首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ion transporters such as Na(+)/H(+) exchanger (NHE), Cl(-)/HCO(3)(-) exchanger (AE), and Na(+)/HCO(3)(-) cotransporter (NBC) are known to contribute to the intracellular pH (pH(i)) regulation during agonist-induced stimulation. This study examined the mechanisms for the pH(i) regulation in the mouse parotid and sublingual acinar cells using the fluorescent pH-sensitive probe, BCECF. The pH(i) recovery from agonist-induced acidification in the sublingual acinar cells was completely blocked by EIPA, a NHE inhibitor. However, the parotid acinar cells required DIDS, a NBC1 inhibitor, in addition to EIPA in order to block the pH(i) recovery. Moreover, RT-PCR analysis detected the expression of pancreatic NBC1 (pNBC1) only in the parotid acinar cells. These results provide strong evidence that the mechanisms for the pH(i) regulation are different in the two types of acinar cells, and pNBC1 contributes to pH(i) regulation in the parotid acinar cells, whereas NHE is likely to be the exclusive pH(i) regulator in the sublingual acinar cells.  相似文献   

2.
In the rat, pancreatic HCO(-)(3) secretion is believed to be mediated by duct cells with an apical Cl(-)/HCO(-)(3) exchanger acting in parallel with a cAMP-activated Cl(-) channel and protons being extruded through a basolateral Na(+)/H(+) exchanger. However, this may not be the only mechanism for HCO(-)(3) secretion by the rat pancreas. Recently, several members of electrogenic Na(+)/HCO(-)(3) cotransporters (NBC) have been cloned. Here we report the cloning of a NBC from rat pancreas (rpNBC). This rpNBC is 99% identical to the longer, more common form of NBC [pNBC; 1079 amino acids (aa); 122 kDa in human heart, pancreas, prostate, and a minor clone in kidney]. The longer NBC isoforms are identical to the rat and human kidney-specific forms (kNBC; 1035 aa; 116 kDa) at the approximately 980 C-terminal aa's and are unique (with different lengths) at the initial N-terminus. Using polyclonal antibodies to the common N- and C-termini of rat kidney NBC, a approximately 130-kDa protein band was labeled by immunoblotting of rat pancreas homogenate and was enriched in the plasma membrane fraction. Immunofluorescence and immunoperoxidase light microscopy of rat pancreatic tissue with both antibodies revealed basolateral labeling of acinar cells. Labeling of both apical and basolateral membranes was found in centroacinar cells, intra- and extralobular duct, and main duct cells. The specificity of the antibody labeling was confirmed by antibody preabsorption experiments with the fusion protein used for immunization. The data suggest that rpNBC likely plays a more important role in the transport of HCO(-)(3) by rat pancreatic acinar and duct cells than previously believed.  相似文献   

3.
Previous studies provided functional evidence for electrogenic Na+-HCO3 cotransport in hepatocytes and in intrahepatic bile duct cholangiocytes. The molecular identity of the transporters mediating electrogenic sodium-bicarbonate cotransport in the liver is currently unknown. Of the known electrogenic Na+-HCO3 cotransporters (NBC1 and NBC4), we previously showed that NBC4 mRNA is highly expressed in the liver. In the present study, we performed RT-PCR, immunoblotting, and immunohistochemistry to characterize the expression pattern of NBC4 in rat liver and kidney. For immunodetection, a polyclonal antibody against rat NBC4 was generated and affinity purified. Of the known human NBC4 variants, only the rat NBC4c ortholog was detected by RT-PCR in rat liver, and the molecular mass of the NBC4c protein was 145 kDa. NBC4c protein was expressed in hepatocytes and in the cholangiocytes lining the intrahepatic bile ducts. In hepatocytes, NBC4c was localized to the basolateral plasma membrane, whereas intrahepatic cholangiocytes stained apically. The NBC1 electrogenic sodium cotransporter variants kNBC1 and pNBC1 were not detected by immunoblotting and immunohistochemistry in rat liver. The pattern of localization of NBC4c in the liver suggests that the cotransporter plays a role in mediating Na+-HCO3 cotransport in hepatocytes and intrahepatic cholangiocytes. Unlike the liver, the rat kidney expressed electrogenic sodium-bicarbonate cotransporter proteins kNBC1 and NBC4c. In kidney, NBC4c also had a molecular mass of 145 kDa and was immunolocalized to uroepithelial cells lining the renal pelvis, where the cotransporter may play an important role in protecting the renal parenchyma from alterations in urine pH. bicarbonate; transport; electrogenic  相似文献   

