首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This preliminary study examines the feasibility and applications of pyrolysis and biochar in China to understand issues about bioenergy generation, agricultural cost savings and enhancement of atmospheric quality. Multiple agricultural and animal wastes are analyzed and quantitative measures of economic and environmental benefits are provided. The Poyang Lake, one of the most important clean water lakes in China, is examined to see how pyrolysis and biochar applications can be beneficiary to farmers and society in terms of the economic and greenhouse gas values. Rice straw, corn stover, poplar, orchard wastes, animal wastes and open pasture wastes are primary feedstocks for fast and slow pyrolysis. The results show that both fast and slow pyrolysis are profitable under current situations where corn stover-based pyrolysis yields the highest economic benefits but that of animal wastes-based can offset more GHG emissions. Rice straw yields a loss but it can still be a potential choice since the material is the most popular in study area. Sensitivity analysis is provided to understand the changes of economic and environmental benefits under various market conditions and the results indicate that in general, significant profits of pyrolysis and biochar application bring additional margin of safety and therefore, pyrolysis and biochar does not incur a loss unless input costs increase more than 53% to 64%.  相似文献   

2.
Animal manure has been used to manage soil fertility since the dawn of agriculture. It provides plant nutrients and improves soil fertility. In the last decades, animal husbandry has been significantly expanded globally. Its economics were optimized via the (international) trade of feed, resulting in a surplus of animal manure in areas with intensive livestock farming. Potentially toxic elements (PTEs), pathogenic microorganisms, antibiotic residues, biocides, and other micropollutants in manure threaten animal, human, and environmental health. Hence, manure application in crop fields is increasingly restricted, especially in hotspot regions with intensive livestock activities. Furthermore, ammonia volatilization and greenhouse gas (GHG) emissions during manure storage, field application, and decomposition contribute to air pollution and climate change. Conventional manure management scenarios such as composting and anaerobic digestion partially improve the system but cannot guarantee to eliminate sanitary and contamination risks and only marginally reducing its climate burden. Hence, this review discusses the potential of pyrolysis, the thermochemical conversion under oxygen-limited conditions as an alternative treatment for animal manure providing energy and biochar. Manure pyrolysis reduces the bioavailability of PTEs, eliminates pathogenic microorganisms and organic micropollutants, and reduces GHG emissions. Pyrolysis also results in the loss of nitrogen, which can be minimized by pretreatment, that is, after removing soluble nitrogen fraction of manure, for example, by digestion and stripping of ammonia–nitrogen or liquid–solid separation. However, conclusions on the effect of manure pyrolysis on crop yield and fertilization efficiencies are hampered by a lack of nutrient mass balances based on livestock unit equivalent comparisons of manure and manure biochar applications. Hence, it is essential to design and conduct experiments in more practically relevant scenarios and depict the observations based on the amount of manure used to produce a certain amount of biochar.  相似文献   

3.
Converting feedstocks of invasive plants into biochar is a new and cost‐effective measure for their control, and benefits for the sustainable development of native ecosystems. Spartina alterniflora, an invasive plant widely distributed in coastal wetlands of China, was used to produce biochar. We aimed to analyze how S. alterniflora biochar properties changed with desalination of feedstocks, pyrolysis temperature, and residence time. Results showed that desalting feedstocks increased biochar pH, stability, porosity, and surface area, but diminished biochar yield and polarity. Pyrolysis temperature positively affected biochar pH, surface area, and pore volume, while it had negative effects on biochar yield, oxygen and hydrogen contents, hydrogen/carbon and oxygen/carbon ratios, pore size, and function groups. However, residence time of pyrolysis had slight effects on biochar properties. The results are valuable for optimizing pyrolysis temperature and pretreatment measure of feedstocks, to tune S. alterniflora biochar properties for specific environmental usage.  相似文献   

