首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Harvest-induced senescence of broccoli results in tissue wilting and sepal chlorosis. As senescence progresses, chlorophyll and protein levels in floret tissues decline and endo-protease activity (measured with azo-casein) increases. Protease activity increased from 24 h after harvest for tissues held in air at 20 degrees C. Activity was lower in floret tissues from branchlets that had been held in solutions of sucrose (2% w/v) or under high carbon dioxide, low oxygen (10% CO(2), 5% O(2)) conditions. Four protease-active protein bands were identified in senescing floret tissue by zymography, and the use of chemical inhibitors of protease action suggests that some 44% of protease activity in senescing floret tissue 72 h after harvest is due to the action of cysteine and serine proteases. Four putative cysteine protease cDNAs have been isolated from broccoli floret tissue (BoCP1, BoCP2, BoCP3, BoCP4). The cDNAs are most similar (73-89% at the amino acid level) to dehydration-responsive cysteine proteases previously isolated from Arabidopsis thaliana (RD19, RD21). The mRNAs encoded by the broccoli cDNAs are expressed in floret tissue during harvest-induced senescence with mRNA accumulating within 6 h of harvest for BoCP1, 12 h of harvest for BoCP4 and within 24 h of harvest for BoCP2 and BoCP3. Induction of the cDNAs is differentially delayed when broccoli branchlets are held in solutions of water or sucrose. In addition, the expression of BoCP1 and BoCP3 is inhibited in tissue held in atmospheres of high carbon dioxide/low oxygen (10% CO(2), 5% O(2)). The putative cysteine protease mRNAs are expressed before measurable increases in endo-protease activity, loss of protein, chlorophyll or tissue chlorosis.  相似文献   

4.
Lin28 plays important roles in development, stem cell maintenance, oncogenesis and metabolism. As an RNA-binding protein, it blocks the biogenesis primarily of let-7 family miRNAs and also promotes translation of a cohort of mRNAs involved in cell growth, metabolism and pluripotency, likely through recognition of distinct sequence and structural motifs within mRNAs. Here, we show that one such motif, shared by multiple Lin28-responsive elements (LREs) present in Lin28 mRNA targets also participates in a Drosha-dependent regulation and may contribute to destabilization of its cognate mRNAs. We further show that the same mutations in the LREs known to abolish Lin28 binding and stimulation of translation also abrogate Drosha-dependent mRNA destabilization, and that this effect is independent of miRNAs, uncovering a previously unsuspected coupling between Drosha-dependent destabilization and Lin28-mediated regulation. Thus, Lin28-dependent stimulation of translation of target mRNAs may, in part, serve to compensate for their intrinsic instability, thereby ensuring optimal levels of expression of genes critical for cell viability, metabolism and pluripotency.  相似文献   

5.
Lin28 plays important roles in development, stem cell maintenance, oncogenesis and metabolism. As an RNA-binding protein, it blocks the biogenesis primarily of let-7 family miRNAs and also promotes translation of a cohort of mRNAs involved in cell growth, metabolism and pluripotency, likely through recognition of distinct sequence and structural motifs within mRNAs. Here, we show that one such motif, shared by multiple Lin28-responsive elements (LREs) present in Lin28 mRNA targets also participates in a Drosha-dependent regulation and may contribute to destabilization of its cognate mRNAs. We further show that the same mutations in the LREs known to abolish Lin28 binding and stimulation of translation also abrogate Drosha-dependent mRNA destabilization, and that this effect is independent of miRNAs, uncovering a previously unsuspected coupling between Drosha-dependent destabilization and Lin28-mediated regulation. Thus, Lin28-dependent stimulation of translation of target mRNAs may, in part, serve to compensate for their intrinsic instability, thereby ensuring optimal levels of expression of genes critical for cell viability, metabolism and pluripotency.  相似文献   

