首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three immunologically and enzymatically distinct endoglucanases of Cellulomonas sp. ATCC 21399 were purified previously. Endoglucanase A and endoglucanase B acted synergistically on microcrystalline cellulose (Avicel), whereas no synergistic action was observed between endoglucanase B or endoglucanase C. Only endoglucanase A was capable of hydrolyzing Avicel when acting alone and this enzyme resulted in "short fiber formation" when acting on Avicel. The end product of hydrolysis of acid swollen Avicel produced by the three endoglucanases was in all cases dominated by cellobiose and showed lower content of glucose and cellotriose. Higher cellodextrins appeared as transient end products. The results indicate that the function of endoglucanase A in the cellulase system of Cellulomonas might be very similar to the function of the cellobiohydrolases of Trichoderma reesei.  相似文献   

2.
Characterization of dicarboxylic acids for cellulose hydrolysis   总被引:2,自引:0,他引:2  
In this paper, we show that dilute maleic acid, a dicarboxylic acid, hydrolyzes cellobiose, the repeat unit of cellulose, and the microcrystalline cellulose Avicel as effectively as dilute sulfuric acid but with minimal glucose degradation. Maleic acid, superior to other carboxylic acids reported in this paper, gives higher yields of glucose that is more easily fermented as a result of lower concentrations of degradation products. These results are especially significant because maleic acid, in the form of maleic anhydride, is widely available and produced in large quantities annually.  相似文献   

3.
A procedure for preparation of purified cellodextrins in gram quantities was developed for use in biochemical and microbiological studies. Cellodextrins were prepared by hydrolyzing microcrystalline cellulose (Avicel) over a period of 4 to 5.5h in the presence of a mixture of 80% (v/v) concentrated hydrochloric acid ( approximately 37 wt.%) and 20% (v/v) concentrated sulfuric acid ( approximately 98 wt.%) at room temperature (22 degrees C). Acetone precipitation, washing ion exchange, and neutralization with barium hydroxide were used to generate a solution of mixed cellodextrins substantially free of acids and salts. Yields following hydrolysis and precipitation were approximately 0.05, approximately 0.07, approximately 0.06, and approximately 0.02 g/g cellulose for cellotriose (G(3)), cellotetraose (G(4)), cellopentose (G(5)), and cellohexose (G(6)), respectively. Cellodextrins with degrees of polymerization from 3 to 11 were separated chromatographically using a 29 x 5-cm I.D. Bio-Rad AG50W-X4 column arranged in series with a 91 x 5-cm I.D. Bio-Gel P4 column. This two-column system was used to obtain cellodextrin preparations at 240 mg/day for G(3), 330 mg/day for G(4), 260 mg/day for G(5), and 130 mg/day for G(6), with purity >99% for G(3), G(4), and G(5) and >95% for G(6). The overall procedure achieves yields comparable to the highest previously reported, employs a separation system that can readily be reused for multiple runs, and avoids use of fuming HCl.  相似文献   

4.
Adsorption of Avicel-hydrolyzing activity was examined with respect to: mixed hardwood flour pretreated with 1% sulfuric acid for 9 s at 220 degrees C (PTW220), lignin prepared from PTW220 by either acid or enzymatic hydrolysis, and Avicel. Experiments were conducted at 60 degrees C for all materials, and also at 25 degrees C for PTW220. Based on transient adsorption results and reaction rates, times were selected at which to characterize adsorption at 60 degrees C as follows: PTW220, 1 min; lignin, 30 min; and Avicel, 45 min. Similar results were obtained for adsorption of cellulase activity to PTW220 at 25 and 60 degrees C, and for lignin prepared by enzymatic and acid hydrolysis. For all materials, adsorption was described well by a Langmuir equation, although the reversibility of adsorption was not investigated. Langmuir affinity constants (L/g) were: PTW220, 109; lignin, 17.9; Avicel, 4.3; cellulose from PTW220, >/=187. Langmuir capacity constants were 760 for PTW220 and 42 for Avicel; the cellulase binding capacity of lignin appeared to be very high under the conditions examined, and could not be determined. At low and moderate cellulase loadings at least, the majority of cellulase activity adsorbed to PTW220 is bound to the cellulosic component. The results indicate that PTW220, and its cellulose component in particular, differ radically from Avicel with respect to adsorption. Avicel-hydrolyzing activity and CMC-hydrolyzing activities were found to bind to Avicel with a constant ratio of essentially one, consistent with adsorption of a multi-activity complex. (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
The effect of the introduction of acetyl groups into cellulose on its acid saccharification was investigated. Cellulose, DS 2.87- and DS 2.36-cellulose acetates and regenerated celluloses from the acetates were saccharified at 100 and 135°C by using 0.4, 0.8 or 1.6% solutions of sulfuric acid as hydrolyzing agents. The cellulose acetates were far more readily saccharified than cellulose. The regenerated celluloses could not so readily be saccharified as the acetates. It is suggested that the ease of saccharification of cellulose acetates might be due principally to some alteration in the crystallite (micell) structure caused by the introduction of acetyl groups into cellulose molecules.  相似文献   