4.
The composition and pyrolysis characteristics of 60 types of biomass waste from the following six source categories were compared: agricultural residues, woody pruning waste from gardens and lawns, aquatic plant material from eutrophic water bodies, nutshells and fruit peels, livestock manure and residual sludge from municipal wastewater treatment. The yield and physicochemical characteristics of the biochar produced from these feedstocks at 350 °C, 500 °C and 650 °C were also examined. Results of correlation and canonical correspondence analysis between feedstock composition and biochar properties showed that feedstock type played an important role in controlling yield and properties of biochars. The yields of biochar dry ash‐free (daf.) basis were positively correlated with cellulose, lignin and lignin/cellulose content of feedstock; and ash content hampered the biochar production. Furthermore, the intensity of correlation between biochar yield and its feedstock composition was improved with pyrolysis temperature and degree of feedstock decomposition. The fixed carbon content in biochar was also negatively influenced by ash content of feedstock, and it increased with increasing pyrolysis temperature when the ash content was below 34.57% in feedstock and decreased when the ash content exceeded. The fixed carbon production in biochar per unit ash‐free mass (af.) was positively related to cellulose, lignin and lignin/cellulose content in feedstock, which were same with the yield of biochar (daf.). But on the contrary, the volatiles content in biochar (af.) had negative correlation with these organic constituents. For most feedstocks, the differences in the biochar characteristics among the biomass categories were greater than within any individual category. C/N, H/C and O/C atomic ratio and bulk density of biochar from different types of biomass were also compared. The results will provide guidance for the reutilization of biomass wastes and production of biochar with specified properties for soil amendment applications.  相似文献   

5.
This study aimed to investigate the extent to which it is possible to marry the two seemingly opposing concepts of heat and/or power production from biomass with carbon sequestration in the form of biochar. To do this, we investigated the effects of feedstock, highest heating temperature (HTT), residence time at HTT and carrier gas flow rate on the distribution of pyrolysis co‐products and their energy content, as well as the carbon sequestration potential of biochar. Biochar was produced from wood pellets (WP) and straw pellets (SP) at two temperatures (350 and 650 °C), with three residence times (10, 20 and 40 min) and three carrier gas flow rates (0, 0.33 and 0.66 l min?1). The energy balance of the system was determined experimentally by quantifying the energy contained within pyrolysis co‐products. Biochar was also analysed for physicochemical and soil functional properties, namely environmentally stable‐C and labile‐C content. Residence time showed no considerable effect on any of the measured properties. Increased HTT resulted in higher concentrations of fixed C, total C and stable‐C in biochar, as well as higher heating value (HHV) due to the increased release of volatile compounds. Increased carrier gas flow rate resulted in decreased biochar yields and reduced biochar stable‐C and labile‐C content. Pyrolysis at 650 °C showed an increased stable‐C yield as well as a decreased proportion of energy stored in the biochar fraction but increased stored energy in the liquid and gas co‐products. Carrier gas flow rate was also seen to be influential in determining the proportion of energy stored in the gas phase. Understanding the influence of production conditions on long term biochar stability in addition to the energy content of the co‐products obtained from pyrolysis is critical for the development of specifically engineered biochar, be it for agricultural use, carbon storage, energy generation or combinations of the three.  相似文献   

6.
Black soldier flies, Hermetia illucens L., are a common colonizer of animal wastes. However, all published development data for this species are from studies using artificial diets. This study represents the first examining black soldier fly development on animal wastes. Additionally, this study examined the ability of black soldier fly larvae to reduce dry matter and associated nutrients in manure. Black soldier fly larvae were fed four rates of dairy manure to determine their effects on larval and adult life history traits. Feed rate affected larval and adult development. Those fed less ration daily weighed less than those fed a greater ration. Additionally, larvae provided the least amount of dairy manure took longer to develop to the prepupal stage; however, they needed less time to reach the adult stage. Adults resulting from larvae provided 27 g dairy manure/d lived 3-4 d less than those fed 70 g dairy manure. Percentage survivorship to the prepupal or adult stages did not differ across treatments. Larvae fed 27 g dairy manure daily reduced manure dry matter mass by 58%, whereas those fed 70 g daily reduced dry matter 33%. Black soldier fly larvae were able to reduce available P by 61-70% and N by 30-50% across treatments. Based on results from this study, the black soldier fly could be used to reduce wastes and associated nutrients in confined bovine facilities.  相似文献   

