首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
墨兰试管苗植株的发育解剖学研究   总被引:2,自引:0,他引:2  
用石蜡切片和扫描电镜对墨兰试管苗植株的生长发育进行了研究。发现幼叶中脉附近的叶肉细胞类似栅栏组织,随着叶片的不断成熟,叶片基部中脉附近的叶肉细胞逐渐变为近圆形或椭圆形,而叶尖部和叶中部中脉附近的叶肉细胞仍似栅栏组织。茎的发育经历了原球茎、根状茎和假鳞茎3个阶段。原球茎的大部分细胞都含有淀粉粒,根状茎的皮层细胞含淀粉粒,而假鳞茎几乎不含淀粉粒。幼根没有髓,皮层细胞含淀粉粒:成熟根具含淀粉粒的髓。出瓶苗上即带有4个芽,一般只有最外侧叶腋的1个花芽和最内侧叶腋的1个叶芽发育。  相似文献   

2.
Certain aspects of protocorm development in Vanda were examined ultrastructurally. The parenchymal cells of the protocorm accumulate substantial quantities of lipid, protein, and carbohydrate reserves which disappear gradually with the senescence of the parenchymatous region. The proteinaceous reserves appear initially as discrete bodies which become intimately associated with clusters of small tubules. The tubules eventually disperse throughout the cytoplasm and disappear following depletion of the protein bodies. The lipid reserves also appear as discrete bodies and are associated with an electron dense, laminated inclusion which appears to increase in size with the disappearance of the lipid bodies. While plastids in the meristematic cells differentiate a well-developed thylakoid system and contain little starch, those of the parenchymal cells contain large starch grains and numerous osmiophilic droplets and develop meager thylakoid systems. Membrane-bound crystalline structures of hexagonal and rhomboid cross section occur frequently in the cytoplasm of senescent parenchyma cells. Trichome initials, which differentiate from the epidermis, contain few conventional organelles and exhibit numerous membrane-bound structures containing many small crystalline inclusions. Numerous vesicles accumulate at the tips of the trichomes in spaces between the cell wall and the plasmalemma.  相似文献   

3.
A study is reported of histogenesis and organogenesis duringthe processes leading up to seedling formation in cultures ofVanilla planifolia. Prior to germination, all cells of the embryoincreased in size rupturing the seed coat and initiating theprotocorm stage. The cells of the protocorm were heavily ladenwith starch grains. Although all of the cells of the matureembryo were heavily laden with protein bodies, these were confinedto the terminal cell descendents on emergence of the embryofrom the seed coat, and they disappeared during differentiationof the meristem, indicating that some reserves were mobilizedand utilized during germination. The terminal locus of embryonal axis did not differentiate intoa cotyledon and epicotyl as in other angiosperm embryos butformed a thick meristematic layer. Bipolar differentiation withinthe meristem produced the shoot, and after a few leaves hadbeen formed, the first root differentiated endogenously fromthe base of the meristem. Subsequent roots, however, appearedto originate more superficially. The chain of events appearsto be quite unique to Vanilla amongst the angiosperms. Vanilla planifolia, protocorm, starch grains, protein bodies  相似文献   

4.
The nature of the protocorm of theOrchidaceae has fascinated morphologists for more than a century. In the present study, the development of the protocorm was followed using in vitro germination of seeds on a culture medium containing sugar, but without a symbiont. Inside the seed, the embryo consists of about a hundred cells. In the embryo, cells are arranged along a longitudinal axis according to size; these cells contain protein and lipid reserve material. In the first stages of seedling development, the embryo is transformed into a protocorm and meristematic tissue becomes organized into a meristematic dome (promeristem) at the anterior pole. This meristematic dome will give rise to a scale and the apex of the seedling. At first, the apex and the scale leaf develop synchronously. The development of the root always follows that of the apex. The study of the development of the seed ofCypripedium acaule showed that the protocorm is a distinct morphological system with respect to the rest of the cormus. The protocorm may be interpreted as an extension of the proembryonic stage.  相似文献   

