydroxyeicosatetraenoic acid and 5- and 15-hydroxyeicosatetraenoic acid. 6. No leukotriene B4, leukotriene B5, or lipoxins were detected.  相似文献   

3.
Two docosapolyenoic acids (22:5(n-3) and 22:5(n-6)) were isolated from the liver of normal and 18:3(n-3)-deficient trout, respectively. They were prepared by combined thin-layer chromatography (TLC) and reversed-phase high performance liquid chromatography (HPLC). Their purity, checked by capillary gas liquid chromatography, was greater than 95%. Each fatty acid was oxygenated into monohydroxy derivatives by human platelets. The hydroxy compounds were purified by TLC and HPLC and then derivatized for gas chromatography-mass spectrometry analysis. Whereas 22:5(n-6) was only converted into 14-OH-22:5, three hydroxy derivatives (11, 13 and 14) were obtained from 22:5(n-3). However, 13-hydroxy was not formed in the presence of aspirin, indicating that platelet lipoxygenase catalyses the formation of both 11- and 14-hydroxy derivatives from 22:5(n-3), as described previously, from 22:6(n-3). Further studies showed that 22:4(n-6) and 20:5(n-3) were only converted into 14- and 12-hydroxy derivatives. We conclude then that, besides the well-known n-9 oxygenation, lipoxygenase of human platelets is able to catalyse an n-12 oxygenation on docosapolyenoic acids of the n-3 family.  相似文献   

4.
Human platelets metabolize 7,10,13,16-docosatetraenoic acid (22:4(n - 6)) into dihomo-thromboxane B2 and 14-hydroxy-7,10,12-nonadecatrienoic acid at about twenty percent of the rate they convert arachidonic acid to thromboxane B2 and 12-hydroxy-5,8,10-heptadecatrienoic acid. 14-Hydroxy-7,10,12,16-docosatetraenoic was the major metabolite produce via the lipoxygenase pathway. Several other hydroxy acids were also produced in small amounts via an indomethacin-insensitive pathway. Incubation of 20 microM arachidonic acid with various levels of 22:4(n - 6) resulted in a dose-dependent inhibition of both thromboxane B2 and 12-hydroxy-5,8,10-heptadecatrienoic acid production. Conversely, 12-hydroxy-5,8,10,14-eicosatetraenoic acid synthesis was stimulated because of substrate shunting to the lipoxygenase pathway. These results show that 22:4(n - 6) may modify platelet function both by serving as a precursor for a 22-carbon thromboxane and by suppressing the synthesis of thromboxane A2 from arachidonic acid. In addition, our results suggest that simultaneous release of 22:4(n - 6) and arachidonic acid from platelet phospholipids will result in an elevation of both 12-hydroxy-5,8,10,14-eicosatetraenoic acid levels as well as simultaneous synthesis of 14-hydroxy-7,10,12,16-docosatetraenoic acid.  相似文献   

5.
Rats of either sex were fed for 18 and 34 weeks respectively diets containing 40% (by weight) lipids with polyunsaturated fatty acids representing 1.34% or 13.2% of total calories. Platelet reactivity to thrombin, platelet fatty acid composition and incorporation of [14C]acetate into platelet lipids were investigated. Diets rich in saturated fatty acids markedly increased platelet sensitivity to thrombin. The concentration of 20:3 and 22:3 of the (n - 9) series and of 20:3 and 22:5 of the (n - 6) series were increased at the expense of 18:2 and 22:4 of the (n - 6) family in platelet lipids. 20:4 (n - 6) was unchanged. The fatty acid changes were more pronounced in male rats and after 34 weeks. [14C]Acetate incorporation into total platelet lipids and particularly into choline phosphoglycerides and ceramides was lower in animals fed saturated fats. This diet reduced the synthesis of 16:0 and of 22:4(n - 6) in platelet total fatty acids, while that of 22:3(n - 9) was markedly enhanced. This study showed that long-term feeding of high-saturated-low-polyunsaturated fat diets in rats induced marked changes in platelet lipid synthesis and composition, in both sexes. The lipid synthesis modification appears to be more pronounced in males than in females. The changes in the fatty acids 20:3(n - 9), 22:3(n - 9) and 22:4(n - 6) appeared to be closely related to platelet behaviour. The balance between the content and synthesis of these last fatty acids might be of significance for the effect of diet on thrombogenesis.  相似文献   

