首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The Msx and Dlx families of homeobox proteins are important regulators for embryogenesis. Loss of Msx1 in mice results in multiple developmental defects including craniofacial malformations. Although Dlx5 is widely expressed during embryonic development, targeted null mutation of Dlx5 mainly affects the development of craniofacial bones. Msx1 and Dlx5 show overlapping expression patterns during frontal bone development. To investigate the functional significance of Msx1/Dlx5 interaction in regulating frontal bone development, we generated Msx1 and Dlx5 double null mutant mice. In Msx1?/?;Dlx5?/? mice, the frontal bones defect was more severe than that of either Msx1?/? or Dlx5?/? mice. This aggravated frontal bone defect suggests that Msx1 and Dlx5 function synergistically to regulate osteogenesis. This synergistic effect of Msx1 and Dlx5 on the frontal bone represents a tissue specific mode of interaction of the Msx and Dlx genes. Furthermore, Dlx5 requires Msx1 for its expression in the context of frontal bone development. Our study shows that Msx1/Dlx5 interaction is crucial for osteogenic induction during frontal bone development. genesis 48:645–655, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The Dumbo rat possesses some characteristics that evoke several human syndromes, such as Treacher-Collins: shortness of the maxillary, zygomatic and mandibular bones, and low position of the ears. Knowing that many homeobox genes are candidates in craniofacial development, we investigated the involvement of the Msx1 and Dlx1 genes in the Dumbo phenotype with the aim of understanding their possible role in abnormal craniofacial morphogenesis and examining the possibility of using Dumbo rat as an experimental model for understanding abnormal craniofacial development. We studied the expression of these genes during craniofacial morphogenesis by RT-PCR method. We used Dumbo embryos at E12 and E14 and included the Wistar strain as a control. Semi-quantitative PCR analysis demonstrated that Msx1 and Dlx1 are expressed differently between Dumbo and Wistar rats, indicating that their low expression may underly the Dumbo phenotype.  相似文献   

4.
BMP signaling is one of the key pathways regulating craniofacial development. It is involved in the early patterning of the head, the development of cranial neural crest cells, and facial patterning. It regulates development of its mineralized structures, such as cranial bones, maxilla, mandible, palate, and teeth. Targeted mutations in the mouse have been instrumental to delineate the functional involvement of this signaling network in different aspects of craniofacial development. Gene polymorphisms and mutations in BMP pathway genes have been associated with various non-syndromic and syndromic human craniofacial malformations. The identification of intricate cellular interactions and underlying molecular pathways illustrate the importance of local fine-regulation of Bmp signaling to control proliferation, apoptosis, epithelial-mesenchymal interactions, and stem/progenitor differentiation during craniofacial development. Thus, BMP signaling contributes both to shape and functionality of our facial features. BMP signaling also regulates postnatal craniofacial growth and is associated with dental structures life-long. A more detailed understanding of BMP function in growth, homeostasis, and repair of postnatal craniofacial tissues will contribute to our ability to rationally manipulate this signaling network in the context of tissue engineering.  相似文献   

5.
Craniofacial and cardiac development relies on the proper patterning of the neural crest-derived ectomesenchyme of the pharyngeal arches, from which many craniofacial and great vessel structures arise. One of the intercellular signaling molecules that is involved in this process, endothelin-1 (ET-1), is expressed in the arch epithelium and influences arch development by binding to its cognate receptor, the endothelin A (ET(A)) receptor, found on ectomesenchymal cells. We have previously shown that absence of ET(A) signaling in ET(A)(-/-) mouse embryos disrupts neural crest cell development, resulting in craniofacial and cardiovascular defects similar in many aspects to those in mouse models of DiGeorge syndrome. These changes may reflect a cell-autonomous requirement for ET(A) signaling during crest cell development because the ET(A) receptor is an intracellular signaling molecule. However, it is also possible that some of the observed defects in ET(A)(-/-) embryos could arise from the absence of downstream signaling that act in a non-cell-autonomous manner. To address this question, we performed chimera analysis using ET(A)(-/-) embryonic stem cells. We observe that, in almost all early ET(A)(-/-) --> (+/+) chimeric embryos, ET(A)(-/-) cells are excluded from the caudoventral aspects of the pharyngeal arches, suggesting a cell-autonomous role for ET(A) signaling in crest cell migration and/or colonization. Interestingly, in the few embryos in which mutant cells do reach the ventral arch, structures derived from this area are either composed solely of wild type cells or are missing, suggesting a second cell-autonomous role for ET(A) signaling in postmigratory crest cell differentiation. In the cardiac outflow tract and great vessels, ET(A)(-/-) cells are excluded from the walls of the developing pharyngeal arch arteries, indicating that ET(A) signaling also acts cell-autonomously during cardiac neural crest cell development.  相似文献   

