首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A continuous application of ethylene (10 μl/l) and propylene (500 μl/l) to potato tubers (Solanum tuberosum L.) resulted in an upsurge of respiration and a concomitant rise in peroxides. When applied in 100% O2, the effect of ethylene and propylene on respiration and peroxide formation was augmented. Hydrogen cyanide (500 μl/l) mimicked the action of ethylene and propylene inducing a respiratory rise and a corresponding increase in peroxides. As with ethylene, the effect of HCN was augmented in high O2 tensions. The results support the suggestion that ethylene activates the cyanide-insensitive respiratory pathway.  相似文献   

2.
The growth (fresh and dry weight increase) of potato tuber ( Solanum tuberosum L. cv. Bintje) callus discs was stimulated by incubation in air with 500 ppm 2,5-norbornadiene (NBD, a competitive inhibitor of ethylene action) and inhibited by incubation in air with 4 000 ppm NBD. Ethylene formation by the callus was stimulated by NBD. The development of the alternative pathway, measured in isolated mitochondria was inhibited by NBD in a concentration-dependent way. The alternative pathway capacity, measured in vivo, was inhibited by 4 000 ppm NBD, but not by 500 ppm. Uninhibited in vivo respiration, which consists of cytochrome path activity and alternative path activity, was stimulated by the treatment with 500 ppm NBD. The main contribution to this stimulation was made by the cytochrome pathway. In 4 000 ppm NBD-treated callus, uninhibited respiration seemed to be unaffected as a consequence of an inhibited cytochrome path activity, which was compensated by a stimulated alternative path activity. Both in 500 and 4 OIK) ppm NBD-treated callus the alternative path activity in vivo was stimulated.
The regulatory role for endogenous ethylene in potato tuber callus is discussed in relation to: 1) The induction of respiratory pathways, 2) the supply of reduction equivalents in vivo and 3) growth.  相似文献   

3.
Effects of ethylene on potato tuber respiration   总被引:3,自引:0,他引:3       下载免费PDF全文
Reid MS  Pratt HK 《Plant physiology》1972,50(2):252-255
Treatment of potato tubers (Solanum tuberosum L.) with ethylene gas causes a rapid rise in their respiration rate, reaching 5 to 10 times the rate of untreated tubers over 30 hours of treatment and then falling slowly. The response shows a lag of 8 hours, and more than 24 hours of exposure is required for maximum effect; the temperature optimum is near 25 C. In sensitivity to low concentrations and dependence on temperature, the phenomenon is similar to the effect of ethylene on the respiration of climacteric and nonclimacteric fruits. Treated potato tubers returned to air recover their sensitivity to ethylene more slowly than do nonclimacteric fruits (e.g., mature green oranges). It is proposed that the respiratory rise characteristic of ripening in climacteric fruits and of the wound response in plant tissues is induced by a rise in endogenous tissue ethylene.  相似文献   

4.
Ethanol, acetaldehyde, and acetic acid, when applied in a volatile state in air to potato tubers, led to a climacteric-like upsurge in respiration. The respiratory upsurge was markedly enhanced when the volatiles were applied in 100% O2.  相似文献   

5.
A seven fold increase in the rate of respiratory O2 uptake was observed 24 h after slicing of potato tuber disks. The maximum activity of pyrophosphate:fructose-6-phosphate phosphotransferase (PFP) was 5-7 times greater than that of ATP-dependent phosphofructokinase (PFK) in fresh or aged potato slices. Thus, PFP may participate in glycolysis which supplies respiratory substrate in potato tubers. The PFP activity of desalted extracts determined in the absence of fructose-2,6-bisphosphate (F2,6BP) increased by 4.5 fold 24 h after slicing. However, maximal PFP activity determined with saturating (1 microM) F2,6BP was not changed. The Ka values of PFP for F2,6BP was lowered from 33 to 7 nM after 24 h of aging treatment. This increased susceptibility of the PFP activity to its allosteric activator, F2,6BP, may be involved in the increased respiration in wounded disks of potato tubers. Immunoblotting experiments indicated that both the alpha (66 kDa) and the beta (60 kDa) subunits of PFP were present in fresh or 24 h aged tuber slices.  相似文献   

6.
7.

Background and Aims

The three-dimensional distributions of mineral elements in potato tubers provide insight into their mechanisms of transport and deposition. Many of these minerals are essential to a healthy human diet, and characterizing their distribution within the potato tuber will guide the effective utilization of this staple foodstuff.

Methods

The variation in mineral composition within the tuber was determined in three dimensions, after determining the orientation of the harvested tuber in the soil. The freeze-dried tuber samples were analysed for minerals using inductively coupled plasma-mass spectrometry (ICP-MS). Minerals measured included those of nutritional significance to the plant and to human consumers, such as iron, zinc, copper, calcium, magnesium, manganese, phosphorus, potassium and sulphur.

