首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sciellin, together with other precursor proteins, was cross-linked by transglutaminase 1 to form the cornified envelope, an essential component of the physical barrier of the epidermis and stratified squamous epithelia. To more fully understand the function of sciellin in cornified envelope formation, we generated sciellin null mice. The mice appeared normal in their development and maturation and there were no structural features that distinguished them from littermate controls. Isolated cornified envelopes appeared normal in structure and were not more fragile to mechanical stress. There was no evidence of decreased barrier function or altered expression of other cornified envelope components. Transgenic mice expressing the repeat domain appeared to have a normal phenotype, like the null, and did not alter endogenous sciellin expression. We conclude that sciellin null mice had no structural anomalies and the transgenic mice did not act as a dominant-negative mutation.  相似文献   

2.
The cornified envelope is a layer of transglutaminase cross-linked protein that is deposited under the plasma membrane of keratinocytes in the outermost layers of the epidermis. We present the sequence of one of the cornified envelope precursors, a protein with an apparent molecular mass of 210 kD. The 210-kD protein is translated from a 6.5- kb mRNA that is transcribed from a single copy gene. The mRNA was upregulated during suspension-induced terminal differentiation of cultured human keratinocytes. Like other envelope precursors, the 210- kD protein became insoluble in SDS and beta-mercaptoethanol on activation of transglutaminases in cultured keratinocytes. The protein was expressed in keratinizing and nonkeratinizing stratified squamous epithelia, but not in simple epithelia or nonepithelial cells. Immunofluorescence staining showed that in epidermal keratinocytes, both in vivo and in culture, the protein was upregulated during terminal differentiation and partially colocalized with desmosomal proteins. Immunogold EM confirmed the colocalization of the 210-kD protein and desmoplakin at desmosomes and on keratin filaments throughout the differentiated layers of the epidermis. Sequence analysis showed that the 210-kD protein is homologous to the keratin- binding proteins desmoplakin, bullous pemphigoid antigen 1, and plectin. These data suggest that the 210-kD protein may link the cornified envelope to desmosomes and keratin filaments. We propose that the 210-kD protein be named "envoplakin."  相似文献   

3.
Expression patterns of loricrin in various species and tissues   总被引:3,自引:0,他引:3  
Abstract. In this study we analyzed the expression patterns of loricrin in various species and tissues using immunohistochemistry, immunoblotting and Northern blots. Loricrin is a glycine-, serine- and cysteine-rich protein expressed very late in epidermal differentiation in the granular layers of normal mouse and human epidermis. Later on in differentiation, loricrin becomes cross-linked as a major component into the cornified cell envelope by the formation of Nε-(γ-glutamyl)lysine isopeptide bonds. This process either occurs directly or by the intermediate accumulation in L-keratohyaline granules of mouse epidermis and human acrosyringia. Loricrin was identified in all mammalian species analyzed by virtue of its highly conserved carboxy-terminal sequences revealing an electric mobility of ∼60 kDa in rodents, rabbit and cow and of ∼35 kDa in lamb and human on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Loricrin is expressed in the granular layer of all mammalian orthokeratinizing epithelia tested including oral, esophageal and fore-stomach mucosa of rodents, tracheal squamous metaplasia of vitamin A deficient hamster and estrogen induced squamous vaginal epithelium of ovary ectomized rats. Loricrin is also expressed in a few parakeratinizing epithelia such as BBN [N-butyl-N-(4-hydroxybutyl)nitrosamine]-induced murine bladder carcinoma and a restricted subset of oral and single vaginal epithelial cells in higher mammals. Our results provide further evidence that the program of squamous differentiation in internal epithelia of the upper alimentary tract in rodents and higher mammals differ remarkably. In addition, we also have noted the distinct distribution patterns of human loricrin and involucrin, another major precursor protein of the cornified cell envelope.  相似文献   