6.
7.
Cyclic ADP-ribose (cADPR) was previously shown to activate transient expression of two abscisic acid (ABA)-responsive genes in tomato cells. Here, we show that the activity of the enzyme responsible for cADPR synthesis, ADP-ribosyl (ADPR) cyclase, is rapidly induced by ABA in both wild-type (WT) and abi1-1 mutant Arabidopsis plants in the absence of protein synthesis. Furthermore, in transgenic Arabidopsis plants, induced expression of the Aplysia ADPR cyclase gene resulted in an increase in ADPR cyclase activity and cADPR levels, as well as elevated expression of ABA-responsive genes KIN2, RD22, RD29a, and COR47 (although to a lesser extent than after ABA induction). Genome-wide profiling indicated that about 28% of all ABA-responsive genes in Arabidopsis are similarly up- and downregulated by cADPR and contributed to the identification of new ABA-responsive genes. Our results suggest that activation of ADPR cyclase is an early ABA-signaling event partially insensitive to the abi1-1 mutation and that an increase in cADPR plays an important role in downstream molecular and physiological ABA responses.  相似文献   

8.
9.
10.
The Hfq protein is reported to be an RNA chaperone, which is involved in the stress response and the virulence of several pathogens. In E. coli, Hfq can mediate the interaction between some sRNAs and their target mRNAs. But it is controversial whether Hfq plays an important role in S. aureus. In this study, we found that the deletion of hfq gene in S. aureus 8325-4 can increase the surface carotenoid pigments. The hfq mutant was more resistant to oxidative stress but the pathogenicity of the mutant was reduced. We reveal that the Hfq protein can be detected only in some S. aureus strains. Using microarray and qRT-PCR, we identified 116 genes in the hfq mutant which had differential expression from the wild type, most of which are related to the phenotype and virulence of S. aureus. Among the 116 genes, 49 mRNAs can specifically bind Hfq protein, which indicates that Hfq also acts as an RNA binding protein in S. aureus. Our data suggest that Hfq protein of S. aureus is a multifunctional regulator involved in stress and virulence.  相似文献   

11.
水通道或水通道蛋白是水分运动的主要通道.以RD28 cDNA和RD28抗体为探针证明了蚕豆(Vicia fabaL.)保卫细胞中存在水通道蛋白,并以气孔运动为指标,结合抗体和抑制剂处理证明水通道蛋白是水分运动的主要通道.研究表明编码质膜水通道蛋白的RD28转录体在叶片保卫细胞、叶肉细胞和维管束中高表达,尤以保卫细胞中最多;荧光免疫染色和Confocal显微镜观察表明,RD28抗体反应主要位于保卫细胞质膜.进一步采用RD28抗体和水通道蛋白抑制剂--HgCl2 (25μmol/L)处理可抑制壳梭孢素(FC)、光照诱导的气孔开放和原生质体体积膨胀以及ABA诱导的气孔关闭,但这种抑制作用可以被水通道抑制剂的逆转剂β-巯基乙醇(ME)逆转.表明蚕豆保卫细胞中存在水通道蛋白并参与蚕豆保卫细胞的运动过程.  相似文献   

12.
The protein coding regions of plastid mRNAs in higher plants are generally flanked by 3' inverted repeat sequences. In spinach chloroplast mRNAs, these inverted repeat sequences can fold into stem-loop structures and serve as signals for the correct processing of the mature mRNA 3' ends. The inverted repeat sequences are also required to stabilize 5' upstream mRNA segments, and interact with chloroplast protein in vitro. To dissect the molecular components involved in chloroplast mRNA 3' end processing and stability, a spinach chloroplast protein extract containing mRNA 3' end processing activity was fractionated by FPLC and RNA affinity chromatography. The purified fraction consisted of several proteins and was capable of processing the 3' ends of the psbA, rbcL, petD and rps14 mRNAs. This protein fraction was enriched for a 28 kd RNA-binding protein (28RNP) which interacts with both the precursor and mature 3' ends of the four mRNAs. Using specific antibodies to this protein, the poly(A) RNA-derived cDNA for the 28RNP was cloned and sequenced. The predicted amino acid sequence for the 28RNP reveals two conserved RNA-binding domains, including the consensus sequences RNP-CS1 and CS2, and a novel acidic and glycine-rich N-terminal domain. The accumulation of the nuclear-encoded 28RNP mRNA and protein are developmentally regulated in spinach cotyledons, leaves, root and stem, and are enhanced during light-dependent chloroplast development. The general correlation between accumulation of the 28RNP and plastid mRNA during development, together with the result that depletion of the 28RNP from the chloroplast protein extract interferes with the correct 3' end processing of several chloroplast mRNAs, suggests that the 28RNP is required for plastid mRNA 3' end processing and/or stability.  相似文献   