Key Results

The concentrations of most minerals were higher in the skin than in the flesh of tubers. The potato skin contained about 17 % of total tuber zinc, 34 % of calcium and 55 % of iron. On a fresh weight basis, most minerals were higher in tuber flesh at the stem end than the bud end of the tuber. Potassium, however, displayed a gradient in the opposite direction. The concentrations of phosphorus, copper and calcium decreased from the periphery towards the centre of the tuber.

Conclusions

The distribution of minerals varies greatly within the potato tuber. Low concentrations of some minerals relative to those in leaves may be due to their low mobility in phloem, whereas high concentrations in the skin may reflect direct uptake from the soil across the periderm. In tuber flesh, different minerals show distinct patterns of distribution in the tuber, several being consistent with phloem unloading in the tuber and limited onward movement. These findings have implications both for understanding directed transport of minerals in plants to stem-derived storage organs and for the dietary implications of different food preparation methods for potato tubers.  相似文献   

8.
The control of bud dormancy in potato tubers   总被引:5,自引:0,他引:5  
Potato (Solanum tuberosum L.) tuber buds normally remain dormant through the growing season until several weeks after harvest. In the cultivar Majestic, this innate dormancy persisted for 9 to 12 weeks in storage at 10° C, but only 3 to 4 weeks when the tubers were stored at 2° C. At certain stages, supplying cytokinins to tubers with innately dormant buds induced sprout growth within 2 d. The growth rate was comparable to that of buds whose innate dormancy had been lost naturally. Cytokinin-treatment did not accelerate the rates of cell division and cell expansion in buds whose innate dormancy had already broken naturally. Gibberellic acid did not induce sprout growth in buds with innate dormancy. We conclude that cytokinins may well be the primary factor in the switch from innate dormancy to the non-dormant state in potato tuber buds, but probably do not control the subsequent sprout growth.Abbreviations tio 6ade 6-(4-hydroxy-3-methylbut-trans-2-enyl amino)purine, zeatin - tio6ado 6-(4-hydroxy-3-methylbut-trans-2-enyl amino)-9--D-ribofuranosyl purine, zeatin riboside  相似文献   

9.
To change the hexose-to-sucrose ratio within phloem cells, yeast-derived cytosolic invertase was expressed in transgenic potato (Solanum tuberosum cv. Desirée) plants under control of the rolC promoter. Vascular tissue specific expression of the transgene was verified by histochemical detection of invertase activity in tuber cross-sections. Vegetative growth and tuber yield of transgenic plants was unaltered as compared to wild-type plants. However, the sprout growth of stored tubers was much delayed, indicating impaired phloem-transport of sucrose towards the developing bud. Biochemical analysis of growing tubers revealed that, in contrast to sucrose levels, which rapidly declined in growing invertase-expressing tubers, hexose and starch levels remained unchanged as compared to wild-type controls. During storage, sucrose and starch content declined in wild-type tubers, whereas glucose and fructose levels remained unchanged. A similar response was found in transgenic tubers with the exception that starch degradation was accelerated and fructose levels increased slightly. Furthermore, changes in carbohydrate metabolism were accompanied by an elevated level of phosphorylated intermediates, and a stimulated rate of respiration. Considering that sucrose breakdown was restricted to phloem cells it is concluded that, in response to phloem-associated sucrose depletion or hexose elevation, starch degradation and respiration is triggered in parenchyma cells. To study further whether elevated hexose and/or hexose-phosphates or decreased sucrose levels are responsible for the metabolic changes observed, sucrose content was decreased by tuber-specific expression of a bacterial sucrose isomerase. Sucrose isomerase catalyses the reversible conversion of sucrose into palatinose, which is not further metabolizable by plant cells. Tubers harvested from these plants were found to accumulate high levels of palatinose at the expense of sucrose. In addition, starch content decreased slightly, while hexose levels remained unaltered, compared with the wild-type controls. Similar to low sucrose-containing invertase tubers, respiration and starch breakdown were found to be accelerated during storage in palatinose-accumulating potato tubers. In contrast to invertase transgenics, however, no accumulation of phosphorylated intermediates was observed. Therefore, it is concluded that sucrose depletion rather than increased hexose metabolism triggers reserve mobilization and respiration in stored potato tubers.  相似文献   

10.
The multiple washing of the wound surface of potato tubers by water adversely affected the protective properties of wound periderm. Immune inhibitor β-1,3-β-1,6 glucan had a property of local effect and inhibited the process of wound healing. The pentasaccharide of xyloglucan caused necrosis of potato tuber tissue and prevented the wound reparation process.  相似文献   

11.
Abstract Schizosaccharomyces japonicus , a highly respiratory deficient yeast species, contains two terminal oxidase systems. One is highly sensitive to cyanide like the main terminal oxidase system of respiratory sufficient yeasts. The alternative system is hardly sensitive to cyanide like the usual terminal oxidase system of other respiratory deficient yeasts, and such as that found in respiratory sufficient yeasts besides the sensitive system. The order of magnitude of each system in Sch. japonicus is only a few μ l O2· (mg dry biomass)−1· h−1, the insensitive system having the lowest activity. As a result the alternative system may pass unnoticed. This situation may be unique among yeasts.  相似文献   