6.
Leukotriene B5 (LTB5) and three stereoisomers were prepared biosynthetically from eicosapentaenoic acid and compared with the analogous derivatives of arachidonic acid for their chemotactic and aggregating effects on human neutrophilic polymorphonuclear leukocytes. Leukotriene B4 (LTB4), LTB5, and the 6-trans-diastereoisomers of each were generated by activating polymorphonuclear leukocytes with the calcium ionophore A23187 in the presence of 14C-labeled and unlabeled arachidonic acid or 14C-labeled and unlabeled eicosapentaenoic acid, respectively. The double lipoxygenase products, (5S,12S)-6-trans-8-cis-LTB4 and (5S,12S)-6-trans-8-cis-LTB5, were generated from 5S-hydroxyeicosatetraenoic acid and racemic 5-hydroxyeicosapentaenoic acid intermediates by incubation with platelet sonicates. The products of each reaction were isolated by reverse-phase-high performance liquid chromatography and identified by their retention times relative to the appropriate totally synthetic standards, ultraviolet absorption spectra, immunoreactivity in a radioimmunoassay for LTB4, and, for all but the double lipoxygenase products, by incorporation of radiolabel from the specific polyunsaturated fatty acid source. When the concentration of LTB5 eliciting maximum chemotactic response of human polymorphonuclear leukocytes, 50 ng/ml (1.5 X 10(-7) M), and that eliciting a maximum aggregation response, 20 ng/ml (5.9 X 10(-8) M), were compared with the interpolated values of LTB4 eliciting comparable effects, the potency of LTB5 relative to LTB4 was approximately 1:8 as a chemotactic agent and about 1:20 as an aggregating agent. The double lipoxygenase products and the resolved 6-trans-diastereoisomers of the pentaene and tetraene series were about 2 logs less active as chemotactic factors than LTB4 and only (5S,12S)-6-trans-8-cis-LTB4 had even minimal aggregating activity.  相似文献   

7.
The effects of dietary fish oil containing n - 3 polyunsaturated fatty acids on the fatty acid compositions of the alkylacyl and alkenylacyl species of choline glycerophospholipids (CGP) and ethanolamine glycerophospholipids (EGP) were studied in rat heart and compared with the corresponding diacylglycerophospholipids. After a 7 week feeding period, all phospholipid classes from the fish oil group exhibited much higher levels of the n - 3 polyunsaturated fatty acids including eicosapentaenoic acid (20:5(n - 30)), docosapentaenoic acid (22:5(n - 3)) and docosahexaenoic acid (22:6(n - 3)), as well as lower levels of the n - 6 series (18:2, 20:4, 22:4 and 22:5), relative to animals given sunflower seed oil-enriched in 18:2(n - 6). However, the docosahexaenoic acid rather than eicosapentaenoic acid provided a much greater contribution to the n - 3 accumulation (fish oil group) in the ether-containing CGP, as indicated by the 20:5(n - 3)/22:6(n - 3) molar ratios of 0.32, 0.26 and 0.56 in the alkylacyl, alkenylacyl and diacyl classes, respectively. In addition to accumulating very high levels of docosahexaenoic acid (e.g., 47.2 mol% of fatty acids in alkenylacylglycerophosphoethanolamine of fish oil group), both ether-linked classes of EGP exhibited significantly higher levels of docosapentaenoic acid than the diacylglycerophosphoethanolamine (GPE) and all classes of CGP. These findings may bear relevance to possible beneficial effects of dietary fish oil on pathophysiological states (including myocardial ischemia) in cardiac tissue and their mediation via platelet-activating factor, 1-alkyl-2-acetylglycerophosphocholine (PAF) and arachidonic acid (20:4(n - 6))-derived eicosanoids.  相似文献   