7.
Livestock manure can be quickly converted into valuable products (H2, syn-gas and char) by low temperature gasification. Manure char combustion offers energy for the gasification reactions. In the paper, the influence of manure type and pyrolysis conditions on manure char reactivity is addressed. The results show that the oxidation behaviors of manure char are dependent strongly on manure type and pyrolysis conditions employed. The large difference between the oxidation behaviors of pig and hen manure chars can be attributed to the difference in the organic materials and minerals of the samples. High final temperature, flash pyrolysis and water steam atmosphere used for char preparation promote the resultant char reactivity.  相似文献   

8.
生物炭提高土壤磷素有效性的整合分析   总被引:4,自引:0,他引:4  
生物炭改善土壤肥力和提高作物产量的作用与土壤磷素有效性的提高密切相关,但是关于生物炭添加对土壤磷素有效性影响的定量效应尚不明确。本研究对95篇符合条件的文献中的507组数据进行整合分析,以评估生物炭添加对土壤磷素有效性的定量影响。结果表明: 不论生物炭原料、制备温度、C/N、施用量、配施化肥与否,以及土壤质地、pH、有机碳含量如何变化,生物炭添加均使土壤有效磷含量显著提高,平均较不添加对照提高57.6%。同时,生物炭添加促进了作物对磷的利用,但植株含磷量对不同添加条件下生物炭的响应程度基本上均低于土壤有效磷,部分条件下未达到显著水平,平均响应比为30.6%。在砂质和壤质土壤中,添加拥有较多灰分的畜禽粪便生物炭,以及较低C/N、低温裂解的碱性生物炭、较大施用量对增加土壤有效磷和植株磷含量更有效。作为土壤磷素循环的主要酶,生物炭添加使碱性磷酸酶活性平均增加2.8%,而酸性磷酸酶活性则平均降低17.8%。总体上,生物炭对土壤有效磷和植株磷含量有显著的正向效应,但对土壤磷酸酶活性的影响较小,磷素有效性的提高可能主要源于生物炭自身携带较高含量的有效磷组分。  相似文献   

9.
A value added manure management system using the black soldier fly   总被引:3,自引:0,他引:3  
A manure management system for laying hens using the black soldier fly, Hermetia illucens (L.) converted manure to a 42% protein, 35% fat feedstuff, reduced manure accumulation by at least 50% and eliminated house fly breeding. No extra facility or added energy was required. Mature larvae self-harvested producing a feedstuff as they attempted to pupate. Optimal feedstuff to manure dry matter yield was 7·8%. This insect occurs worldwide in tropical and warm-temperature regions and can digest many biological wastes.  相似文献   

10.
Cattle manure can be processed to produce bioenergy, resulting in by‐products with different physicochemical characteristics. To evaluate whether application of such bioenergy by‐products to soils would be beneficial compared with their unprocessed counterpart, we quantified differences in greenhouse gas emissions and carbon (C) and nitrogen (N) dynamics in soil. Three by‐products (15N‐labeled cattle manure, from which anaerobic digestate was obtained, which was subsequently pyrolysed) were applied to a loess and a sandy soil in a laboratory incubation study. The highest losses of soil C from biological activity (CO2 respiration) were observed in manure treatments (39% and 32% for loess and sandy soil), followed by digestate (31% and and 18%), and biochar (15% and and 7%). Emissions of nitrous oxide (N2O) ranged from 0.6% of applied N from biochar to 4.0% from manure. Isotope labeling indicated that manure N was most readily mineralized, contributing 50% to soil inorganic N. The anaerobic digestate was the only by‐product increasing the mineral N pool, while reducing emissions of N2O compared with manure. In biochar treatments, less than 18.3% of soil mineral N derived from the biochar, while it did not constrain mineralization of native soil N. By‐products of anaerobic digestion and pyrolysis revealed soil fertility in addition to environmental benefits. However, the reported advantages lessen when the declining yields of C and N over the bioenergy chain are considered.  相似文献   