4.
5.
6.
Functional studiessupport the presence of the Na+-HCO3cotransporter (NBC) in corneal endothelium and possibly cornealepithelium; however, molecular identification and membrane localizationhave not been reported. To test whether NBC is expressed in bovine cornea, Western blotting was performed, which showed a single band at~130 kDa for freshly isolated and cultured endothelial cells, but noband for epithelium. Two isoforms of NBC have recently been cloned inkidney (kNBC) and pancreas (pNBC). RT-PCR was run using cultured andfresh bovine corneal endothelial and fresh corneal epithelial total RNAand specific primers for kNBC and pNBC. RT-PCR analysis for pNBC waspositive in endothelium and weak in epithelium. The RT-PCR product wassubcloned and confirmed as pNBC by sequencing. No specific bands forkNBC were obtained from corneal cells. Indirect immunofluorescence andconfocal microscopy indicated that NBC locates predominantly to thebasolateral membrane in corneal endothelial cells. Furthermore,Na+-dependent HCO3 fluxes andHCO3-dependent cotransport with Na+ wereelicited only from the basolateral side of corneal endothelial cells.Therefore, we conclude that pNBC is present in the basolateral membraneof both fresh and cultured bovine corneal endothelium and weaklyexpressed in the corneal epithelium.

  相似文献   

7.
The Na(+)-HCO(3)(-) cotransporter (NBC) mediates HCO(3)(-) import into the colonocyte via its pNBC1 isoform. Whereas renal kNBC1 is inhibited by increased cAMP levels, pNBC1 is stimulated. Cholinergic stimulation activates renal NBC, but the effect on intestinal NBC is unknown. Therefore, crypts were isolated from the murine proximal colon by Ca(2+) chelation and loaded with the pH-sensitive dye 2',7'-bis-carboxyethyl-5,6-carboxyfluorescein. Na(+)-HCO(3)(-) cotransport activity was calculated from the dimethylamiloride-insensitive (500 microM) intracellular pH recovery from an acid load in the presence of CO(2)-HCO(3)(-) and the intracellular buffering capacity. Carbachol strongly increased Na(+)-HCO(3)(-) cotransport activity compared with control rates. Ca(2+) chelation with BAPTA-AM, blockade of the M(3) subtype of muscarinergic receptors with 4-diphenylacetoxy-N-methylpiperidine methiodide, and inhibition of Ca(2+)/calmodulin kinase II with KN-62 all caused significant inhibition of the carbachol-induced NBC activity increase. Furthermore, PKC inhibition with G?-6976 and G?-6850 significantly reduced the carbachol effect, which may be related to the unique NH(2)-terminal consensus site for PKC-dependent phosphorylation of pNBC1. We conclude that NBC in the murine colon is thus activated by carbachol, consistent with its presumed function as an anion uptake pathway during intestinal anion secretion, but that the signal transductions pathways are distinct from those involved in the cholinergic activation of renal NBC1.  相似文献   