8.
Whereas numerous studies deal with the effects and metabolism of eicosapentaenoic acid (20:5(n - 3)) in platelets, very few concern docosahexaenoic acid (22:6(n - 3)), although both acids are consumed in equal amounts from most fish fat. The present paper reports the modulation of 22:6(n - 3) oxygenation as well as that of endogenous arachidonic acid (20:4(n - 6)) in 22:6(n - 3)-rich platelets. Like the oxygenation of 20:5(n - 3), the lipoxygenation of 22:6(n - 3) occurred at a low level when incubated alone, but was markedly increased in the presence of 20:4(n - 6), suggesting a similar peroxide tone dependency. 20:5(n - 3) could not replace 20:4(n - 6) in the increasing 22:6(n - 3) lipoxygenation, whereas 22:6(n - 3) shared the potentiating effect of 20:4(n - 6) on both the cyclooxygenation and the lipoxygenation of 20:5(n - 3). On the other hand, 20:5(n - 3), 22:6(n - 3) or 20:5(n - 3) + 22:6(n - 3) enrichment of platelet phospholipids inhibited the formation of cyclooxygenase but not lipoxygenase products from endogenous 20:4(n - 6) in thrombin-stimulated platelets. In doing so, 22:6(n - 3) appeared even more potent than 20:5(n - 3), although it was not liberated after acylation in phospholipids, the opposite of what was observed with 20:5(n - 3). Therefore, it seems that, in contrast to 20:5(n - 3), which may compete with endogenous 20:4(n - 6) at the cyclooxygenase level, 22:6(n - 3) would affect the latter enzyme activity in a different way. We conclude that 20:5(n - 3) and 22:6(n - 3) behave differently and might act synergistically on the inhibition of platelet functions after fish fat intake.  相似文献   

9.
The time-course changes in fatty acid composition of human T-lymphocytes during blastic transformation were analysed, as well as the variations in membrane fluidity determined by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), using a fluorescence-activated cell sorter. The more important changes observed, in activated relative to quiescent cells, started after 24 h and consisted in an increase in the proportion of oleic (18:1(n - 9)), docosapentaenoic (22:5(n - 3)) and docosahexaenoic (22:6(n - 3)) acids and a decrease in that of linoleic (18:2(n - 6)) and arachidonic (20:4(n - 6)) acids. This represented a relative increase of 26% for 18:1, 56% for 22:5 and 84% for 22:6 in peripheral blood mononuclear cells (PBMC) and 35%, 182% and 94%, respectively, in purified T-lymphocytes, both activated for 72 h. The decrease in n - 6 fatty acids was of 42% for 18:2 and 14% for 20:4 in PBMC and 30% and 19%, respectively, for 72 h. The decrease in n - 6 fatty acids was of 42% for 18:2 and 14% for 20:4 in PBMC and 30% and phosphatidylethanolamine) rather than neutral lipids. The 18:1/18:0 ratio increased greatly in major cell phospholipids. The proportion of 20:4, 22:5 and 22:6 in phosphatidylinositol was not significantly altered after 72 h of activation. The molar ratio cholesterol/phospholipids was reduced in 72-h-activated lymphocytes (0.29) compared to quiescent cells (0.5). On the other hand, the stimulation of human T-lymphocytes caused a significant decrease in the order parameter (S) of DPH, according to the observed changes in lipid composition. After 72 h in culture, the S value for quiescent and stimulated T-lymphocytes was 0.530 and 0.326, respectively. In conclusion, the blastic transformation of human T-lymphocytes is associated with changes in lipid composition which modify the physical properties of their membranes. These modifications could modulate, in turn, the activity of membrane proteins implicated in the process of blastic transformation.  相似文献   

10.
Various polyunsaturated fatty acids are oxygenated by platelet lipoxygenase at the n - 9 position. The present paper reports that platelets may also oxygenate dihomogammalinolenic acid (20:3(n - 6)) at the n - 6 position, leading to the formation of substantial amounts of 15-OH-8,11,13-20:3 characterized by its ultraviolet spectrum, HPLC and GC-MS analysis. Its formation was inhibited by aspirin and eicosatetraynoic acid, but not by heneicosatetraynoic acid, a specific inhibitor of platelet lipoxygenase. The time-course of its synthesis was very close to that of 12-OH-8,10-17:2 (HHD), the non-cyclic cyclooxygenase side-product, but different from that of 12-OH-8,10,14-20:3, the platelet lipoxygenase end-product of 20:3 (n - 6). Overall, these results indicate that 15-OH-20:3 could be a cyclooxygenase metabolite generated in an aborted process. Like other monohydroxy derivatives of polyenoic fatty acids, 15-OH-20:3 was able to modulate thromboxane-induced platelet aggregation. The derivative exhibited a biphasic effect on the aggregation. It potentiated at concentrations below 2.10(-7) M and inhibited at higher doses. It is concluded that the potentiating activity might explain at least part of the transient enhancement of the platelet activation observed in adding exogenous 20:3(n - 6).  相似文献   