6.
From a Corticium rolfsii cDNA library, a clone homologous to other fungal cellobiohydrolase (CBH1) genes was isolated using the polymerase chain reaction. In the nucleotide sequence, one 1.6 kb long open reading frame coding for a polypeptide of 530 amino acid residues was detected which showed 64% identity with CBH1 of Phanerochaete chrysosporium. With expression of the 1.8 kb cDNA using the Aspergillus oryzae expression system, we detected microcrystalline cellulose (Avicel) hydrolyzing activity in the culture supernatant. The secreted protein, accompanied by the activity, was 89 kDa by SDS-polyacrylamide gel electrophoresis.  相似文献   

7.
Moderate loadings of cellulase enzyme supplemented with beta-glucosidase were applied to solids produced by ammonia fiber expansion (AFEX), ammonia recycle (ARP), controlled pH, dilute sulfuric acid, lime, and sulfur dioxide pretreatments to better understand factors that control glucose and xylose release following 24, 48, and 72 h of hydrolysis and define promising routes to reducing enzyme demands. Glucose removal was higher from all pretreatments than from Avicel cellulose at lower enzyme loadings, but sugar release was a bit lower for solids prepared by dilute sulfuric acid in the Sunds system and by controlled pH pretreatment than from Avicel at higher protein loadings. Inhibition by cellobiose was observed to depend on the type of substrate and pretreatment and hydrolysis times, with a corresponding impact of beta-glucosidase supplementation. Furthermore, for the first time, xylobiose and higher xylooligomers were shown to inhibit enzymatic hydrolysis of pure glucan, pure xylan, and pretreated corn stover, and xylose, xylobiose, and xylotriose were shown to have progressively greater effects on hydrolysis rates. Consistent with this, addition of xylanase and beta-xylosidase improved performance significantly. For a combined mass loading of cellulase and beta-glucosidase of 16.1 mg/g original glucan (about 7.5 FPU/g), glucose release from pretreated solids ranged from 50% to75% of the theoretical maximum and was greater for all pretreatments at all protein loadings compared to pure Avicel cellulose except for solids from controlled pH pretreatment and from dilute acid pretreatment by the Sunds pilot unit. The fraction of xylose released from pretreated solids was always less than for glucose, with the upper limit being about 60% of the maximum for ARP and the Sunds dilute acid pretreatments at a very high protein mass loading of 116 mg/g glucan (about 60 FPU).  相似文献   

8.
Direct enzymatic acylation of cellulose pretreated in BMIMCl ionic liquid   总被引:2,自引:0,他引:2  
Cellulose esters are an important class of functional biopolymers with great interest in the chemical industry. In this work the enzymatic acylation of Avicel cellulose with vinyl propionate, vinyl laurate and vinyl stearate, has been performed successfully in a solvent free reaction system. At first cellulose was putted into the ionic liquid BMIMCl (1-n-butyl-3-methylimidazolium chloride) in order to facilitate the unwrap of the structure of the polysaccharide molecule and make it accessible to the enzyme. Thus, after this pretreatment the enzymatic esterification reaction was performed using various hydrolases. The enzymes capable of catalyzing the acylation of cellulose were found to be the immobilized esterase from hog liver and the immobilized cutinase from Fusarium solani, while the lipases used did not show any catalytic activity. Cellulose esters of propionate, laurate and stearate were synthesized with a degree of esterification of 1.9%, 1.3% and 1.0%, respectively. It is the first successful direct enzymatic acylation of cellulose with long chain fatty acids.  相似文献   