8.
Tissue function is regulated by the extracellular microenvironment including cell basement membranes, in which laminins are a major component. Previously, we found that laminin-1 promotes differentiation and survival of pancreatic islet cells. Here we characterize the expression pattern of laminins and their integrin receptors in adult pancreas. Although they are expressed in the basement membrane of acinar cells and duct epithelium, no laminin chains examined were detected extracellularly in the pancreatic islets. In contrast to laminin beta(1)- and gamma(1)-chains, the alpha(1)-chain, unique to laminin-1, was not detected. Laminin-10 (alpha(5)beta(1)gamma(1)) was expressed in acinar tissue, whereas laminins-2 (alpha(2)beta(1)gamma(1)) and -10 were expressed in the blood vessels. The laminin connector molecule, nidogen-1, had a distribution similar to that of laminin beta(1) and gamma(1), whereas fibulin-1 and -2, which compete with nidogen-1, were mostly confined to blood vessels. Integrin subunits alpha(6) and alpha(3) were detected in acinar cells and duct epithelial cells, but alpha(6) was absent in islet cells. Integrin alpha(6)beta(4) was detected only in duct cells, alpha(6)beta(1) in both acinar and ductal cells, and alpha(3)beta(1) in acinar, duct, and islet cells. These findings are a basis for further investigation of the role of extracellular matrix molecules and their receptors in pancreas function.  相似文献   

9.
We have shown that the pro-inflammatory mediator LTD4, via its G-protein-coupled receptor CysLT1, signals through both pertussis-toxin-sensitive and -insensitive G-proteins to induce various cellular responses. To further characterise the initial step of the different signalling pathways emanating from the CysLT1 receptor, we transfected intestinal epithelial cells, Int 407, with different mini vectors that each express a specific inhibitory peptide directed against a unique alpha subunit of a specific heterotrimeric G-protein. Our results revealed that LTD4-induced stress fibre formation is inhibited approximately 80% by a vector expressing an inhibitory peptide against the pertussis-toxin-insensitive Galpha12-protein in intestinal epithelial Int 407 cells. Control experiments revealed that the LPA-induced stress fibre formation, mediated via the Galpha12-protein in other cell types, was blocked by the same peptide in intestinal Int 407 cells. Furthermore, the CysLT1-receptor-mediated calcium signal and activation of the proliferative ERK1/2 kinase are blocked in cells transfected with a vector expressing an inhibitory peptide against the Galphai3-protein, whereas in cells transfected with an empty ECFP-vector or vectors expressing inhibitory peptides against the Galphai1-2-, Galpha12-, GalphaR-proteins these signals are not significantly affected. Consequently, the CysLT1 receptor has the capacity to activate at least two distinctly different heterotrimeric G-proteins that transduce activation of unique downstream cellular events.  相似文献   

10.
目的:探讨碳酸氢钠协同转运载体(NBC1)在大鼠胰腺胚胎发育期不同阶段核酸、蛋白水平的动态变化以及在腺泡和β细胞的定位表达。方法:采用高密度寡核苷酸芯片对孕12.5 d(E12.5)、E15.5、E18.5、新生和成年胰腺进行基因转录水平分析,用RT-PCR和Western blot分别验证了NBC1核酸和蛋白在E15.5、E18.5、新生和成年时期胰腺中的表达情况,用Double fluorescence immunohistochemistry分析了NBC1在E18.5、新生和成年时期胰腺腺泡和β细胞的定位表达。结果:在大鼠胰腺胚胎发育过程中,NBC1核酸、蛋白在E18.5时特异高表达,新生下降直至成年最低;在腺泡基底侧膜和β细胞膜有强烈的阳性信号,且在成年胰腺中β细胞膜阳性信号较腺泡基底侧膜强。NBC1的表达变化与其功能近似基因的表达趋势相反,而与其协同发挥作用的基因及胰腺特异基因的表达趋势一致。结论:NBC1在胰腺发育过程中不仅与结构形成而且与功能发挥相关。  相似文献   

11.
Patterns of salivary HCO secretion vary widely among species and among individual glands. In particular, virtually nothing is known about the molecular identity of the HCO transporters involved in human salivary secretion. We have therefore examined the distribution of several known members of the Na(+)-HCO cotransporter (NBC) family in the parotid and submandibular glands. By use of a combination of RT-PCR and immunoblotting analyses, the electroneutral cotransporters NBC3 and NBCn1 mRNA and protein expression were detected in both human and rat tissues. Immunohistochemistry demonstrated that NBC3 was present at the apical membranes of acinar and duct cells in both human and rat parotid and submandibular glands. NBCn1 was strongly expressed at the basolateral membrane of striated duct cells but not in the acinar cells in the human salivary glands, whereas little or no NBCn1 labeling was observed in the rat salivary glands. The presence of NBCn1 at the basolateral membrane of human striated duct cells suggests that it may contribute to ductal HCO secretion. In contrast, the expression of NBC3 at the apical membranes of acinar and duct cells in both human and rat salivary glands indicates a possible role of this isoform in HCO salvage under resting conditions.  相似文献   