11.
Anaerobic digestion of animal waste is a technically viable process for the abatement of adverse environmental impacts caused by animal wastes; however, widespread acceptance has been plagued by poor economics. This situation is dismal if the technology is adapted for treating low strength animal slurries because of large digester-volume requirements and a corresponding high energy input. A possible technology to address these constraints is the anaerobic sequencing batch reactor (ASBR). The ASBR technology has demonstrated remarkable potential to improve the economics of treating dilute animal waste effluents. This paper presents preliminary data on the effects of temperature and frequency-cycle on the operation of an ASBR at a fixed hydraulic retention time (HRT). The results suggest that within the parameter range under consideration, temperature did not affect the biogas yield significantly, however, higher cycle-frequency had a negative effect. The biogas quality (%CH(4)) was not significantly affected by temperature nor by the cycle-frequency. The operating principle of the ASBR follows four phases: feed, react, settle, and decant in a cyclic mode. To improve the biogas production in an ASBR, one long react-phase was preferable compared to three shorter react-phases. Treatment of dilute manure slurries in an ASBR at 20 degrees C was more effective than at 35 degrees C; similarly more bio-stable effluents were obtained at low cycle-frequency. The treatment of dilute swine slurries in an ASBR at the lower temperature (20 degrees C) and lower cycle-frequency is, therefore, recommended for the bio-stabilization of dilute swine wastewaters. The results also indicate that significantly higher VFA degradation occurred at 20 degrees C than at 35 degrees C, suggesting that the treatment of dilute swine slurries in ASBRs for odor control might be more favorable at the lower than at the higher temperatures examined in this study. Volatile fatty acid reduction at the two reactor temperatures and cycle-frequencies, from a high of 639+/-75 mg/L to a low of 92+/-23 mg/L, greatly reduced the odor and the odor-generation potential in post-treatment storage. The nutrients (both N and P) in the waste influent were conserved in the effluents.  相似文献   

12.
Intensification of animal production led to high amounts of manure to be managed. Biological processes can contribute to a sustainable manure management. This paper presents the biological treatments available for the treatment of animal manure, mainly focusing on swine manure, including aerobic processes (nitrification, denitrification, enhanced biological phosphorus removal) and anaerobic digestion. These processes are discussed in terms of pollution removal, ammonia and greenhouse gas emissions (methane and nitrous oxide) and pathogen removal. Application of emerging processes such as partial nitrification and anaerobic ammonium oxidation (anammox) applied to animal manure is also considered. Finally, perspectives and future challenges for the research concerning biological treatments are highlighted in this paper.  相似文献   

13.
Management considerations for organic waste use in agriculture   总被引:8,自引:0,他引:8  
Organic wastes are utilized in agriculture mainly for improving the soil physical and chemical properties and for nutrient sources for growing crops. The major source of organic waste used in agriculture is animal manure, but small amounts of food processing and other industrial wastes (along with municipal wastes) are also applied to land. In the last 35 years, and especially in the last 10 years, there have been increasing environmental regulations affecting farms that have resulted in more animal manure treatment options, and thus affecting characteristics of residues that are subsequently applied to land. Farms are being assessed for nutrient balances, with the entire nutrient and manure management system evaluated for best management alternatives. Because of inadequate available land on the animal farm in some cases, organic wastes must be treated and/or transported to other farms, or utilized for horticultural or other uses. This paper discusses the various factors and challenges for utilizing organic wastes in agriculture.  相似文献   

14.
The biochar is an important carbon-rich product that is generated from biomass sources through pyrolysis. Biochar (charcoal) can be both used directly as a potential source of solid biofuels and as soil amendments for barren lands. The aim of this study was investigate influence of pyrolysis temperature on the physicochemical properties and structure of biochar. The biochars were produced by pyrolysis of rapeseed (Brassica napus L.) using a fixed-bed reactor at different pyrolysis temperatures (400–700°C). The produced biochars were characterized by proximate and elemental analysis, Brunauer–Emmett–Teller (BET) surface area, particle size distributions, scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy. The results showed that both chemical and surface properties of the biochars were significantly affected by the pyrolysis temperature. Aromatic hydrocarbons, hydroxyl and carbonyl compounds were the majority components of the biochar. The biochar obtained at 700°C had a high fixed carbon content (66.16%) as well as a high heating value, and therefore it could be used as solid fuel, precursor in the activated carbons manufacture (specific surface area until 25.38 m2 g?1), or to obtain category-A briquettes.  相似文献   