9.
To assess the effects that the physical and chemical properties of lignin might have on the enzymatic hydrolysis of pretreated lignocellulosic substrates, protease treated lignin (PTL) and cellulolytic enzyme lignin (CEL) fractions, isolated from steam and organosolv pretreated corn stover, poplar, and lodgepole pine, were prepared and characterized. The adsorption of cellulases to the isolated lignin preparations corresponded to a Langmuir adsorption isotherm. It was apparent that, rather than the physical properties of the isolated lignin, the carboxylic acid functionality of the isolated lignin, as determined by FTIR and NMR spectroscopy, had much more of an influence when lignin was added to typical hydrolysis of pure cellulose (Avicel). An increase in the carboxylic content of the lignin preparation resulted in an increased hydrolysis yield. These results suggested that the carboxylic acids within the lignin partially alleviate non-productive binding of cellulases to lignin. To try to confirm this possible mechanism, dehydrogenative polymers (DHP) of monolignols were synthesized from coniferyl alcohol (CA) and ferulic acid (FA), and these model compounds were added to a typical enzymatic hydrolysis of Avicel. The DHP from FA, which was enriched in carboxylic acid groups compared with the DHP from CA, adsorbed a lower mount of cellulases and did not decrease hydrolysis yields when compared to the DHP from CA, which decreased the hydrolysis of Avicel by 8.4%. Thus, increasing the carboxylic acid content of the lignin seemed to significantly decrease the non-productive binding of cellulases and consequently increased the enzymatic hydrolysis of the cellulose.  相似文献   

10.
Cellulase and bovine serum albumin (BSA) were added to Avicel cellulose and solids containing 56% cellulose and 28% lignin from dilute sulfuric acid pretreatment of corn stover. Little BSA was adsorbed on Avicel cellulose, while pretreated corn stover solids adsorbed considerable amounts of this protein. On the other hand, cellulase was highly adsorbed on both substrates. Adding a 1% concentration of BSA to dilute acid pretreated corn stover prior to enzyme addition at 15 FPU/g cellulose enhanced filter paper activity in solution by about a factor of 2 and beta-glucosidase activity in solution by about a factor of 14. Overall, these results suggested that BSA treatment reduced adsorption of cellulase and particularly beta-glucosidase on lignin. Of particular note, BSA treatment of pretreated corn stover solids prior to enzymatic hydrolysis increased 72 h glucose yields from about 82% to about 92% at a cellulase loading of 15 FPU/g cellulose or achieved about the same yield at a loading of 7.5 FPU/g cellulose. Similar improvements were also observed for enzymatic hydrolysis of ammonia fiber explosion (AFEX) pretreated corn stover and Douglas fir treated by SO(2) steam explosion and for simultaneous saccharification and fermentation (SSF) of BSA pretreated corn stover. In addition, BSA treatment prior to hydrolysis reduced the need for beta-glucosidase supplementation of SSF. The results are consistent with non-specific competitive, irreversible adsorption of BSA on lignin and identify promising strategies to reduce enzyme requirements for cellulose hydrolysis.  相似文献   

11.
Summary A number of -glucanase active enzyme preparations were successfully immobilized either by adsorption on Duolite S-761 phenol-formaldehyde resin or covalently on silanized Spherosil XOB-075 porous silica beads to obtain remarkably stable active biocatalysts. A Duolite immobilized -glucanase could be employed for continuous treatment of barley wort in a packed-bed column reactor to decrease viscosity and to improve filtrability. A Duolite immobilized cellulase that exhibited no detectable Avicel hydrolyzing activity could be applied for batch treatment of wheat starch process water. The same enzyme when covalently bound on Spherosil was, however, capable of hydrolyzing microcrystalline cellulose in a recirculating fluidized-bed reactor.  相似文献   

12.
A cellobiosidase with unique characteristics from the extracellular culture fluid of the anaerobic gram-negative cellulolytic rumen bacterium Bacteroides succinogenes grown on microcrystalline cellulose (Avicel) in a continuous culture system was purified to homogeneity by column chromatography. The enzyme was a glycoprotein with a molecular weight of approximately 75,000 and an isoelectric point of 6.7. When assayed at 39 degrees C and pH 6.5, the activity of the enzyme with p-nitrophenyl-beta-D-cellobioside as the substrate was stimulated by chloride, bromide, fluoride, iodide, nitrate, and nitrite, with maximum activation (approximately sevenfold) occurring at concentrations ranging from 1.0 mM (Cl-) to greater than 0.75 M (F-). The presence of chloride (0.2 M) did not affect the Km but doubled the Vmax. In the presence of chloride (0.2 M), the pH optimum of the enzyme was broadened, and the temperature optimum was increased from 39 to 45 degrees C. The enzyme released terminal cellobiose from cellotriose and cellobiose and cellotriose from longer-chain-length cellooligosaccharrides and acid-swollen cellulose, but it had no activity on cellobiose. The enzyme showed affinity for cellulose (Avicel) but did not hydrolyze it. It also had a low activity on carboxymethyl cellulose.  相似文献   