12.
《Plant science》1986,45(1):19-25
Mitochondria, isolated from iris (Iris hollandica cv. Ideal) bulbs that have been treated for early flowering with high temperatures (14 days at 35°C followed by 3 days at 40°C) or with ethylene (10–500 ppm), show an induction of alternative respiratory capacity and a rise in state III respiration. Mitochondria from untreated bulbs (stored at 30°C) do not have an alternative pathway capacity and state III respiration is low. Induction of the alternative respiration by ethylene is maximal after 24 h, while induction by high temperature (> 36°C) is much slower. In the temperature range from 36–40°C, the extent of the induced alternative respiratory capacity increases with higher temperatures. A temperature of 42°C is lethal within 5 days. Bulbs stored at 30°C and 35°C before 40°C treatment reach the same values for alternative respiratory capacity. A treatment of the bulbs with 2.2 mM HCN (30°C) leads to an induction of alternative respiration concomitant with a decrease in state III respiration, after a lag time of 2–3 days. A treatment of 5 days with 2.2 mM HCN or longer is lethal.  相似文献   

13.
Treatment of intact potato (Solanum tuberosum L.) tubers with acetaldehyde, ethanol or acetic-acid vapors led to a respiratory upsurge which was further increased when the volatiles were applied in 100% O2. Mitochondria from tubers held in 100% O2 (O2 control) displayed a substrate state, state 3, and state 4 in respiration, whereas in mitochondria from the volatile-treated tubers the respiratory rate of the different states was virtually indistinguishable. This respiratory pattern was companied by the development of a cyanide-resistant respiration since these mitochondria exhibited resistance to CN and sensitivity to CN+salicylhydroxamic acid. Acetaldehyde-treated potatoes showed a time-course development (up to 36 h) of cyanide resistance and concomitant sensitivity to salicylhydroxamic acid, indicating the onset of synthetic processes leading to the observed changes in mitochondrial respiration.Abbreviations V total respiration rate - Vcyt velocity of O2 uptake attributable to cytochrome oxidase - Valt velocity of O2 uptake attributable to the alternate oxidase - RCR respiratory control ratio - SHAM salicylhydroxamic acid Paper of the Journal Series, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, N.J., USA  相似文献   

14.
15.
16.
Treatment of carrot roots (Daucus carota L.) with 10 microliters per liter ethylene in O2 evokes a three- to four-fold increase in polysome prevalence and associated poly(A)+ RNA. The increase in polysome prevalence is attended by a similar change in CO2 evolution. The increase in polysomal poly(A)+ mRNA constitutes primarily a generic increase in constitutive mRNAs as assayed by in vitro translation. However, changes in the relative abundance of several in vitro translatable ethylene specific mRNAs do occur.

Cyanide, at concentrations which inhibit cytochrome oxidase, initiates a respiratory rise very similar in kinetics and magnitude to that evoked by ethylene. Moreover, the combined treatment with cyanide and ethylene evokes a respiratory response resembling that caused by ethylene or cyanide alone. Nevertheless, cyanide, in the presence of ethylene, significantly inhibits the increase in polysome prevalence and new gene expression associated with ethylene treatment of carrot roots. Separation of in vitro translation products by one-dimensional and two-dimensional gel electrophoresis shows that several new in vitro translation products appear in cyanide-treated carrots different from those evoked by ethylene. Engagement of the less energy efficient alternative electron transport path by cyanide may be responsible for inhibition of the normal ethylene associated increase in polysome prevalence and new gene expression. The implications of these results on regulation of respiratory metabolism are discussed and compared with the results for similar experiments with avocado fruit (Tucker and Laties 1984 Plant Physiol 74: 307-315) in which cyanide does not inhibit an ethylene educed increase in polysome prevalence and change in gene expression.

  相似文献   

17.
18.
19.
Gibberellic and β-indolylacetic acids at concentrations of 10−7-10−5 M were shown to change the hormonal status and duration of true dormancy in potato tubers. Gibberellic acid shortened the true dormancy and decreased the contents of abscisic acid and ethylene in the apical meristem. β-Indolylacetic acid elongated the true dormancy and decreased abscisic acid production, but caused a more than tenfold increase in the production of ethylene by apical tissues. The data suggest that β-indolylacetic acid and ethylene, as well as gibberellic and abscisic acids, are involved in the regulation of true dormancy in potato tubers.  相似文献   

20.
Trigalactosyl diglyceride has been isolated from tubers of potato (Solanum tuberosum) by a combination of chromatographic methods. This galactolipid, which constitutes approximately 1% by weight of the total lipids, was characterized by analysis of the intact lipid and its deacylation product. The fatty acids:glycerol:galactose molar proportions were shown to be close to 2:1:3. Evidence was obtained that suggests that trigalactosyl diglyceride is a higher homologue of mono- and di-galactosyl diglycerides and contains an additional d-galactopyranosyl moiety that is linked alpha-(1-->6) to the terminal galactose unit of digalactosyl diglyceride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号