12.
The difference of Ca(2+) mobilization induced by muscarinic receptor activation between parotid acinar and duct cells was examined. Oxotremorine, a muscarinic-cholinergic agonist, induced intracellular Ca(2+) release and extracellular Ca(2+) entry through store-operated Ca(2+) entry (SOC) and non-SOC channels in acinar cells, but it activated only Ca(2+) entry from non-SOC channels in duct cells. RT-PCR experiments showed that both types of cells expressed the same muscarinic receptor, M3. Given that ATP activated the intracellular Ca(2+) stores, the machinery for intracellular Ca(2+) release was intact in the duct cells. By immunocytochemical experiments, IP(3)R2 colocalized with M3 receptors in the plasma membrane area of acinar cells; in duct cells, IP(3)R2 resided in the region on the opposite side of the M3 receptors. On the other hand, purinergic P2Y2 receptors were found in the apical area of duct cells where they colocalized with IP(3)R2. These results suggest that the expression of the IP(3)Rs near G-protein-coupled receptors is necessary for the activation of intracellular Ca(2+) stores. Therefore, the microenvironment probably affects intracellular Ca(2+) release and Ca(2+) entry.  相似文献   

13.
Summary An antibody to the 96 kD -subunit of the Na+, K+ -ATPase from Bufo marinus has been used in immunostaining rat kidney and salivary glands. Intense staining was observed on basolateral membranes of distal tubules of the kidney and striated ducts of the three major salivary glands. Less intense staining was seen on the basolateral membranes of parotid acinar cells, but no staining was seen on the acinar cells of submandibular or sublingual glands. These sites of staining have been shown, by other methods, to posses substantial Na+, K+ -ATPase, indicating that the antibody recognizes antigenic determinants of the sodium pump highly conserved in the course of evolution. In addition, staining with this antibody was observed at the apical region of cells of the proximal straight tubule and of the papillary collecting duct in the kidney. Absorption studies suggest that the apical antigenic determinants are the same or closely related to each other but are distinct from basolateral antigenic determinants.  相似文献   

14.
The sodium bicarbonate cotransporter (NBC1) mediates bicarbonate reabsorption in the renal proximal tubule. NBC1 activity is stimulated by 10% CO2, however, the mechanism is poorly understood. Here, we examined the mechanism of NBC1 regulation by 10% CO2 using an immortalized human proximal tubule cell line (HK2). In cells exposed to 10% CO2, the cotransporter activity (measured as ΔpH/min) increased within minutes and this increase was maintained for 6 to 24 h. Early NBC1 stimulation was accompanied by increased NBC1 phosphorylation. Basolateral membrane NBC1 protein increased by 30 min and reached a maximum at 6 h. Increased NBC activity at 6 h was accounted for by increased NBC exocytosis to the basolateral membrane and not by decreased endocytosis. Latruncullin B (an actin cytoskeleton inhibitor) did not prevent CO2-induced stimulation, while nocodazole (a microtubule-disrupting agent) abrogated the stimulatory effect of 10% CO2. A significant increase in NBC1 mRNA expression level was observed at 6 h and maintained for 24 h. Total NBC1 protein increased at 12 to 24 h with 10% CO2 incubation and this effect was blocked by cycloheximide. In summary, the present study demonstrates that early activation of NBC1 activity by 10% CO2 was mediated by NBC1 phosphorylation. The stimulation of cotransporter activity observed at 6 h was due to exocytosis, while the late effect starting from 12 h was accounted for by increased protein synthesis.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