5.
Subcellular changes in the embryo and endosperm of Atropa belladonna were studied at four developmental stages. The endosperm cells turn to storage cells much earlier than those of the embryo, which matures later. Cells of the cotyledon and radicle are very similar in structure. The young cells contain large osmiophilic spherosomes. The cytoplasm is filled with ribosomes but dictyosomes are very rare. Some proplastids, containing starch, and mitochondria are present in the early developmental stages but do not occur in the dormant cells. During ripening, the vacuoles of the endosperm cells and embryo develop into protein bodies. They become filled with protein material without any recognisable transport mechanism. Protein bodies have several electron-translucent globoid cavities and the protein mass contains a roundish or crystalline body. This body does not stain with potassium iodide but with periodic acid Schiff-reagent and protein stains, indicating that it contains glycoproteins. The embryo and endosperm cells of ripe Atropa seeds are very similar and filled with protein bodies and small spherosomes.  相似文献   

6.
Summary Secretory cavities ofCitrus deliciosa seem to originate from a pair of meristematic cells (an epidermal cell and a second one placed under it). These cells undergo successive divisions resulting in the formation of a globular/oval gland situated in the parenchyma, and a conical stalk, which joins the gland with the epidermis. The young gland consists of a central group of polyhedral cells ensheathed by layers of radially flattened cells.During the early differentiation stages of the gland cells a close association of cytoplasmic microtubules with various organelles is observed. Plastids increase progressively in number and size and their matrix locally contains tubular networks accompanied by small oil droplets. In peripheral cytoplasm numerous myelin-like lomasomes have been observed. Peripheral cells of the gland are gradually modified from the inner cells following a different developmental pattern. Their walls become thicker and plastids do not contain tubular complexes, but only a few thylakoids partly surrounding the newly formed starch grains.  相似文献   

7.
大花蕙兰营养器官及原球茎的解剖学研究   总被引:1,自引:0,他引:1  
对大花蕙兰试管苗营养器官及原球茎的解剖学研究结果表明:根由复表皮、皮层和维管柱组成,根毛丰富,皮层发达,内皮层明显,初生木质部月多元型,中央具髓,根茎由表皮,基本组织和维管束构成,维管束散生,属周木型;叶为等面叶,在上下表皮处分布有成束的厚壁组织,叶肉无栅栏组织和海绵组织之分,细胞排列紧密,维管束鞘由机械组织构成。原球茎原生分生组织的原套仅一层细胞,在顶端分生组织后面的薄壁细胞中,存在胚性细胞,由胚性细胞经球状胚可发育成幼原球茎。  相似文献   

8.
黑节草未成熟种子的形态发育及其在离体培养时的表现   总被引:20,自引:0,他引:20  
黑节草(Dendrobium candidum Wall ex Lind.)2—6个月种龄的胚均处于球形胚阶段,不同种龄的胚在体积大小、胚细胞数目、胚细胞内的淀粉粒含量和超微结构上有差异。在离体培养条件下黑节草种子萌发率可达95%,种子萌发后形成原球茎,原球茎可以直接发育形成幼苗,又可以由原球茎产生大量愈伤组织,由愈伤组织再分化发育成幼苗。种子萌发过程中,胚顶端分生组织细胞的淀粉逐渐消耗,淀粉的变化与分生组织和子叶的形成有明显的相关性。  相似文献   

9.
The tissues of the sporocarp of Marsilea vestita undergo profound changes during development. Early in development, the cells of the peripheral tissues, epidermis, hypodermis and layers of the transitional zone between the hypodermis and more internal tissues contain prominent vacuolar bodies. As development proceeds, these vacuolar bodies disappear. Prominent amyloplasts are found only in the guard cells and in the cells of the transitional zone. Later in development the cells of the hypodermis divide periclinally forming two layers which differentiate as macrosclereids. The cells of the outermost layer of the transitional zone differentiate as osteosclereids. Internally, the cells of the sorophore accumulate large amounts of mucilage in the central vacuoles. The peripheral cytoplasm ultimately degenerates leaving just hygroscopic mucilage. The mucilage carbohydrate contains the sugars, rhamnose and arabinose. In the young sorus, only the spore mother cells and the cells of the indusium contain amyloplasts. By the time of meiosis, there is a massive accumulation of starch in the receptacle, stalk and jacket but not in the tapetum of the sporangia. Late in development, the starch disappears and the mega- and microspores become coated with carbohydrate.  相似文献   