11.
Thraustochytrids, marine protists known to accumulate polyunsaturated fatty acids (PUFAs) in lipid droplets, are considered an alternative to fish oils as a source of PUFAs. The major fatty acids produced in thraustochytrids are palmitic acid (C(16:0)), n - 6 docosapentaenoic acid (DPA) (C(22:5)(n) (- 6)), and docosahexaenoic acid (DHA) (C(22:6)(n) (- 3)), with eicosapentaenoic acid (EPA) (C(20:5)(n) (- 3)) and arachidonic acid (AA) (C(20:4)(n) (- 6)) as minor constituents. We attempted here to alter the fatty acid composition of thraustochytrids through the expression of a fatty acid Δ5 desaturase gene driven by the thraustochytrid ubiquitin promoter. The gene was functionally expressed in Aurantiochytrium limacinum mh0186, increasing the amount of EPA converted from eicosatetraenoic acid (ETA) (C(20:4)(n) (- 3)) by the Δ5 desaturase. The levels of EPA and AA were also increased by 4.6- and 13.2-fold in the transgenic thraustochytrids compared to levels in the mock transfectants when ETA and dihomo-γ-linolenic acid (DGLA) (C(20:3)(n) (- 6)) were added to the culture at 0.1 mM. Interestingly, the amount of EPA in the transgenic thraustochytrids increased in proportion to the amount of ETA added to the culture up to 0.4 mM. The rates of conversion and accumulation of EPA were much higher in the thraustochytrids than in baker's yeasts when the desaturase gene was expressed with the respective promoters. This report describes for the first time the finding that an increase of EPA could be accomplished by introducing the Δ5 desaturase gene into thraustochytrids and indicates that molecular breeding of thraustochytrids is a promising strategy for generating beneficial PUFAs.  相似文献   

12.
Elongated, highly polyunsaturated derivatives of linoleic acid (18:2 omega-6) and linolenic acid (18:3 omega-3) accumulate in brain, but their sites of synthesis are not fully characterized. To investigate whether neurons themselves are capable of essential fatty acid elongation and desaturation or are dependent upon the support of other brain cells, primary cultures of rat neurons and astrocytes were incubated with [1-14C] 18:2 omega-6, [1-14C]20:4 omega-6, [1-14C]18:3 omega-3, or [1-14C]20:5 omega-3 and their elongation/desaturation products determined. Neuronal cultures were routinely incapable of producing significant amounts of delta 4-desaturase products. They desaturated fatty acids very poorly at every step of the pathway, producing primarily elongation products of the 18- and 20-carbon precursors. In contrast, astrocytes actively elongated and desaturated the 18- and 20-carbon precursors. The major metabolite of 18:2 omega-6 was 20:4 omega-6, whereas the primary products from 18:3 omega-3 were 20:5 omega-3, 22:5 omega-3, and 22:6 omega-3. The majority of the long-chain fatty acids formed by astrocyte cultures, particularly 20:4 omega-6 and 22:6 omega-3, was released into the extracellular fluid. Although incapable of producing 20:4 omega-6 and 22:6 omega-3 from precursor fatty acids, neuronal cultures readily took up these fatty acids from the medium. These findings suggest that astrocytes play an important supportive role in the brain by elongating and desaturating omega-6 and omega-3 essential fatty acid precursors to 20:4 omega-6 and 22:6 omega-3, then releasing the long-chain polyunsaturated fatty acids for uptake by neurons.  相似文献   