15.
Patterns of salivary HCO(3)(-) secretion vary and depend on species and gland types. However, the identities of the transporters involved in HCO(3)(-) transport and the underlying mechanism of intracellular pH (pH(i)) regulation in salivary glands still remain unclear. In this study, we examined the expression of the Na(+)-HCO(3)(-) cotransporter (NBC) and its role in pH(i) regulation in guinea pig salivary glands, which can serve as an experimental model to study HCO(3)(-) transport in human salivary glands. RT-PCR, immunohistochemistry, and pH(i) measurements from BCECF-AM-loaded cells were performed. The amiloride-sensitive Na(+)/H(+) exchanger (NHE) played a putative role in pH(i) regulation in salivary acinar cells and also appeared to be involved in regulation in salivary ducts. In addition to NHE, NBC also played a role in pH(i) regulation in both acini and ducts. In the parotid gland, NBC1 was functionally expressed in the basolateral membrane (BLM) of acinar cells and the luminal membrane (LM) of ducts. In the submandibular gland, NBC1 was expressed only in the BLM of ducts. NBC1 expressed in these two types of salivary glands takes up HCO(3)(-) and is involved in pH(i) regulation. Although NBC3 immunoreactivity was also detected in submandibular gland acinar cells and in the ducts of both glands, it is unlikely that NBC3 plays any role in pH(i) regulation. We conclude that NBC1 is functionally expressed and plays a role in pH(i) regulation in guinea pig salivary glands but that its localization and role are different depending on the type of salivary glands.  相似文献   

16.
Serine protease inhibitor Kazal type 1 (SPINK1; mouse homologue Spink3) was initially discovered as a trypsin-specific inhibitor in the pancreas. However, previous studies have suggested that SPINK1/Spink3 is expressed in a wide range of normal tissues and tumors, although precise characterization of its gene expression has not been described in adulthood. To further analyze Spink3 expression, we generated two mouse lines in which either lacZ or Cre recombinase genes were inserted into the Spink3 locus by Cre-loxP technology. In Spink3lacZ mice, β-galactosidase activity was found in acinar cells of the pancreas and kidney, as well as epithelial cells of the bronchus in the lung, but not in the gastrointestinal tract or liver. Spink3cre knock-in mice were crossed with Rosa26 reporter (R26R) mice to monitor Spink3 promoter activity. In Spink3cre;R26R mice, β-galactosidase activity was found in acinar cells of the pancreas, kidney, lung, and a small proportion of cells in the gastrointestinal tract and liver. These data suggest that Spink3 is widely expressed in endoderm-derived tissues, and that Spink3cre knock-in mice are a useful tool for establishment of a conditional knockout mice to analyze Spink3 function not only in normal tissues, but also in tumors that express SPINK1/Spink3.  相似文献   

17.
Isolation of pure beta cells of the rat pancreas was achieved employing counterflow sedimentation technique (CST) followed by density gradient centrifugation technique (DGCT). The proportion of non-endocrine cells to beta cells was minimal (1 acinar cell in 296 beta cells, and 1 duct cell in 300 beta cells) with total absence of alpha and delta cells. Oxidation of D-(U-14C) glucose to 14CO2 by the isolated beta cells was linear to time. Glucagon (1, 5, or 10 nM) or arginine (1, 5 or 10 mM) produced concentration dependent insulin secretion. Thus, a highly purified preparation of isolated beta cells of rat pancreas could be obtained with excellent morphologic, metabolic and functional integrity.  相似文献   

