首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human minisatellite probes cross-hybridize to mouse DNA and detect multiple variable loci. The resulting DNA "fingerprints" vary substantially between inbred strains but relatively little within an inbred strain. By studying the segregation of variable DNA fragments in BXD recombinant inbred strains of mice, at least 13 hypervariable loci were defined, 8 of which could be regionally assigned to mouse chromosomes. The assigned loci are autosomal, dispersed and not preferentially associated with centromeres or telomeres. One of these minisatellites is complex, with alleles 90 kb or more long and with internal restriction endonuclease cleavage sites which produce a minisatellite "haplotype" of multiple cosegregating fragments. In addition, one locus shows extreme germ-line instability and should provide a useful system for studying more directly the rates and processes of allelic variation of minisatellites.  相似文献   

2.
We present a rapid and efficient method for the isolation of minisatellite loci from human DNA. The method combines cloning a size-selected fraction of human MboI DNA fragments in a charomid vector with hybridization screening of the library in ordered array. Size-selection of large MboI fragments enriches for the longer, more variable minisatellites and reduces the size of the library required. The library was screened with a series of multi-locus probes known to detect a large number of hypervariable loci in human DNA. The gridded library allowed both the rapid processing of positive clones and the comparative evaluation of the different multi-locus probes used, in terms of both the relative success in detecting hypervariable loci and the degree of overlap between the sets of loci detected. We report 23 new human minisatellite loci isolated by this method, which map to 14 autosomes and the sex chromosomes.  相似文献   

3.
We report here for the first time the large-scale isolation of hypervariable minisatellite DNA sequences from a non-human species, the Indian peafowl (Pavo cristatus). A size-selected genomic DNA fraction, rich in hypervariable minisatellites, was cloned into Charomid 9-36. This library was screened using two multilocus hypervariable probes, 33.6 and 33.15 and also, in a "probe-walking" approach, with five of the peafowl minisatellites initially isolated. Forty-eight positively hybridizing clones were characterized and found to originate from 30 different loci, 18 of which were polymorphic. Five of these variable minisatellite loci were studied further. They all showed Mendelian inheritance. The heterozygosities of these loci were relatively low (range 22-78%) in comparison with those of previously cloned human loci, as expected in view of inbreeding in our semicaptive study population. No new length allele mutations were observed in families and the mean mutation rate per locus is low (less than 0.004, 95% confidence maximum). These loci were also investigated by cross-species hybridization in related taxa. The ability of the probes to detect hypervariable sequences in other species within the same avian family was found to vary, from those probes that are species-specific to those that are apparently general to the family. We also illustrate the potential usefulness of these probes for paternity analysis in a study of sexual selection, and discuss the general application of specific hypervariable probes in behavioral and evolutionary studies.  相似文献   

4.
DNA fingerprints of poultry   总被引:2,自引:0,他引:2  
Human minisatellite probes cross-hybridize to DNA of several species of poultry (chicken, duck, turkey and goose), and detect high levels of polymorphism. The resulting DNA fingerprints are individual specific, and allow the discrimination even between closely related birds. The pattern of poultry DNA fingerprints is different from that of humans and other animals, having a higher average proportion of large DNA fragments. Pedigree analysis revealed a low number of allelic pairs of variable DNA fragments, indicating that most of the alleles are unresolved in the DNA fingerprint or too small to be detected. The total number of detectable loci in broilers, using probe 33.6, was estimated as 62, of which 13 loci are on average scoreable and available for use. Poultry DNA fingerprints can be used for individual identification, linkage studies and as an aid in breeding programmes.  相似文献   

5.
Tandem-repetitive DNA hybridization probes based on a putative human recombination signal detect multiple polymorphic minisatellite fragments in human DNA. The genetic complexity of the resulting individual-specific DNA "fingerprints" was investigated by studying a large sibship affected by neurofibromatosis and a more extensive pedigree segregating for two different hemoglobinopathies. The segregation of up to 41 different heterozygous DNA fragments from each parent could be analyzed in a single sibship, using two different repeat probes. Most of these variable DNA fragments could not be paired as alleles, to an extent which suggests that the DNA fingerprints are together derived from approximately 60 heterozygous loci (approximately 120 variable fragments), only a proportion of which can be scored in a given individual. Two or three of the DNA fragments detected by one probe showed tight linkage and may be derived from long minisatellite(s) that are cleaved to produce more than one polymorphic DNA fragment. Excluding allelic and linked DNA fragments, almost all remaining scorable fragments segregated independently, allowing up to 34 unlinked loci to be examined simultaneously. These loci are scattered over most or all of the human autosomes. Minisatellite probes are therefore suitable for rapid marker generation and can be applied to linkage analysis in human pedigrees.  相似文献   