6.
在组织工程研究领域中,利用干细胞进行牙齿再生是一种途径。目前,研究认为牙齿的发育过程是上皮与间充质相互诱导的结果,利用干细胞进行再生牙齿时也需要有上皮源性和间充质源性干细胞的参与。牙髓干细胞是牙齿自体的干细胞,具有多向分化潜能,在牙齿再生中是一种理想的间充质源性干细胞。该研究通过慢病毒介导在牙髓干细胞中分别过表达人Msx1、Pax9和Bmp4基因,研究其对牙向分化的诱导潜能。过表达这三个基因均能显著提高牙髓干细胞碱性磷酸酶的水平,并且促使牙髓干细胞表达成牙本质细胞标志蛋白——牙本质涎磷蛋白、骨钙素、骨桥素和形成钙化组织。但在诱导牙向分化的能力上,三个基因有一定的区别。过表达Msx1基因对牙髓干细胞体外诱导牙向分化能力最为明显,其次是Bmp4基因,过表达Pax9在促进牙髓干细胞表达骨桥素和钙质形成上不是很显著。  相似文献   

7.
8.
9.
NOTCH signaling plays a key role in cell fate determination in both vertebrates and invertebrates. It is well known that Su(H)/RBP-J is a major mediator of NOTCH signaling. In a previous study, it was shown that NOTCH signaling was involved in cranial neural crest formation in avian embryos. However, Su(H)/RBP-J activity did not appear to be required in this process. In this study, the Deltex/Dtx gene was focussed on as a potential mediator of NOTCH signaling in neural crest formation. At the time of neural crest formation, quail Deltex2 was expressed throughout the ectoderm. Misexpression of a dominant-negative form of Deltex in the ectoderm caused reduced expression of Slug, a neural crest marker. Dominant-negative Deltex expression reduced the expression of Bmp4, a neural crest inducer, whereas co-transfection of Bmp4 with dominant-negative Deltex rescued Slug expression. In parallel, Hairy2 expression in the epidermis was regulated by a Su(H)-dependent pathway. These results indicate that NOTCH signaling has dual functions mediated by either Su(H) or Deltex in the avian embryonic ectoderm.  相似文献   

10.
R-spondins are a recently characterized family of secreted proteins that activate Wnt/β-catenin signaling. Herein, we determine R-spondin2 (Rspo2) function in craniofacial development in mice. Mice lacking a functional Rspo2 gene exhibit craniofacial abnormalities such as mandibular hypoplasia, maxillary and mandibular skeletal deformation, and cleft palate. We found that loss of the mouse Rspo2 gene significantly disrupted Wnt/β-catenin signaling and gene expression within the first branchial arch (BA1). Rspo2, which is normally expressed in BA1 mesenchymal cells, regulates gene expression through a unique ectoderm–mesenchyme interaction loop. The Rspo2 protein, potentially in combination with ectoderm-derived Wnt ligands, up-regulates Msx1 and Msx2 expression within mesenchymal cells. In contrast, Rspo2 regulates expression of the Dlx5, Dlx6, and Hand2 genes in mesenchymal cells via inducing expression of their upstream activator, Endothelin1 (Edn1), within ectodermal cells. Loss of Rspo2 also causes increased cell apoptosis, especially within the aboral (or caudal) domain of the BA1, resulting in hypoplasia of the BA1. Severely reduced expression of Fgf8, a survival factor for mesenchymal cells, in the ectoderm of Rspo2−/− embryos is likely responsible for increased cell apoptosis. Additionally, we found that the cleft palate in Rspo2−/− mice is not associated with defects intrinsic to the palatal shelves. A possible cause of cleft palate is a delay of proper palatal shelf elevation that may result from the small mandible and a failure of lowering the tongue. Thus, our study identifies Rspo2 as a mesenchyme-derived factor that plays critical roles in regulating BA1 patterning and morphogenesis through ectodermal–mesenchymal interaction and a novel genetic factor for cleft palate.  相似文献   