15.
通过培养试验,利用13C标记技术研究不同热解温度制备的生物质炭添加对杉木人工林土壤原有有机碳矿化的影响,为生物质资源有效利用和亚热带人工林固碳管理提供科学依据.生物质炭制备材料分别为木荷(阔叶树种)和杉木(针叶树种)凋落物,培养温度为25 ℃,时间为112 d.结果表明: 在整个培养阶段,与对照土壤相比,不同生物质炭添加对土壤原有有机碳矿化的影响均呈现先促进后抑制的规律,具体表现为杉木生物质炭处理仅在培养0~3 d表现为显著促进作用,在7~112 d均呈现为显著抑制作用,而木荷生物质炭处理则在培养0~14 d表现为促进作用,在28~112 d均表现为显著的抑制作用.培养结束时,3种杉木生物质炭(350、550和750 ℃)处理均显著抑制了土壤原有有机碳矿化,2种木荷生物质炭(350和550 ℃)处理也表现为显著的抑制作用.木荷生物质炭和杉木生物质炭的分解率介于0.8%~2.8%,随着热解温度的升高,生物质炭的分解率呈下降趋势,且同一热解温度下木荷生物质炭的分解率显著高于杉木生物质炭.上述结果表明,原材料和制备温度是生物质炭影响土壤原有有机碳矿化和生物质炭分解的重要因素.  相似文献   

16.
Bamboo has been identified as a promising solution to the energy crisis and climate change as a source of biomass energy. Due to its rapid growth and high-value products, bamboo is considered as a potential source of biomass energy. Bamboo contains a significant amount of cellulose and hemicellulose, which can be converted to sugar constituents, making it an ideal raw material for energy production. This article reviews the different processes of producing bioethanol, biogas, biochar, and bio-oil from bamboo biomass using techniques such as pyrolysis, hydrothermal liquefaction, fermentation, and anaerobic digestion, and discusses the opportunities and challenges of these conversion technologies. It also reviews the main types and morphological characteristics of energy bamboo species and proposes an evaluation system for energy bamboo species, which optimizes the utilization efficiency of bamboo biomass energy and maximizes benefits by adopting appropriate methods for producing bioenergy based on the characteristics of different bamboo species.  相似文献   

17.
Arenosols (sandy soils) in the Cerrado region of Mato Grosso, Brazil, are increasingly used for maize production, the second most important crop in the region after soybean. Yet, these soils are typically nutrient poor with low soil water retention, requiring high fertilizer inputs that are often lost in surface runoff or leached. The addition of biochar, a more recalcitrant organic amendment, may therefore be beneficial in Cerrado Arenosols, contributing to sustainable crop production in the region. To examine biochar contribution to soil nutrient levels and maize growth in a Cerrado Arenosol, we conducted a greenhouse experiment using biochars made from local agricultural waste feedstocks. These were cotton husks, swine manure, eucalyptus sawmill residue, and sugarcane filtercake, pyrolyzed at 400 °C, and applied to soil at five rates: 0%, 1%, 2%, 3%, and 4% by weight. Maize plants were grown under unstressed conditions (e.g., no nutrient or water limitations) to highlight any possible negative effects of the biochars. After 42 days, soils were analyzed for nutrient levels, and plant physical and physiological measurements were taken. Filtercake biochar had the highest plant biomass and physiological properties (e.g., photosynthesis, respiration, nitrogen use efficiency), while cotton biochar had the lowest. Importantly, maize biomass decreased with increasing application rates of cotton and swine manure biochars, while biomass did not vary in response to biochar application rate for filtercake and eucalyptus biochars. In this study, we found that while each biochar exhibited potential for improving chemical and physical properties of Cerrado Arenosols, filtercake biochar stood out as most promising. Biochar application rate was identified a key factor in ensuring crop productivity. Transforming these agricultural residues readily available in the region into more stable biochar can thus contribute to sustainable crop management and soil conservation, providing an alternative form of waste disposal for these residual materials.  相似文献   