6.
Summary. Human minisatellite probes cross-hybridize to DNA of several species of poultry (chicken, duck, turkey and goose), and detect high levels of polymorphism. The resulting DNA fingerprints are individual specific, and allow the discrimination even between closely related birds. The pattern of poultry DNA fingerprints is different from that of humans and other animals, having a higher average proportion of large DNA fragments. Pedigree analysis revealed a low number of allelic pairs of variable DNA fragments, indicating that most of the alleles are unresolved in the DNA fingerprint or too small to be detected. The total number of detectable loci in broilers, using probe 33.6, was estimated as 62, of which 13 loci are on average scoreable and available for use. Poultry DNA fingerprints can be used for individual identification, linkage studies and as an aid in breeding programmes.  相似文献   

7.
The human minisatellite probes 33.6 and 33.15 cross-hybridized to DNA digests of Atlantic salmon, brown trout and rainbow trout revealing complex multi-banded patterns. These DNA fingerprints (in excess of 40 resolvable fragments in some cases) were highly polymorphic, individual specific and found to be stable, both somatically and in the germline. Pedigree analysis of an Atlantic salmon family confirmed that the minisatellite fragments showed Mendelian inheritance. With only a single occurrence of linkage and allelism being observed it is likely the minisatellite loci are widely distributed throughout the salmonid genome. The potential applications for both multi- and single locus minisatellite probes in salmonid research are discussed.  相似文献   

8.
Preparation of synthetic tandem-repetitive probes for DNA fingerprinting   总被引:1,自引:0,他引:1  
DNA fingerprints are generated using probes that hybridize to hypervariable minisatellites, also known as variable number tandem repeat loci. Cloned minisatellites have served as the predominant source of DNA fingerprinting probes. A short segment within the repeat units of minisatellites, called the "core" sequence, is highly conserved within a family of related minisatellites, thereby allowing a single-cloned minisatellite to cross-hybridize to 20 to 40 other minisatellites. In this article, we describe a method for the synthetic preparation of polymeric core sequence probes for DNA fingerprinting. Unlike "monomeric" oligonucleotide probes, the polymeric probes mimic the tandem-repetitive structure of minisatellites, and thus each probe molecule can potentially form many sites of hybridization with a target minisatellite. The synthetic probes are cloned into plasmid DNA to provide a perpetual source of probe material.  相似文献   

9.
DNA fingerprints of dogs and cats   总被引:26,自引:0,他引:26  
Human minisatellite probes consisting of tandem repeats of the 'core' sequence, a putative recombination signal in human DNA, cross-hybridize to multiple polymorphic fragments in dog and cat DNA to produce individual-specific DNA 'fingerprints'. Pedigree analysis shows that most of the DNA fragments detected in an individual are heterozygous, and that these fragments are derived from multiple dispersed autosomal loci. DNA fingerprints of cats and dogs should prove suitable for individual identification and for establishing family relationships. They are also suitable for rapid marker generation in large pedigrees and could be applied to linkage analysis in these animals.  相似文献   

10.
Application of DNA fingerprints for cell-line individualization.   总被引:9,自引:1,他引:8       下载免费PDF全文
DNA fingerprints of 46 human cell lines were derived using minisatellite probes for hypervariable genetic loci. The incidence of 121 HaeIII DNA fragments among 33 cell lines derived from unrelated individuals was used to estimate allelic and genotypic frequencies for each fragment and for composite individual DNA fingerprints. We present a quantitative estimate of the extent of genetic difference between individuals, an estimate based on the percentage of restriction fragments at which they differ. The average percent difference (APD) among pairwise combinations from the population of 33 unrelated cell lines was 76.9%, compared with the APD in band sharing among cell lines derived from the same individual (less than or equal to 1.2%). Included in this survey were nine additional cell lines previously implicated as HeLa cell derivatives, and these lines were clearly confirmed as such by DNA fingerprints (APD less than or equal to 0.6%). On the basis of fragment frequencies in the tested cell line population, a simple genetic model was developed to estimate the frequencies of each DNA fingerprint in the population. The median incidence was 2.9 X 10(-17), and the range was 2.4 X 10(-21) to 6.6 X 10(-15). This value approximates the probability that a second cell line selected at random from unrelated individuals will match a given DNA fingerprint. Related calculations address the chance that any two DNA fingerprints would be identical among a large group of cell lines. This estimate is still very slight; for example, the chance of two or more common DNA fingerprints among 1 million distinct individuals is less than .001. The procedure provides a straightforward, easily interpreted, and statistically robust method for identification and individualization of human cells.  相似文献   