11.
Cleft palate, the most frequent congenital craniofacial birth defects in humans, arises from genetic or environmental perturbations in the multi-step process of palate development. Mutations in the MSX1 homeobox gene are associated with non-syndromic cleft palate and tooth agenesis in humans. We have used Msx1-deficient mice as a model system that exhibits severe craniofacial abnormalities, including cleft secondary palate and lack of teeth, to study the genetic regulation of mammalian palatogenesis. We found that Msx1 expression was restricted to the anterior of the first upper molar site in the palatal mesenchyme and that Msx1 was required for the expression of Bmp4 and Bmp2 in the mesenchyme and Shh in the medial edge epithelium (MEE) in the same region of developing palate. In vivo and in vitro analyses indicated that the cleft palate seen in Msx1 mutants resulted from a defect in cell proliferation in the anterior palatal mesenchyme rather than a failure in palatal fusion. Transgenic expression of human Bmp4 driven by the mouse Msx1 promoter in the Msx1(-/-) palatal mesenchyme rescued the cleft palate phenotype and neonatal lethality. Associated with the rescue of the cleft palate was a restoration of Shh and Bmp2 expression, as well as a return of cell proliferation to the normal levels. Ectopic Bmp4 appears to bypass the requirement for Msx1 and functions upstream of Shh and Bmp2 to support palatal development. Further in vitro assays indicated that Shh (normally expressed in the MEE) activates Bmp2 expression in the palatal mesenchyme which in turn acts as a mitogen to stimulate cell division. Msx1 thus controls a genetic hierarchy involving BMP and Shh signals that regulates the growth of the anterior region of palate during mammalian palatogenesis. Our findings provide insights into the cellular and molecular etiology of the non-syndromic clefting associated with Msx1 mutations.  相似文献   

12.
Craniofacial and trunk skeletal muscles are evolutionarily distinct and derive from cranial and somitic mesoderm, respectively. Different regulatory hierarchies act upstream of myogenic regulatory factors in cranial and somitic mesoderm, but the same core regulatory network – MyoD, Myf5 and Mrf4 – executes the myogenic differentiation program. Notch signaling controls self-renewal of myogenic progenitors as well as satellite cell homing during formation of trunk muscle, but its role in craniofacial muscles has been little investigated. We show here that the pool of myogenic progenitor cells in craniofacial muscle of Dll1LacZ/Ki mutant mice is depleted in early fetal development, which is accompanied by a major deficit in muscle growth. At the expense of progenitor cells, supernumerary differentiating myoblasts appear transiently and these express MyoD. The progenitor pool in craniofacial muscle of Dll1LacZ/Ki mutants is largely rescued by an additional mutation of MyoD. We conclude from this that Notch exerts its decisive role in craniofacial myogenesis by repression of MyoD. This function is similar to the one previously observed in trunk myogenesis, and is thus conserved in cranial and trunk muscle. However, in cranial mesoderm-derived progenitors, Notch signaling is not required for Pax7 expression and impinges little on the homing of satellite cells. Thus, Dll1 functions in satellite cell homing and Pax7 expression diverge in cranial- and somite-derived muscle.  相似文献   