4.
Abstract. In this study we analyzed the expression patterns of loricrin in various species and tissues using immunohistochemistry, immunoblotting and Northern blots. Loricrin is a glycine-, serine- and cysteine-rich protein expressed very late in epidermal differentiation in the granular layers of normal mouse and human epidermis. Later on in differentiation, loricrin becomes cross-linked as a major component into the cornified cell envelope by the formation of Nɛ -(γ-glutamyl)lysine isopeptide bonds. This process either occurs directly or by the intermediate accumulation in L-keratohyaline granules of mouse epidermis and human acrosyringia. Loricrin was identified in all mammalian species analyzed by virtue of its highly conserved carboxy-terminal sequences revealing an electric mobility of ∼60 kDa in rodents, rabbit and cow and of ∼35 kDa in lamb and human on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Loricrin is expressed in the granular layer of all mammalian orthokeratinizing epithelia tested including oral, esophageal and fore-stomach mucosa of rodents, tracheal squamous metaplasia of vitamin A deficient hamster and estrogen induced squamous vaginal epithelium of ovary ectomized rats. Loricrin is also expressed in a few parakeratinizing epithelia such as BBN [N-butyl-N-(4–hydroxybutyl)nitrosamine]-induced murine bladder carcinoma and a restricted subset of oral and single vaginal epithelial cells in higher mammals. Our results provide further evidence that the program of squamous differentiation in internal epithelia of the upper alimentary tract in rodents and higher mammals differ remarkably. In addition, we also have noted the distinct distribution patterns of human loricrin and involucrin, another major precursor protein of the cornified cell envelope.  相似文献   

5.
Envoplakin, a member of the plakin family of proteins, is a component of desmosomes and the epidermal cornified envelope. To understand how envoplakin expression is regulated, we have analyzed the structure of the mouse envoplakin gene and characterized the promoters of both the human and mouse genes. The mouse gene consists of 22 exons and maps to chromosome 11E1, syntenic to the location of the human gene on 17q25. The exon-intron structure of the mouse envoplakin gene is common to all members of the plakin family: the N-terminal protein domain is encoded by 21 small exons, and the central rod domain and the C-terminal globular domain are coded by a single large exon. The C terminus shows the highest sequence conservation between mouse and human envoplakins and between envoplakin and the other family members. The N terminus is also conserved, with sequence homology extending to Drosophila Kakapo. A region between nucleotides -101 and 288 was necessary for promoter activity in transiently transfected primary keratinocytes. This region is highly conserved between the human and mouse genes and contains at least two different positively acting elements identified by site-directed mutagenesis and electrophoretic mobility shift assays. Mutation of a GC box binding Sp1 and Sp3 proteins or a combined E box and Krüppel-like element interacting with unidentified nuclear proteins virtually abolished promoter activity. 600 base pairs of the mouse upstream sequence was sufficient to drive expression of a beta-galactosidase reporter gene in the suprabasal layers of epidermis, esophagus, and forestomach of transgenic mice. Thus, we have identified a regulatory region in the envoplakin gene that can account for the expression pattern of the endogenous protein in stratified squamous epithelia.  相似文献   

6.
The cornified envelope hs been shown to be formed beneath the plasma membrane as a result of the cross-linking of soluble and membrane-associated precursor proteins by transglutaminase. We have obtained a monoclonal antibody which reacts with the periphery of cells in the upper layers of human epidermis by indirect immunofluorescence (IIF) following immunization of mice with cornified envelopes of cultured human keratinocytes. The antibody also stained the cell peripheries of bovine, rat and mouse epidermis as well as stratified epithelium. Neutral buffer extracts of human cultured keratinocytes and epidermis examined under denaturing conditions contained polypeptides of molecular weight 14 900 and 16 800 which reacted with the antibody, and an additional component of molecular weight 24 800 was found in cultured cells. The polypeptides were shown to have a pI of about 9.0. Under non-denaturing conditions the two lower-molecular-weight polypeptides had an apparent molecular weight of 30 000, while the 24 800 protein had one of 60 000. Incubation of the polypeptides under conditions that activate transglutaminase resulted in a disappearance of the polypeptides or the formation of cross-linked products. Basic polypeptides with somewhat different pI values and molecular weights were identified in neutral buffer extracts of bovine and rat epidermis. The HCE-2 antibody appears to identify a new class of basic protein precursors of mammalian cornified envelope.  相似文献   