13.
The uptake and integrated intracellular metabolism of (n - 6) and (n - 3) polyunsaturated fatty acids was studied in isolated rat cardiac myocytes and in the perfused heart. Labeled linolenic acid (18:3(n - 3)) uptake and its subsequent metabolism into carbon dioxide as well as acylation into lipids was nonsaturable over a substrate range of 0.02 to 0.4 mM. [1-14C]Linoleic acid (18:2(n - 6)), dihomo-gamma-linolenic acid (20:3(n - 6)) and arachidonic acid (20:4(n - 6)) were transported into myocytes at rates similar to those for linolenic acid. Conversely both [1-14C]-gamma-linolenic acid (18:3(n - 6)) and eicosapentaenoic acid (20:5(n - 3)) were taken up at a slower rate. Oxidation of 18:3(n - 6) was 4-5-fold greater when compared with C18-C20 polyunsaturated fatty acids. When myocytes were incubated with labeled 18:2(n - 6), 18:3(n - 6), 18:3(n - 3), 20:4(n - 6) or 20:5(n - 3), it was not possible to detect any desaturation or chain-elongation products. Identical results were obtained when hearts were perfused with 1-14C-labeled linoleic acid.  相似文献   

14.
Total lipids were extracted from 22 species of Malaysian fish and the constituent fatty acids were analysed by gas chromatography. Malaysian fish generally contained high levels of saturated fatty acids (range 36-55% total fatty acids) and contained variable amounts of monounsaturates, chiefly palmitic and stearic acids, but only trace levels of 20:1 and 22:1. Unlike fish caught in colder northern hemisphere waters, Malaysian fish were found to contain arachidonic acid (20:4 omega 6, range 2-12%) in addition to the expected eicosapentaenoic acid (20:5 omega 3, range 1-13%) and docosahexaenoic acid (22:6 omega 3, range 6.6-40.4%).  相似文献   

15.
We studied fatty acid changes that are likely to occur during phorbolmyristate acetate (PMA)-induced differentiation of HL-60 cells. It was observed that PMA-induced differentiation is associated with increased uptake, but not synthesis, of fatty acids. Fatty acid analysis revealed that arachidonic acid (AA), 20:5 n-3 and 22:6 n-3 levels are reduced with a concomitant increase in 22:5 n-6 in the phospholipid fraction. In the FFA fraction there are increases in free AA, free 20:5 n-3, 22:5 n-3 and 22:6 n-3, and a fall in free 22:5 n-6 in PMA-treated cells. PMA-induced differentiation and nitroblue tetrazolium reduction by PMA-treated cells was only partially inhibited (about 20-30%) by indomethacin and nordihydroguiaretic acid (cyclooxygenase and lipoxygenase inhibitors respectively), but not by superoxide dismutase, catalase or mannitol. These results indicate that PMA-induced differentiation of HL-60 cells is accompanied by specific changes in the fatty acid composition of the cells.  相似文献   

16.
The metabolism of long chain unsaturated fatty acids was studied in cultured fibroblasts from patients with X-linked adrenoleukodystrophy (ALD) and with neonatal ALD. By using [14-14C] erucic acid (22:1(n-9)) as substrate it was shown that the peroxisomal beta-oxidation, measured as chain shortening, was impaired in cells from patients with neonatal ALD. The beta-oxidation of adrenic acid (22:4(n-6)), measured as acid-soluble products, was also reduced in the neonatal ALD cells. The peroxisomal beta-oxidation of [14-14C]erucic acid (22:1(n-9)) and [2-14C]adrenic acid (22:4(n-6)) was normal in cells from X-ALD patients. The beta-oxidation, esterification and chain elongation of [1-14C]arachidonic acid (20:4(n-6)) and [1-14C]eicosapentaenoic acid (20:5(n-3)) was normal in both X-linked ALD and in neonatal ALD. Previous studies suggest that the activation of very long chain fatty acids by a lignoceryl (24:0)-CoA ligase is deficient in X-linked ALD, while the peroxisomal beta-oxidation enzymes are deficient in neonatal ALD. The present results suggest that the peroxisomal very long-chain acyl-CoA ligase is not required for activation of unsaturated C20 and C22 fatty acids and that these fatty acids can be efficiently activated by the long chain acyl-(palmityl)-CoA ligase.  相似文献   