11.
Summary We have compared band sharing between the DNA fingerprints of members of an inbred human population with band sharing between members of an outbred population. It had not previously been determined whether the high rate of mutation at minisatellite loci is sufficient to prevent an increase in band sharing in moderately inbred populations. We have found that there is an increase in band sharing in the 2-kb to 9-kb size range, but not in the >9-kb size range, in the inbred population. The difference was consistently observed using four different multi-locus probes, viz. 33.6, 33.15, (CAC)5 and M13. Thus, we have demonstrated that moderate but prolonged inbreeding can lead to increased similarity in human DNA fingerprints. This should be considered when analysing DNA fingerprints in forensic or paternity cases involving members of an inbred community.  相似文献   

12.
A concept for the application of complex pedigree analysis to multilocus DNA fingerprinting is described. By following this approach, the extent to which the DNA fingerprints of grandparents influence the phenotype likelihoods of their offspring was determined. It was demonstrated by simulation that approximately 90% of paternity disputes can be solved if mother, child, and paternal grandparents, instead of the putative father, are tested. If only phenotype information on a single paternal sib is allowed for, true paternity will be detected with reasonable persuasive power in up to 64% of cases. Exclusion of false paternity remains possible for 40% of cases. Finally, the analysis concept is modified by reducing the number of genotype variations considered in likelihood computations. This time-saving procedure is shown to yield sufficiently accurate likelihoods in the analysis of both simulation data and multilocus DNA fingerprints obtained in two large families.  相似文献   

13.
The series of hypervariable, “minisatellite” loci characterized byJeffreys and coworkers in the human myoglobin gene have proved to be DNA sequences highly conserved throughout the eukaryotic genome, and hence the methodology developed for human DNA “fingerprinting” has found immediate application in an ever expanding number of species. Primatologists have not been slow to profit from a method which predicts individual recognition to a very high degree of probability, and initial studies have focused on paternity allocation (rather than paternity exclusion, as designated by the classical biochemical markers), adaptive aspects of socio-sexual behaviour patterns and mating systems. A number of probes with sequences corresponding to the common minisatellite core sequences have been used for probing genomic DNA, and synthetic, G-rich oligonucleotides (15 – 37 bases), corresponding to the core sequence of the minisatellite repeat unit, or simply di-, tri-, or tetranucleotide repeats, appear to be equally discriminatory. The multiple banding patterns produced on hybridization of these probes to restriction enzyme digests of DNA provide an advantage in that the probability of two unrelated individuals sharing the same banding pattern will be low. However, the uncertainty of linkage of the multiple loci identified precludes genotyping and population genetic analyses based on allele frequencies. In contrast, single locus analysis allows DNA typing using variable number tandem repeat (VNTR) or restriction fragment length (RFLP) DNA polymorphisms, and the merits and drawbacks relative to DNA fingerprinting are discussed. For the behavioural primatologists dealing with defined, accessible troops of primates, the value of multilocus DNA fingerprinting, in terms of established methodology and availability of probes applicable to species as phylogenetically wide-ranging as apes and prosimians, may well outweigh the loss of genotypic and population structure data.  相似文献   

14.
Minisatellite DNA markers in the chicken genome   总被引:1,自引:0,他引:1  
This paper reports the detailed characterization of multilocus minisatellite DNA fingerprints in the chicken. Results are presented of DNA fingerprint segregation analyses carried out in three chicken pedigrees, calculating the number of detected loci, testing for Mendelian inheritance, and cosegregation among fingerprint bands. Two pedigrees (families 1 and 2) were analysed using the Jeffreys probes 33.6 and 33.15 only, and one pedigree (family 3) was analysed using 33.6, 33.15. 3′α-globin HVR and M13 protein III gene repeat. Mean band transmission frequencies in families 1 and 2 were near to the Mendelian expectation of 0.5 and no mutations were observed. Family 3 showed transmission frequencies slightly exceeding 0.5. Linkage among bands was higher than observed in some other avian species, with each allele represented by a mean of 1.48 HaeIII fragments. Cosegregation of heterozygous parental fragments representing distinguishable loci followed the expected binomial distribution. The number of minisatellites detectable by the four probes was estimated to be 217. The pattern of cosegregation among those minisatellite loci was tested against that expected for different levels of recombination through the use of a simulation model. We conclude that most minisatellites are unlinked and probably widely dispersed in the chicken genome.  相似文献   

15.
The M13.13 minisatellite probe, consisting of a polymer of the M13 VNTR consensus sequence, cross-hybridized to ovine DNA and allowed detection of several polymorphic loci. Individual specific patterns were obtained in sheep using this probe. Pedigree analysis showed that individuals were heterozygous for most of the DNA fragments detected (88%). By studying the segregation of male's variable DNA fragments, a minimum of 10 loci were defined. The ovine DNA 'fingerprint' obtained with M13.13 is polymorphic enough to be used efficiently in animal identification, paternity testing, and possibly as a source of genetic markers for linkage analysis.  相似文献   