7.
Involucrin is synthesized in abundance during terminal differentiation of keratinocytes. Involucrin is a substrate for transglutaminase and one of the precursors of the cross-linked envelopes present in the corneocytes of the epidermis and other stratified squamous epithelia. These envelopes make an important contribution to the physical resistance of the epidermis. We have generated mice lacking involucrin from embryonic stem cells whose involucrin gene had been ablated by homologous recombination. These mice developed normally, possessed apparently normal epidermis and hair follicles, and made cornified envelopes that could not be distinguished from those of wild-type mice. No compensatory increase of mRNA for other envelope precursors was observed.  相似文献   

8.
The cornified envelope is a layer of transglutaminase cross-linked protein that is assembled under the plasma membrane of keratinocytes in the outermost layers of the epidermis. We have determined the cDNA sequence of one of the proteins that becomes incorporated into the cornified envelope of cultured epidermal keratinocytes, a protein with an apparent molecular mass of 195 kD that is encoded by a mRNA with an estimated size of 6.3 kb. The protein is expressed in keratinizing and nonkeratinizing stratified squamous epithelia and in a number of other epithelia. Expression of the protein is upregulated during the terminal differentiation of epidermal keratinocytes in vivo and in culture. Immunogold electron microscopy was used to demonstrate an association of the 195-kD protein with the desmosomal plaque and with keratin filaments in the differentiated layers of the epidermis. Sequence analysis showed that the 195-kD protein is a member of the plakin family of proteins, to which envoplakin, desmoplakin, bullous pemphigoid antigen 1, and plectin belong. Envoplakin and the 195-kD protein coimmunoprecipitate. Analysis of their rod domain sequences suggests that the formation of both homodimers and heterodimers would be energetically favorable. Confocal immunofluorescent microscopy of cultured epidermal keratinocytes revealed that envoplakin and the 195-kD protein form a network radiating from desmosomes, and we speculate that the two proteins may provide a scaffolding onto which the cornified envelope is assembled. We propose to name the 195-kD protein periplakin.  相似文献   

9.
Delhomme B  Djian P 《Gene》2000,252(1-2):195-207
Involucrin, loricrin and the small proline-rich proteins (SPRRs) are precursors of the cornified envelope of terminally differentiated keratinocytes. The genes for these proteins are closely linked on mouse chromosome 3. Each of the proteins is encoded by a single exon and is largely composed of a segment of short tandem repeats. No size polymorphism of either loricrin or the SPRRs was observed. In contrast, involucrin was found in at least eight polymorphic forms of different size with molecular weights ranging from 51 to 82kDa. Two classes of involucrin alleles were identified. Size polymorphism of involucrin has resulted from the recent expansion of the segment of repeats in one class of alleles, but not in the other. In expanding alleles, repeats were added at a precise location within the segment of repeats, in a 5'-to-3' direction. A study of a large number of allele-specific markers, located on both sides of the site of repeat addition, revealed no evidence for recombination between any of the alleles examined. Expansion of the segment of repeats of the gene for mouse involucrin must result from an intra-allelic process controlled by a cis-acting element, active in one class of alleles, and inactive in the other.  相似文献   