13.
Cellulolytic enzymes consist of a catalytic domain, a linking peptide, and a binding domain. The paper describes research on carboxylic acids that have potential as catalytic domains for constructing organic macromolecules for use in cellulose hydrolysis that mimic the action of enzymes. The tested domains consist of the series of mono-, di-, and tricarboxylic acids with a range of pK(a)'s. This paper systematically characterizes the acids with respect to hydrolysis of cellobiose, cellulose in biomass, and degradation of glucose and compares these kinetics data to dilute sulfuric acid. Results show that acid catalyzed hydrolysis is proportional to H+ concentration. The tested carboxylic acids did not catalyze the degradation of glucose while sulfuric acid catalyzed the degradation of glucose above that of water alone. Consequently, overall yields of glucose obtained from cellobiose and cellulose are higher for the best carboxylic acid tested, maleic acid, when compared to sulfuric acid at equivalent solution pH.  相似文献   

14.
鲜猪血加压水解制备复合氨基酸新工艺的研究   总被引:1,自引:1,他引:0  
采用正交试验方法,对鲜猪血加压水解制取复合氨基酸工艺条件进行优选。试验结果表明,采用鲜猪血加压水解制取复合氨基酸与采用猪血粉常压水解相比,简化了生产工序,缩短水解时间8~12小时,降低能耗2倍多,减少硫酸用量2~3倍,而产品质量稳定可靠。  相似文献   

15.
The shape and size distribution of crystalline nanoparticles resulting from the sulfuric acid hydrolysis of cellulose from cotton, Avicel, and tunicate were investigated using transmission electron microscopy (TEM) and atomic force microscopy (AFM) as well as small- and wide-angle X-ray scattering (SAXS and WAXS). Images of negatively stained and cryo-TEM specimens showed that the majority of cellulose particles were flat objects constituted by elementary crystallites whose lateral adhesion was resistant against hydrolysis and sonication treatments. Moreover, tunicin whiskers were described as twisted ribbons with an estimated pitch of 2.4-3.2 microm. Length and width distributions of all samples were generally well described by log-normal functions, with the exception of tunicin, which had less lateral aggregation. AFM observation confirmed that the thickness of the nanocrystals was almost constant for a given origin and corresponded to the crystallite size measured from peak broadening in WAXS spectra. Experimental SAXS profiles were numerically simulated, combining the dimensions and size distribution functions determined by the various techniques.  相似文献   

16.
Mutational experiments were performed to decrease the protease productivity of Humicola grisea var. thermoidea YH-78 using UV light and N-methyl-N′-nitro-N-nitrosoguanidine. A protease-negative mutant, no. 140, exhibited higher endoglucanase activity than the parent strain in mold bran culture at 50°C for 4 days. The culture extract rapidly disintegrated filter paper but produced a small amount of reducing sugar. About 30% of total endoglucanase activity in the extract was adsorbed onto Avicel. The electrophoretically homogeneous preparation of Avicel-adsorbable endoglucanase (molecular weight, 128,000) showed intensive filter-paper-disintegrating activity but did not release reducing sugar. The preparation also exhibited a highly synergistic effect with the cellulase preparation from Trichoderma reesei in the hydrolysis of microcrystalline cellulose. This endoglucanase was observed via scanning electron microscopy to disintegrate Avicel fibrils layer by layer from the surface, yielding thin sections with exposed chain ends. A mutant, no. 191, producing higher protease activity and an Avicel-unadsorbable, Avicel-nondisintegrating endoglucanase was isolated. The purified enzyme (molecular weight, 63,000) showed no disintegrating activity on filter paper and Avicel and a less synergistic effect with the T. reesei cellulase in hydrolyzing microcrystalline cellulose than did the former enzyme. Endoglucanase was therefore divided into two types, Avicel disintegrating and Avicel nondisintegrating.  相似文献   

17.
Accellerase 1000 cellulase, Spezyme CP cellulase, β-glucosidase, Multifect xylanase, and beta-xylosidase were evaluated for hydrolysis of pure cellulose, pure xylan, and switchgrass solids from leading pretreatments of dilute sulfuric acid, sulfur dioxide, liquid hot water, lime, soaking in aqueous ammonia, and ammonia fiber expansion. Distinctive sugar release patterns were observed from Avicel, phosphoric acid swollen cellulose (PASC), xylan, and pretreated switchgrass solids, with accumulation of significant amounts of xylooligomers during xylan hydrolysis. The strong inhibition of cellulose hydrolysis by xylooligomers could be partially attributed to the negative impact of xylooligomers on cellulase adsorption. The digestibility of pretreated switchgrass varied with pretreatment but could not be consistently correlated to xylan, lignin, or acetyl removal. Initial hydrolysis rates did correlate well with cellulase adsorption capacities for all pretreatments except lime, but more investigation is needed to relate this behavior to physical and compositional properties of pretreated switchgrass.  相似文献   