10.
The immature sieve cell of Pinus strobus contains all of the protoplasmic components commonly encountered in young cell types. In addition, it contains slime bodies with distinct double-layered limiting membranes. The mature sieve cell is lined by a narrow layer of cytoplasm consisting of a plasmalemma, one or more layers of anastomosing tubules of endoplasmic reticulum, numerous mitochondria, starch granules and crystal-like bodies. Each mature cell contains a necrotic nucleus. Ribosomes and dictyosomes are lacking. Strands derived ontogenetically from the slime bodies of the immature cell traverse the central cavity and are continuous with those of neighboring sieve cells through the plasmalemma-lined pores of the sieve areas. Sieve-area pores are also traversed by numerous endoplasmic membranes. A membrane was not found separating the parietal layer of cytoplasm from the large central cavity.  相似文献   

11.
The fusion cell in Asterocolax gardneri Setch, is a large, multinucleate, irregularly-shaped cell resulting from cytoplasmic fusions of haploid and diploid cells. Subsequent enlargement takes place by incorporating adjacent gonimoblast cells. The resultant cell consists of two parts—a central portion of isolated cytoplasm, surrounded by an electron dense cytoplasmic barrier, and the main component of the fusion cell cytoplasm surrounding the isolated cytoplasm. The fusion cell contains many nuclei, large quantities of floridean starch, endoplasmic reticulum, and vesicles, but few mitochondria, plastids and dictyosomes. The endoplasmic reticulum forms vesicles that apparently secrete large quantities of extracellular mucilage which surrounds the entire carposporophyte. The isolated cytoplasm also is multinucleate but lacks starch and a plasma membrane. Few plastids, ribosomes and mitochondria are found in this cytoplasm. However, numerous endoplasmic reticulum cisternae occur near the cytoplasmic barrier and they appear to secrete material for the barrier. In mature carposporophytes, all organelles in the isolated cytoplasm have degenerated.  相似文献   

12.
天麻Gastrodiaelata种子与石斛小菇Mycenadendrobii的共生萌发试验表明,石斛小菇可与天麻共生,促进天麻种子发芽并形成原球茎。菌丝主要分布于原球茎的柄状细胞、外皮层细胞和内皮层细胞,在外皮层细胞中形成菌丝结,内皮层细胞中的菌丝则被消化。原球茎细胞中的菌丝均被电子透明物质和原球茎细胞质膜包围而与原球茎细胞质相隔离,菌丝进一步液泡化并最终被水解。含有衰败菌丝的原球茎细胞常被菌丝重新定殖。这一菌丝被消化及菌丝的重新定殖过程在整个原球茎发育过程中可不断重复发生。  相似文献   

13.
天麻Gastrodiaelata种子与石斛小菇Mycenadendrobii的共生萌发试验表明,石斛小菇可与天麻共生,促进天麻种子发芽并形成原球茎。菌丝主要分布于原球茎的柄状细胞、外皮层细胞和内皮层细胞,在外皮层细胞中形成菌丝结,内皮层细胞中的菌丝则被消化。原球茎细胞中的菌丝均被电子透明物质和原球茎细胞质膜包围而与原球茎细胞质相隔离,菌丝进一步液泡化并最终被水解。含有衰败菌丝的原球茎细胞常被菌丝重新定殖。这一菌丝被消化及菌丝的重新定殖过程在整个原球茎发育过程中可不断重复发生。  相似文献   

14.
Summary Contrary to an earlier report, the sieve elements and companion cells of Tilia americana contain plastids. In young sieve elements and companion cells the plastids contain a moderately electronopaque matrix and internal membranes; the latter are very numerous in the plastids of the sieve elements. Plastids of mature sieve elements contain an electron-transparent matrix, apparently fewer internal membranes than the plastids of young elements, and a single starch grain each. The plastids of companion cells undergo little or no structural modification during cellular differentiation, and apparently contain no starch.This research has been supported by the National Science Foundation, grants GB-5950 and GB-8330.  相似文献   

15.
Summary The primary phloem consists mostly of sieve cells. Procambial cells and very young sieve cells contain all the components characteristic of young nucleate cells. Increase in wall thickness, which is relatively limited, constitutes the first indication of sieve-cell differentiation. During the period of wall thickening, the plastids develop starch grains and then fibrillar inclusions. Eventually the internal lamellae of the plastids collapse. The plastids do not form crystalline inclusions. As the sieve cell approaches maturity, an extensive network of smooth, tubular endoplasmic reticulum (ER) appears and then becomes mostly parietal in distribution. At maturity, large aggregates of this ER occur at the sieve areas. These aggregates are interconnected longitudinally by the parietal network of ER. In addition to the ER, the mature, plasmalemma-lined primary sieve cell contains a degenerate nucleus, with intact nuclear envelope, plastids, and mitochondria. Dictyosomes, ribosomes, and vacuoles are lacking. P-protein is not present at any stage of development.This work was supported by U.S. National Science Foundation grants GB 8330 and GB 31417 to R. F.Evert.  相似文献   