13.
14.
The morphogenesis of the vertebrate skull results from highly dynamic integrated processes involving the exchange of signals between the ectoderm, the endoderm, and cephalic neural crest cells (CNCCs). Before migration CNCCs are not committed to form any specific skull element, molecular signals exchanged in restricted regions of tissue interaction are crucial in providing positional identity to the CNCCs mesenchyme and activate the specific morphogenetic process of different skeletal components of the head. In particular, the endothelin‐1 (Edn1)‐dependent activation of Dlx5 and Dlx6 in CNCCs that colonize the first pharyngeal arch (PA1) is necessary and sufficient to specify maxillo‐mandibular identity. Here, to better analyze the spatio‐temporal dynamics of this process, we associate quantitative gene expression analysis with detailed examination of skeletal phenotypes resulting from combined allelic reduction of Edn1, Dlx5, and Dlx6. We show that Edn1‐dependent and ‐independent regulatory pathways act at different developmental times in distinct regions of PA1. The Edn1→Dlx5/6→Hand2 pathway is already active at E9.5 during early stages of CNCCs colonization. At later stages (E10.5) the scenario is more complex: we propose a model in which PA1 is subdivided into four adjacent territories in which distinct regulations are taking place. This new developmental model may provide a conceptual framework to interpret the craniofacial malformations present in several mouse mutants and in human first arch syndromes. More in general, our findings emphasize the importance of quantitative gene expression in the fine control of morphogenetic events. genesis 48:362–373, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Laterality is fundamental to the vertebrate body plan. Here, we investigate the roles of fgf8 signaling in LR patterning of the zebrafish embryo. We find that fgf8 is required for proper asymmetric development of the brain, heart and gut. When fgf8 is absent, nodal signaling is randomized in the lateral plate mesoderm, leading to aberrant LR orientation of the brain and visceral organs. We also show that fgf8 is necessary for proper symmetric development of the pharyngeal skeleton. Attenuated fgf8 signaling results in consistently biased LR asymmetric development of the pharyngeal arches and craniofacial skeleton. Approximately 1/3 of zebrafish ace/fgf8 mutants are missing Kupffer's vesicle (KV), a ciliated structure similar to Hensen's node. We correlate fgf8 deficient laterality defects in the brain and viscera with the absence of KV, supporting a role for KV in proper LR patterning of these structures. Strikingly, we also correlate asymmetric craniofacial development in ace/fgf8 mutants with the presence of KV, suggesting roles for KV in lateralization of the pharyngeal skeleton when fgf8 is absent. These data provide new insights into vertebrate laterality and offer the zebrafish ace/fgf8 mutant as a novel molecular tool to investigate tissue-specific molecular laterality mechanisms.  相似文献   

16.
17.
18.
19.
20.

BACKGROUND:

Cleft lip with or without cleft palate (CL/P) is the most frequent craniofacial malformation seen in man. The etiology of CL/P is complex involving both genetic and epigenetic (environmental) factors, and the genes play an almost deterministic role in the normal development of craniofacial structures. This study was aimed at ascertaining the association of HLA microsatellites in CL/P patients.

MATERIALS AND METHODS:

Case DNA was obtained from 76 patients (40M and 36 F, average age 7.8 years, range 1-16 years). Unaffected individuals from the same geographical area without population mixing included as controls (n=154, 76 M and 78 F, average age 8.2 years, range 2-17 years). All DNA samples were purified from peripheral blood by standard techniques.

RESULTS:

Four microsatellites were compared in this case-control study. C1_2_5 locus was the most polymorphic marker with 15 observed alleles while C1_4_1 had the least number of alleles. Three of the four markers viz MIB,C1_4_1 and C1_2_5 showed a significant association of microsatellite alleles with CL/P. Five alleles (MIB_326,332,350; C1_4_1 – 213 and C1_2_5-204) were seen with an increased frequency among the test samples, whereas two alleles (C1-4_1_217, and C1_2_5_196) had an increased frequency among the control samples. One allele (C1-4-1-209) had an increased frequency in patient group but was not observed in the controls.

CONCLUSION:

The role of HLA complex in the pathogenesis of CL/P is speculative and has not been established so far. The result of this study shows that a few alleles have an increased frequency of expression in the diseased group which suggests that these alleles may predispose the individuals to clefting. This finding may be beneficial to aid in early diagnosis and plan intervention strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号