13.
14.
15.
atRA (all-trans-retinoic acid) is known to induce the differentiation of mESCs (mouse embryonic stem cells) into PGCs (primordial germ cells) in vitro. However, it is not clear as to what changes occur in PGC differentiation-associated genes or what mechanisms are involved when EBs (embryoid bodies) derived from mESCs are induced by atRA. EBs derived from mESCs were treated with 1, 2 or 5 μM atRA for 16 h, 2 days or 5 days. Real-time PCR and Western blot analysis were performed to detect the relative levels of PGC differentiation-associated genes (Lin28, Blimp1, Stra8 and Mvh) and the corresponding proteins respectively. Immunofluorescence was used to detect the protein location and distribution in EBs. The expression characteristics of genes could be divided into three categories: rapidly reached the peak value in 16 h and then decreased (Stra8, Lin28), initially low and then increased to reach the peak value in 5 days (Mvh) and relatively unchanged (Blimp1). A low level of Lin28 was expressed in EBs treated with atRA for 2 days or 5 days. The variation in the level of Lin28 mRNA did not influence the change in the level of Blimp1 mRNA. The changes in Stra8/Lin28 were consistent with the corresponding changes in the levels of their respective mRNAs, but the changes for Mvh/Blimp1 were not consistent with the corresponding changes in the levels of their respective mRNAs. Blimp1 expression may be independent of the effect of atRA on PGC differentiation. atRA may promote the start of a period in which there is a low level of Lin28 expression during PGC differentiation.  相似文献   

16.
17.
18.
Luo X  Bai X  Zhu D  Li Y  Ji W  Cai H  Wu J  Liu B  Zhu Y 《Planta》2012,235(6):1141-1155
Plant acclimation to environmental stress is controlled by a complex network of regulatory genes that compose distinct stress-response regulons. The C2H2-type zinc-finger proteins (ZFPs) have been implicated in different cellular processes involved in plant development and stress responses. Through microarray analysis, an alkaline (NaHCO(3))-responsive ZFP gene GsZFP1 was identified and subsequently cloned from Glyycine soja. GsZFP1 encodes a 35.14?kDa protein with one C2H2-type zinc-finger motif. The QALGGH domain, conserved in most plant C2H2-type ZFPs, is absent in the GsZFP1 protein sequence. A subcellular localization study using a GFP fusion protein indicated that GsZFP1 is localized to the nucleus. Real-time RT-PCR analysis showed that GsZFP1 was induced in the leaf by ABA (100?μM), salt (200?mM NaCl), and cold (4°C), and in the root by ABA (100?μM), cold (4°C), and drought (30% PEG 6000). Over-expression of GsZFP1 in transgenic Arabidopsis resulted in a greater tolerance to cold and drought stress, a decreased water loss rate, and an increase in proline irrespective of environmental conditions. The over-expression of GsZFP1 also increased the expression of a number of stress-response marker genes, including CBF1, CBF2, CBF3, NCED3, COR47, and RD29A in response to cold stress and RAB18, NCED3, P5CS, RD22, and RD29A in response to drought stress, especially early during stress treatments. Our studies suggest that GsZFP1 plays a crucial role in the plant response to cold and drought stress.  相似文献   

19.
To understand the molecular mechanisms underlying the terrestrial adaptation, as well as adaptation to different salinities, of the euryhaline and amphibious mudskipper ( Periophthalmus modestus), we have looked for the skin mRNAs that change during varying environmental conditions. Using differential mRNA display polymerase chain reaction, we compared skin mRNAs in mudskipper transferred from isotonic 30% seawater to fresh water or to seawater for 1 day and 7 days, as well as those kept out of water for 1 day. At the end of these periods, poly(A(+))RNA was prepared from the Cl(-)-secreting pectoral skins and also from the outer opercular skins where ion transport is negligible, and analyzed by differential display. We identified four cDNA products expressed differently under various environments as homologues of known genes. A further 34 cDNAs were expressed differentially, but they have no significant homology to identified sequences in GenBank. Northern blots demonstrate that mRNA levels of the actin-binding protein and the platelet-activating factor acetylhydrolase increased in the pectoral skins during seawater acclimation. The mRNA of the 90 kDa heat shock protein was down-regulated in water-deprived and freshwater fish, whose plasma cortisol levels were high. The aldolase mRNA was induced in both skins after desiccation. These four genes may be involved in the environmental adaptations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号