18.
The stability and decomposition of biochar are fundamental to understand its persistence in soil, its contribution to carbon (C) sequestration, and thus its role in the global C cycle. Our current knowledge about the degradability of biochar, however, is limited. Using 128 observations of biochar‐derived CO2 from 24 studies with stable (13C) and radioactive (14C) carbon isotopes, we meta‐analyzed the biochar decomposition in soil and estimated its mean residence time (MRT). The decomposed amount of biochar increased logarithmically with experimental duration, and the decomposition rate decreased with time. The biochar decomposition rate varied significantly with experimental duration, feedstock, pyrolysis temperature, and soil clay content. The MRTs of labile and recalcitrant biochar C pools were estimated to be about 108 days and 556 years with pool sizes of 3% and 97%, respectively. These results show that only a small part of biochar is bioavailable and that the remaining 97% contribute directly to long‐term C sequestration in soil. The second database (116 observations from 21 studies) was used to evaluate the priming effects after biochar addition. Biochar slightly retarded the mineralization of soil organic matter (SOM; overall mean: ?3.8%, 95% CI = ?8.1–0.8%) compared to the soil without biochar addition. Significant negative priming was common for studies with a duration shorter than half a year (?8.6%), crop‐derived biochar (?20.3%), fast pyrolysis (?18.9%), the lowest pyrolysis temperature (?18.5%), and small application amounts (?11.9%). In contrast, biochar addition to sandy soils strongly stimulated SOM mineralization by 20.8%. This indicates that biochar stimulates microbial activities especially in soils with low fertility. Furthermore, abiotic and biotic processes, as well as the characteristics of biochar and soils, affecting biochar decomposition are discussed. We conclude that biochar can persist in soils on a centennial scale and that it has a positive effect on SOM dynamics and thus on C sequestration.  相似文献   

19.
生物焦是生物残体在厌氧条件下高温裂解产生的,其主要成分为碳,芳香化程度很高,具有孔隙多、比表面积大、电荷密度高、不易分解等特点。目前的一些研究显示,生物焦具有提高土壤阳离子交换量(CEC)和pH、改善土壤肥力和健康状况、增加作物产量、减少温室气体排放等作用。生物焦施于土壤后,还具有增加土壤微生物量、改变土壤微生物群落结构,促进部分微生物生长等影响效应。然而,目前有关生物焦的研究还大都局限于表观效应上,缺乏对其微观内在机制的深入探讨。  相似文献   

20.
The persistence of five animal viruses, representing picorna-, rota-, parvo-, adeno-, and herpesviruses, and the coliphage f2 was determined in the field by exposing the viruses to different animal wastes and by adopting an established filter sandwich technique. This technique allows us to copy the natural state of viruses in the environment, where adsorption onto or incorporation into suspended solids may prolong virus survival. Using filter sandwiches either equipped with porous (15 nm in diameter) or poreless polycarbonate (PC) membranes, it was possible to differentiate between overall virus inactivation and the effect of virucidal agents that act through poreless PC membranes. Depending on ambient temperature, pH, and type of animal waste, values for time, in days, required for a 90% reduction of virus titer varied widely, ranging from less than 1 week for herpesvirus to more than 6 months for rotavirus. Virus inactivation progressed substantially faster in liquid cattle manure, a mixture of urine and water (pH > 8.0), than in semiliquid wastes that consisted of mixtures of feces, urine, water, and bedding materials (pH < 8.0). Hitherto unidentified virucidal agents that permeate poreless PC membranes contributed substantially to the overall inactivation. On the other hand, substances that protect rotavirus and possibly other viruses from inactivation may be present in animal wastes. Together, the study showed that viruses contained in manure may persist for prolonged periods of time if stored under nonaerated conditions. At times of land application, this may lead to environmental contamination with pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号