18.
Cholinergic agonists are major stimuli for fluid secretion in parotid acinar cells. Saliva bicarbonate is essential for maintaining oral health. Electrogenic and electroneutral Na(+)-HCO(3)(-) cotransporters (NBCe1 and NBCn1) are abundant in parotid glands. We previously reported that angiotensin regulates NBCe1 by endocytosis in Xenopus oocytes. Here, we studied cholinergic regulation of NBCe1 and NBCn1 membrane trafficking by confocal fluorescent microscopy and surface biotinylation in parotid epithelial cells. NBCe1 and NBCn1 colocalized with E-cadherin monoclonal antibody at the basolateral membrane (BLM) in polarized ParC5 cells. Inhibition of constitutive recycling with the carboxylic ionophore monensin or the calmodulin antagonist W-13 caused NBCe1 to accumulate in early endosomes with a parallel loss from the BLM, suggesting that NBCe1 is constitutively endocytosed. Carbachol and PMA likewise caused redistribution of NBCe1 from BLM to early endosomes. The PKC inhibitor, GF-109203X, blocked this redistribution, indicating a role for PKC. In contrast, BLM NBCn1 was not downregulated in parotid acinar cells treated with constitutive recycling inhibitors, cholinergic stimulators, or PMA. We likewise demonstrate striking differences in regulation of membrane trafficking of NBCe1 vs. NBCn1 in resting and stimulated cells. We speculate that endocytosis of NBCe1, which coincides with the transition to a steady-state phase of stimulated fluid secretion, could be a part of acinar cell adjustment to a continuous secretory response. Stable association of NBCn1 at the membrane may facilitate constitutive uptake of HCO(3)(-) across the BLM, thus supporting HCO(3)(-) luminal secretion and/or maintaining acid-base homeostasis in stimulated cells.  相似文献   

19.
To investigate the functional expression of adenosine A3 receptor (A3AR) in mammalian living tissues, we generated an apoaequorin-transgenic mouse that expresses jellyfish apoaequorin throughout its body. The expression of apoaequorin under the control of a strong CAG promoter was detected in various tissues, including the abdominal skin, adipose, ear, brain, esophagus, heart, inferior vena cava vessel, kidney, lens, liver, lung, pancreas, skeletal muscle, spleen, tail, testis, and thymus. The transgene was mapped to the C1–2 region of chromosome 16 by Fluorescence in situ hybridization analysis. Among these transgenic mouse tissues, we succeeded in detecting elevated responses of intracellular Ca2+ as a light emission of aequorin induced by the A3AR agonist in the pancreas, brain, and testis, the last two of which are known to be main tissues abundantly expressing A3AR. The A3AR agonist led to the phosphorylation of both extracellular signal-regulated kinase 1/2 and protein kinase B in mouse pancreas, and all the intracellular responses via A3AR were antagonized by the A3AR-specific antagonist. In addition, the mRNA expression of A3AR and the A3AR-induced intracellular responses were also found in the rat pancreatic acinar cell line AR42J. These results suggest that pancreas is one of the main tissues functionally expressing A3AR in mammalians in vivo, and that the present approach using transgenic mice that express apoaequorin throughout their bodies will facilitate the functional analysis of proteins of interest. Kazuya Yamano and Katsuhiro Mori contributed equally to this work  相似文献   

20.
We screened rat brain cDNA libraries and used 5'rapid amplification of cDNA ends to clone two electrogenicNa+-HCO3 cotransporter(NBC) isoforms from rat brain (rb1NBC and rb2NBC). At the amino acidlevel, one clone (rb1NBC) is 96% identical to human pancreas NBC. Theother clone (rb2NBC) is identical to rb1NBC except for 61 uniqueCOOH-terminal amino acids, the result of a 97-bp deletion near the3' end of the open-reading frame. Using RT-PCR, we confirmed thatmRNA from rat brain contains this 97-bp deletion. Furthermore, wegenerated rabbit polyclonal antibodies that distinguish between theunique COOH-termini of rb1NBC (rb1NBC) and rb2NBC (rb2NBC).rb1NBC labels an ~130-kDa protein predominantly from kidney, andrb2NBC labels an ~130-kDa protein predominantly from brain.rb2NBC labels a protein that is more highly expressed in corticalneurons than astrocytes cultured from rat brain; rb1NBC exhibits theopposite pattern. In expression studies, applying 1.5%CO2/10 mM HCO3 toXenopus oocytes injected with rb2NBC cRNA causes 1)pHi to recover from the initial CO2-inducedacidification and 2) the cell to hyperpolarize. Subsequently,removing external Na+ reverses the pHi increaseand elicits a rapid depolarization. In the presence of 450 µM DIDS,removing external Na+ has no effect on pHi andelicits a small hyperpolarization. The rate of the pHidecrease elicited by removing Na+ is insensitive toremoving external Cl. Thus rb2NBC is aDIDS-sensitive, electrogenic NBC that is predominantly expressed inbrain of at least rat.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号