17.
This study tested the hypothesis that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) antagonizes estrogen-induced hepatic lipid synthesis and metabolism in birds. Twenty immature male chickens (Gallus domesticus) were divided evenly into four groups: (1) vehicle control; (2) estrogen alone (1.0 mg/kg estradiol cypionate injected on three consecutive days); (3) TCDD alone (50 μg/kg injected on the fourth day); and (4) a combination of the estrogen and TCDD treatments. On day 14, liver samples were collected for quantitative fatty acid analysis by capillary gas chromatography. Birds treated with estrogen alone had increased total triacylglyceride concentrations with specific increases in the Δ9 desaturase products 16:1n7, 18:1n7, 18:1n9, and 20:1n9. In addition, estrogen treatment specifically increased 22:6n3 concentrations in both triacylglycerides and phospholipids. However, these increases in Δ9 desaturase products or 22:6n3 did not occur for birds treated with estrogen in combination with TCDD. TCDD and estrogen plus TCDD treatments increased phospholipid concentrations of the diet-derived polyunsaturated fatty acids 18:2n6, 18:3n6, 20:3n6, 18:3n3, and 20:5n3, although only the estrogen plus TCDD group had significantly increased total phospholipids. In cholesterol esters, all three treatments decreased concentrations of total fatty acids, saturated fatty acids, and Δ9 desaturase products compared to the control group.  相似文献   

18.
The metabolism of docosahexaenoic acid (22:6(n-3)) and adrenic acid (22:4(n-6)) was studied in cultured fibroblasts from patients with the Zellweger syndrome, X-linked adrenoleukodystrophy (X-ALD) and normal controls. It was shown that [4,5- 3H]22:6(n-3) is retroconverted to labelled eicosapentaenoic acid (20:5(n-3)) in normal and X-ALD fibroblasts, while this conversion is deficient in Zellweger fibroblasts. [U- 14C]Eicosapentaenoic acid (20:5(n-3)) is elongated to docosapentaenoic acid (22:5(n-3)) in all three cell lines. With [U- 14C]20:5(n-3) as the substrate, shorter fatty acids were not detected. With [4,5- 3H]22:6(n-3) as the substrate, labelled fatty acids were esterified in the phospholipid- and triacylglycerol-fraction to approximately the same extent in all three cell lines. [2- 14C]Adrenic acid (22:4(n-6)) was desaturated to 22:5(n-6) and elongated to 24:4(n-6) in all three cell lines and to the largest extent in the Zellweger fibroblasts. This agrees with the view that the delta 4-desaturase is not a peroxisomal enzyme. The observation that the retroconversion of 22:6(n-3) to 20:5(n-3) is deficient in Zellweger fibroblasts strongly suggest that the beta-oxidation step in the retroconversion is a peroxisomal function. Peroxisomal very-long-chain (lignoceroyl) CoA ligase is probably not required for the activation of 22:6(n-3), since the retroconversion to 20:5(n-3) is normal in X-ALD fibroblasts.  相似文献   

19.
Astrocytes convert n-6 fatty acids primarily to arachidonic acid (20:4n-6), whereas n-3 fatty acids are converted to docosapentaenoic (22:5n-3) and docosahexaenoic (22:6n-3) acids. The utilization of 20-, 22- and 24-carbon n-3 and n-6 fatty acids was compared in differentiated rat astrocytes to determine the metabolic basis for this difference. The astrocytes retained 81% of the arachidonic acid ([(3)H]20:4n-6) uptake and retroconverted 57% of the docosatetraenoic acid ([3-(14)C]22:4n-6) uptake to 20:4n-6. By contrast, 68% of the eicosapentaenoic acid ([(3)H]20:5n-3) uptake was elongated, and only 9% of the [3-(14)C]22:5n-3 uptake was retroconverted to 20:5n-3. Both tetracosapentaenoic acid ([3-(14)C]24:5n-3) and tetracosatetraenoic acid ([3-(14)C]24:4n-6) were converted to docosahexaenoic acid (22:6n-3) and 22:5n-6, respectively. Therefore, the difference in the n-3 and n-6 fatty acid products formed is due primarily to differences in the utilization of their 20- and 22-carbon intermediates. This metabolic difference probably contributes to the preferential accumulation of docosahexaenoic acid in the brain.  相似文献   

20.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号