10.
11.
In differentiating mammalian keratinocytes proteins are linked to the plasma membrane by epidermal transglutaminases through N-epsilon-(gamma-glutamyl)-lysine isopeptide bonds to form the cornified cell envelope. The presence of transglutaminases and their protein substrates in the epidermis of nonmammalian vertebrates is not known. The present study analyses the presence and localization of the above proteins in the epidermis using immuno-cross reactivity across different classes of amniotes. After immunoblotting, some protein bands appear labelled for loricrin, sciellin, and transglutaminase in most species. These proteins are scarce to absent in the epidermis of aquatic species (goldfish and newt) where a stratum corneum is absent or very thin. The molecular weight of transglutaminase immunoreactive bands generally varies between 40 to 62 kDa, with the most represented bands at 52-57 kDa in most species. The more intense loricrin- and sciellin-immunoreactive bands are seen at 50-55-62 kDa, but are weak or absent in aquatic vertebrates. Loricrine-like immunoreactivity is present in the epidermis where alpha-(soft)-keratinization occurs. Isopeptide bonds are mainly associated to bands in the range of 50-62 kDa. In vertebrates where hard-keratin is expressed (the beta-keratin corneous layer of sauropsids and in feathers) or in hair cortex of mammals, no loricrin-like, transglutaminase-, and isopeptide-bond-immunoreactivities are seen. Immunoblotting however shows loricrin-, sciellin-, and trasnsglutaminase-positive bands in the corneous layers containing beta-keratin. Histologically, the epidermis of most amniotes shows variable transglutaminase immunoreactivity, but isopeptide-bond and sciellin immunoreactivities are weak or undetactable in most species. The limitations of immunohistochemical methods are discussed and compared with results from immunoblotting. In reptilian epidermis transglutaminase is mainly localized in 0.15-0.3 microm dense granules or diffuse in transitional alpha-keratogenic cells. In beta-keratogenic cells few small dense granules show a weak immunolabeling. Transglutaminase is present in nuclei of terminal differentiating alpha- and beta-keratinocytes, as in those of mature inner and outer root sheath. The present study suggests that keratinization based on loricrin, sciellin and transglutaminase was probably present in the stratum corneoum of basic amniotes in the Carboniferous. These proteins were mainly maintained in alpha-keratogenic layers of amniotes but decreased in beta-keratogenic layers of sauropsids (reptiles and birds). The study suggests that similar proteins for the formation of the cornified cell envelope are present in alpha-keratinocytes across vertebrates but not in beta-keratinocytes.  相似文献   

12.
Abstract. Involucrin is a precursor of the keratinocyte cornified envelope that is specifically expressed in the suprabasal layers of the epidermis and other stratifying squamous epithelia. To study involucrin gene expression and the function of involucrin, we expressed a 6 kb DNA fragment of the human involucrin gene, containing approximately 2.5 kb of upstream sequence and 0.5 kb of downstream sequence, in transgenic mice. The transgene produces a 68 kDa protein that is detected by a human involucrin-specific antibody, and is expressed in a tissuespecific and differentiation-appropriate manner (i.e., expression is confined to the suprabasal layers of the epidermis, extocervix, trachea, esophagus and conjunctiva).
Soluble involucrin levels are two to four times higher in transgenic epidermal keratinocytes compared to human foreskin keratinocytes. Newborn heterozygous animals have a normal birth weight and a normal appearing epidermis and hair growth begins at 4 to 5 days of age (i.e., the same time as hair growth in non-transgenic animals). In a subpopulation of the newborn homozygous animals birth weight is reduced, the epidermis is scaly and hair growth begins late, at around 9 to 10 days of age. In addition, the hair tends to stand erect on both heterozygous and homozygous adult animals giving the appearance of diffuse alopecia.
Immunofluorescent and electron microscopy localize involucrin in the hair follicle and cornified envelope, respectively. These results suggest that overexpression of involucrin may cause abnormalities in hair follicle structure/function and cornified envelope structure. These animals provide a new model for the study of cornified envelope structure and function.  相似文献   