16.
 A high level of genetic polymorphism was detected among Indian isolates of Xanthomonas oryzae pv. oryzae using hypervariable probes such as a microsatellite oligonucleotide, probe (TG)10, a human minisatellite probe, pV47, an avirulence gene probe, avrXa10 and a repeat clone, pBS101. These DNA probes detected multiple loci in the bacterial genome generating complex DNA fingerprints and differentiated all of the bacterial isolates. Analysis of fingerprints indicated that pV47, (TG)10 and pBS101 have a lower probability of identical match than avrXa10 and therefore are potential probes for DNA fingerprinting and variability analysis of Xanthomonas oryzae pv. oryzae pathogen populations. Cluster analysis based on hybridization patterns using all of the above probes showed five groups at 56% similarity. Studies on the methylation patterns of isolates representing the three important races of X. oryzae pv. oryzae indicated more methylation in the most virulent isolate, suggesting a possible role of methylation in pathogenicity. Received: 8 December 1996 / Accepted: 20 December 1996  相似文献   

17.
DNA fingerprinting allows the simultaneous detection of a large number of hypervariable loci consisting of highly polymorphic tandem repeat units that are extensively dispersed in the genome. With the 33.6 human minisatellite probe, hypervariable fragments were detected, for the first time, in the genome of three different species of wild-caught neotropical primates: Aotus infulatus, Aotus azarae, and Cebus apella. As in the human, these species were highly polymorphic, showing distinctive, individual-specific patterns. Estimates of relatedness within each group were calculated from interspecific comparisons based on the number of shared fragments between individuals. This work shows that the 33.6 human minisatellite probe can be very useful for increasing our understanding of population dynamics and behavior of these species in their natural habitat. © 1996 Wiley-Liss, Inc.  相似文献   

18.
A multi-locus DNA probe, R18.1, derived from a bovine genomic library, detected DNA fingerprints of highly polymorphic loci in hybridization to genomic DNA from poultry and sheep, and of moderate polymorphic loci in cattle and human DNA. The average numbers of detected bands in chickens and sheep were 27.8 and 21.4, and the average band sharing levels were 0.25 and 0.33, respectively. In hybridization to cattle and human DNA, the results were less polymorphic; nevertheless, individual identification is feasible using probe R18.1. The results obtained by R18.1 were compared to results obtained by Jeffreys minisatellite probe 33.6 and two microsatellite oligonucleotides, (GT)12 and (GTG)5. The total number of detected loci using probes R18.1 and 33.6 were estimated in chickens through family analysis of broilers and the maximal number of detectable loci was calculated.  相似文献   

19.
We report the use of hypervariable simple sequence repeat (SSR) nuclear loci to study paternity in a community of wild chimpanzees ( Pan troglodytes schweinfurthii ) in Gombe National Park, Tanzania. All 43 living members of a habituated community were sampled and 35 were genotyped at 8 SSR loci using DNA amplified from hair. Paternity exclusions were performed for 25 chimpanzees including 10 for whom the mother was also genotyped. In each case 12–20 males were potential fathers based on their age and/ or direct observation of sexual behaviour. 179 tests involving potential father/offspring combinations were performed. In four cases the data permit the probable identification of the previously undetermined father; these are the first such determinations for free-ranging chimpanzees, and the first based on non-invasive sampling. In another four cases we were able to exclude all but two to five potential fathers, and in the remaining cases we were able to exclude all living males. For molecular ecologists SSR genotype databases offer important advantages over currently popular minisatellite DNA fingerprinting: they can be analysed unequivocally using traditional population genetics techniques and they can be expanded through time and space by other researchers.  相似文献   

20.
We describe the first application of the charomid-cloning method for developing single-locus minisatellite DNA probes in a terrestrial arthropod. From a genomic library of the neotropical pseudoscorpion, Cordylochernes scorpioides , we have isolated two probes with heterozygosities exceeding 95%. These probes yielded single-locus patterns after only low stringency washing and in the absence of genomic competitor DNA. Analysis of three pedigrees indicated germline stability and showed no evidence of linkage between the loci. Patterns of allelic transmission generally conformed closely to Mendelian expectations but large offspring numbers did enable detection of one example of significant bias in allele inheritance. Two test cases are presented to illustrate the clarity and power with which these probes can establish paternity: (i) a female mated to three unrelated males, and (ii) a female mated to two of her brothers. In both cases, a single probe could be used to assign the paternity of all offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号