16.
Hypocotyl tissue of Pinus resinosa Ait. was fixed in glutaraldehyde-paraformaldehyde and postfixed in osmium tetroxide for electron microscopy. Although young sieve cells contain all the components characteristic of young, nucleate cells, they can be identified early in their development. Increase in wall thickness occurs early and rapidly. Concurrently, the plastids, which already contain starch granules, form both crystalline and fibrillar inclusions. As the sieve cell approaches maturity, an extensive network of smooth, tubular endoplasmic reticulum (ER), which becomes mostly parietal in distribution, is formed. At maturity, massive aggregates of this ER occur on both sides of sieve areas. These ER aggregates are interconnected with one another longitudinally by the parietal ER. In addition, the mature, plasmalemma-lined sieve cell contains a degenerate nucleus, mitochondria, and intact plastids. Dictyosomes, ribosomes, and vacuolar membranes are lacking. P-protein is not present at any stage of development.  相似文献   

17.
实验表明开唇兰小菇Mycena anoectochila可与天麻Gastrodia elata种子共生促进其萌发形成原球茎。 菌丝自胚柄端的柄状细胞侵入天麻种子原胚,进一步在皮层细胞中扩展,在外皮层细胞中形成发育良好的菌丝结,菌丝完整而有活力; 在内皮层细胞中则被消化,菌丝衰败、扁化。菌丝在原球茎细胞内的分布被限制在原球茎基部的柄状细胞、外皮层细胞和内皮层细胞,菌丝均被电子透明物质包围, 外围环绕有原球茎细胞质膜, 该界面使侵入的菌丝与原球茎细胞质相隔离,也是两共生生物间进行物质交换的所在。上述菌丝侵入至被消化的过程在整个原球茎发育过程中可反复进行。  相似文献   

18.
荔枝花蜜腺发育解剖学研究   总被引:1,自引:0,他引:1  
荔枝花蜜腺呈盘状,位于子房和花萼之间的花托上。花盘蜜腺由表皮、产蜜组织、维管束组成。蜜腺的原始细胞由花托表面的2~3层细胞脱分化产生。成熟蜜腺产蜜组织细胞含有淀粉粒,为淀粉型蜜腺,表皮细胞内无淀粉粒。产蜜组织出现分化:PAS反应颜色深的细胞成网状分布,与表皮下方的1~2层细胞相连,构成蜜汁的运输通道;颜色浅的细胞分布于网眼处。蜜腺表皮上的角质层波状皱折,有泌蜜孔。表皮毛主要起保护作用,大部分蜜汁通过泌蜜孔排出。  相似文献   

19.
Histochemical analyses of the ovule of Quercus gambelii show that the major food reserves (starch grains and lipids) are located almost exclusively within the outer integument. Vascular traces are present only within this integument which contains numerous, well-developed plasmodesmata. The inner integument is virtually devoid of any food reserves and has very few plasmodesmata. The ovule has a persistent chalazal extension of residual nucellar cells (called the postament) which projects into the embryo sac. Due to the above information and the fact that the synergids rarely contain starch and no plasmodesmata are present in the walls of any of the cells of the egg apparatus (Mogensen, 1972), it is concluded that the synergids play little or no role in embryo sac nutrition. Rather, it is proposed that the pathway of available food materials in the young ovule is from the outer integument to the chalaza and through the postament into the embryo sac.  相似文献   

20.
Dry seeds of Cuscuta pedicellata have a deeply pitted surface due to invaginated epidermal cell walls. After water uptake these walls bulge outwards and the seed surface becomes papillose. The seed coat consists of an epidermis, two palissade cell layers, and a multiple layer of parenchyma cells. The epidermis contains starch and mucilage, the parenchyma cells are compressed but some contain starch. The endosperm consists of starch–filled cells, but has a peripheral aleuron layer. The endosperm cell walls are gelatinous. The variable structure of the seed coat epidermis is believed to function in wind dispersal and rapid water uptake. Seed dormancy is common in the genus, but does apparently not occur in C. pedicellata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号