13.
The cornified envelope, located beneath the plasma membrane of terminally differentiated keratinocytes, is formed as protein precursors are cross-linked by a membrane associated transglutaminase. This report characterizes a new precursor to the cornified envelope. A monoclonal antibody derived from mice immunized with cornified envelopes of human cultured keratinocytes stained the periphery of more differentiated cells in epidermis and other stratified squamous epithelia including hair and nails. The epitope was widely conserved among mammals as determined by immunohistochemical and Western analysis. Immunoelectron microscopy localized the epitope to the cell periphery in the upper stratum spinosum and granulosum of epidermis. In the hair follicle, the epitope was present in the internal root sheath and in the infundibulum, the innermost aspect of the external root sheath. The antibody recognized a protein of relative mobility (M(r)) 82,000, pI 7.8. The protein was a transglutaminase substrate as shown by a dansylcadaverine incorporation assay. Purified cornified envelopes absorbed the reactivity of the antibody to the partially purified protein and cleavage of envelopes by cyanogen bromide resulted in release of immunoreactive fragments. The protein was soluble only in denaturing buffers such as 8 M urea or 2% sodium dodecyl-sulfate (SDS). Partial solubility could be achieved in 50 mM TRIS pH 8.3 plus 0.3 M NaCl (high salt buffer); the presence of a reducing agent did not affect solubility. Extraction of cultured keratinocytes in 8 M urea and subsequent dialysis against 50 mM TRIS pH 8.3 buffer resulted in precipitation of the protein with the keratin filaments. Dialysis against high salt buffer prevented precipitation of the protein. The unique solubility properties of this protein suggest that it aggregates with itself and/or with keratin filaments. The possible role of the protein in cornified envelope assembly is discussed. We have named this protein Sciellin (from the old english "sciell" for shell).  相似文献   

14.
The members of the plakin family of proteins serve as epidermal cytolinkers and components of cell-cell and cell-matrix adhesion complexes, i.e., desmosomes and hemidesmosomes, respectively. Periplakin is a recently characterized member of this family. Human and mouse periplakin genomic loci are conserved, and the proteins are highly homologous, suggesting a role for periplakin in vertebrate physiology. In order to evaluate the functional role of periplakin, we generated periplakin null mice through targeted homologous recombination of mouse embryonic stem cells, followed by development of Ppl(-/-) mice. Mice homozygous for the targeted allele were born in the expected Mendelian frequency, developed normally, possessed grossly normal epidermis and hair, and were healthy and fertile. The epidermal barrier appeared to develop normally during fetal days E15.5 to E16.5, and the cornified envelope and desmosomes in the newborn mice were ultrastructurally normal. No compensatory increase in the expression of other epithelial proteins was detected in the neonatal mouse epidermis lacking periplakin. Consequently, the primary role of periplakin may not relate to the physiology of the cornified cell envelope in epidermal keratinocytes but may reside in the challenges, which normal laboratory mice do not encounter.  相似文献   

15.
The epidermal permeability barrier is maintained by extracellular lipid membranes within the interstices of the stratum corneum. Ceramides, the major components of these multilayered membranes, derive in large part from hydrolysis of glucosylceramides mediated by stratum corneum beta-glucocerebrosidase (beta-GlcCerase). Prosaposin (pSAP) is a large precursor protein that is proteolytically cleaved to form four distinct sphingolipid activator proteins, which stimulate enzymatic hydrolysis of sphingolipids, including glucosylceramide. Recently, pSAP has been eliminated in a mouse model using targeted deletion and homologous recombination. In addition to the extracutaneous findings noted previously, our present data indicate that pSAP deficiency in the epidermis has significant consequences including: 1) an accumulation of epidermal glucosylceramides together with below normal levels of ceramides; 2) alterations in lipids that are bound by ester linkages to proteins of the cornified cell envelope; 3) a thickened stratum lucidum with evidence of scaling; and 4) a striking abnormality in lamellar membrane maturation within the interstices of the stratum corneum. Together, these results demonstrate that the production of pSAP, and presumably mature sphingolipid activator protein generation, is required for normal epidermal barrier formation and function. Moreover, detection of significant amounts of covalently bound omega-OH-GlcCer in pSAP-deficient epidermis suggests that deglucosylation to omega-OH-Cer is not a requisite step prior to covalent attachment of lipid to cornified envelope proteins.  相似文献   