18.
Water-soluble sulfonated cellulose (SC) samples were synthesized by oxidizing hardwood kraft pulp with sodium periodate followed by the sulfonation reaction with sodium bisulfite. Six levels of oxidation/sulfonation were obtained by using different mmols (0.93-4.67) of periodate per gram of pulp. The aldehyde and sulfonic acid contents, surface morphology, and water solubility property of these treated fibers were characterized. It was found that carbonyl group content increased with the periodate charge and so did the sulfonic acid content in subsequent sulfonation step. Scanning electron microscopy images showed a significant change in surface morphology of the sulfonated samples. Solubility of sulfonated cellulose in water was determined from 1H NMR spectra and a solubility of 28.57 g/L was found when cellulose was oxidized with 4.67 mmol periodate per gram cellulose followed by the sulfonation reaction.  相似文献   

19.
Adsorption of cellulase on solids resulting from pretreatment of poplar wood by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid (DA), flowthrough (FT), lime, and sulfur dioxide (SO2) and pure Avicel glucan was measured at 4°C, as were adsorption and desorption of cellulase and adsorption of β‐glucosidase for lignin left after enzymatic digestion of the solids from these pretreatments. From this, Langmuir adsorption parameters, cellulose accessibility to cellulase, and the effectiveness of cellulase adsorbed on poplar solids were estimated, and the effect of delignification on cellulase effectiveness was determined. Furthermore, Avicel hydrolysis inhibition by enzymatic and acid lignin of poplar solids was studied. Flowthrough pretreated solids showed the highest maximum cellulase adsorption capacity (σsolids = 195 mg/g solid) followed by dilute acid (σsolids = 170.0 mg/g solid) and lime pretreated solids (σsolids = 150.8 mg/g solid), whereas controlled pH pretreated solids had the lowest (σsolids = 56 mg/g solid). Lime pretreated solids also had the highest cellulose accessibility (σcellulose = 241 mg/g cellulose) followed by FT and DA. AFEX lignin had the lowest cellulase adsorption capacity (σlignin = 57 mg/g lignin) followed by dilute acid lignin (σlignin = 74 mg/g lignin). AFEX lignin also had the lowest β‐glucosidase capacity (σlignin = 66.6 mg/g lignin), while lignin from SO2lignin = 320 mg/g lignin) followed by dilute acid had the highest (301 mg/g lignin). Furthermore, SO2 followed by dilute acid pretreated solids gave the highest cellulase effectiveness, but delignification enhanced cellulase effectiveness more for high pH than low pH pretreatments, suggesting that lignin impedes access of enzymes to xylan more than to glucan, which in turn affects glucan accessibility. In addition, lignin from enzymatic digestion of AFEX and dilute acid pretreated solids inhibited Avicel hydrolysis less than ARP and flowthrough lignin, whereas acid lignin from unpretreated poplar inhibited enzymes the most. Irreversible binding of cellulase to lignin varied with pretreatment type and desorption method. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
Carbodiimide-mediated sulfation of hydroxy-amino acids, peptides, and proteins can be accomplished in dry dimethylformamide by incubation in a 20-50 molar excess of sulfuric acid and various concentrations of dicyclohexyl carbodiimide [(1-ethyl-(3-dimethylaminopropyl)carbodiimide or 1-cyclohexyl-3-(2-morpholoethyl)carbodiimide p-toluene sulfonate)] at 4 degrees C for 2-4 h. Under these conditions, hydroxy-amino acids are quantitatively converted into O-sulfates, while cysteine yields the S-sulfonate. Other amino acids, including tryptophan, do not react and are recovered quantitatively. Porcine sodium insulin yields a product that can be separated into six bands by nondenaturing polyacrylamide gel electrophoresis. Radiolabeling of peptides by this method can be carried out with a high degree of efficiency if the added [35S]sulfuric acid is used carrier free with an acid excess provided by trifluoromethyl sulfonic acid. Under these conditions, over 60% of [35S]sulfuric acid was incorporated into insulin and bovine serum albumin. This method may prove useful in the radiolabeling of other peptides and proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号