16.
The FEM-1 protein of Caenorhabditis elegans functions within the nematode sex-determination pathway. Two mouse homologs, encoded by the Fem1a and Fem1b genes, have been reported. We report here the characterization of a novel human gene, designated FEM1B, that is highly homologous to the mouse Fem1b gene. FEM1B encodes a protein, designated FEM1beta, that shows >99% amino acid identity to the corresponding mouse Fem1b protein, including 100% amino acid identity in the N-terminal ANK repeat domain. FEM1beta represents the first characterized human member of the FEM-1 protein family. The human and mouse genes show conservation of coding sequence and its intron/exon organization, flanking untranslated and genomic sequences, and expression pattern in adult tissues. These findings suggest that there may be evolutionary conservation of regulation and function between the mouse and human FEM1B genes.  相似文献   

17.
In contrast to most chelonians, the fully aquatic soft-shelled turtles have a smooth, unscaled, and pliable shell. The skin of the shell, tail, limbs, and neck of juveniles of Trionyx spiniferus has been studied by ultrastructural, immunocytochemical, and immunoblotting methods. The epidermis of the carapace and plastron has a thick corneous layer composed of alpha-corneocytes surrounded by a cornified cell envelope. The softer epidermis is similar to that of the shell but the epidermis and corneous layer are much thinner. Pre-corneous cells in both soft and shell epidermis are rich in vesicles produced in the Golgi apparatus and smooth endoplasmic vesicles, and contain numerous dense-core mucus-like and vesicular (lamellar) bodies. Secreted material is present among corneocytes where it probably forms an extensive intercellular lipid-mucus waterproof barrier. The dermis is very thick and composed of several layers of collagen bundles that form a plywood-patterned dermis. This dermis constitutes a strong mechanical barrier that compensates for the low content in beta-keratin, and lack of cornified scutes and dermal bones. The growth of the shell mainly occurs along the lateral margins. Immunocytochemistry reveals the presence of some beta-keratin in soft and shell epidermis, and this is confirmed by immunoblotting where bands at 18 and 32-35 kDa are present. Other proteins of the cornified cell envelope (loricrin and sciellin) or associated to lipid trafficking (caveolin-1) are also detected by immunoblotting. Loricrin positive bands at 24 and 57 kDa are present while bands cross-reactive for sciellin are seen at 45 and 53 kDa. Caveolin-1 positive bands are seen at 21-22 kDa. The presence of these proteins indicates that the epidermis is both coriaceous and waterproof. These results suggest that the shell of Trionyx is tough enough to be as mechanically efficient as the hard shell of the other turtles. At the same time, a soft shell is lighter, its shape is more easily controlled by muscles, and it allows a more controlled closure and retraction of limbs and neck inside the shell. Thus, the shell makes the animal more streamlined for swimming.  相似文献   

18.
19.
In mammals, the cornified cell envelope forms beneath the plasma membrane in epithelia and provides a vital physical barrier consisting of insoluble proteins cross-linked by transglutaminase (TGase). In the horseshoe crab Tachypleus tridentatus, TGase is stored in hemocytes and secreted in response to the simulation of bacterial lipopolysaccharides. Here we characterized a TGase substrate designated as caraxin that was identified in horseshoe crab cuticle. One of the homologs, caraxin-1, possessed a unique domain structure consisting of N-and C-terminal heptad repeats and a central domain with a tandem-repeated structure of a pentapeptide. Western blotting showed the specific localization of caraxin-1 in sub-cuticular epidermis. Moreover, we identified the pentapeptide motif to be a chitin-binding unit. Analytical ultracentrifugation revealed that caraxin-1 exists as an oligomer with 310-350 kDa, which is approximately 20-mer based on the molecular mass of the monomer. The oligomers were cross-linked by TGase to form an elaborate mesh with honeycomb structures, which was electron-microscopically found to be different from the clotting mesh triggered by lipopolysaccharide-induced hemocyte exocytosis. We determined several cross-linking sites in the N-and C-terminal domains of caraxin-1. The replacements of Leu to Pro at positions 36 and 118 in caraxin-1 reduced the alpha-helix content, which destroyed the TGase-dependent mesh, thus indicating the importance of the N-and C-terminal domains for the proper mesh formation. In arthropods, TGase-dependent protein cross-linking may be involved in the initial stage of host defense at the sub-cuticular epidermis, as in the case of mammalian skin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号