首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biomass utilization is increasingly considered as a practical way for sustainable energy supply and long-term environment care around the world.In concerns with food security in China,starch or sugar-based bioethanol and edible-oil-derived biodiesel are harshly restricted for large scale production.However,conversion of lignocellulosic residues from food crops is a potential alternative.Because of its recalcitrance,current biomass process is unacceptably expensive,but genetic breeding of energy crops is a p...  相似文献   

2.
Biomass utilization is increasingly considered as a practical way for sustainable energy supply and long‐term environment care around the world. In concerns with food security in China, starch or sugar‐based bioethanol and edible‐oil‐derived biodiesel are harshly restricted for large scale production. However, conversion of lignocellulosic residues from food crops is a potential alternative. Because of its recalcitrance, current biomass process is unacceptably expensive, but genetic breeding of energy crops is a promising solution. To meet the need, energy crops are defined with a high yield for both food and biofuel purposes. In this review, main grasses (rice, wheat, maize, sorghum and miscanthus) are evaluated for high biomass production, the principles are discussed on modification of plant cell walls that lead to efficient biomass degradation and conversion, and the related biotechnologies are proposed in terms of energy crop selection.  相似文献   

3.
Selection of energy crops is the first priority for large-scale biofuel production in China. As a major topic, it was extensively discussed in the Second International Symposium on Bioen-  相似文献   

4.
Potential of Plants from the Genus Agave as Bioenergy Crops   总被引:1,自引:0,他引:1  
Agave is a succulent genus within the monocot family Agavaceae. The plants have a large rosette of thick fleshy leaves, each ending generally in a sharp point, and are native to arid and semi-arid regions from the southern USA to northern South America. The most important commercial species is Agave tequilana grown for production of tequila. Several cultivated species of Agave such as Agave sislana and Agave salmiana can perform well in areas where rainfall is insufficient for the cultivation of many C3 and C4 crops. The key feature of the crassulacean acid metabolism photosynthetic pathway used by agaves is the stomata opening and CO2 uptake during the night, thus allowing less water to be lost by transpiration. Alcoholic beverages, sweeteners, fibers, and some specialty chemicals are currently the main products coming from agave plants. The recovered information related to productivity, biofuel processability, by-products, etc. suggests that some Agave species have a real potential to compete economically with other bioenergy crops. But more than compete, it could complement the list of bioenergy crops due to its capacity to grow with very little rainfall and/or inputs and still reach good amount of biomass, so unused semi-arid land could be productive. Although Agave has great potential to be developed as a bioenergy crop, more laboratory and field research are needed.  相似文献   

5.
Environmental concerns and depletion of fossil fuels along with government policies have led to the search for alternative fuels from various renewable and sustainable feedstocks. This review provides a critical overview of the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, WCO, and CTO and their recent trends toward potential biofuel production. Plant oils with a high energy content are primarily composed of triglycerides (generally >?95%), accompanied by diglycerides, monoglycerides, and free fatty acids. The heat content of plant oils is close to 90% for diesel fuels. The oxygen content is the most important difference in chemical composition between fossil oils and plant oils. Triglycerides can even be used directly in diesel engines. However, their high viscosity, low volatility, and poor cold flow properties can lead to engine problems. These problems require that plant oils need to be upgraded if they are to be used as a fuel in conventional diesel engines. Biodiesel, biooil, and renewable diesel are the three major biofuels obtained from plant oils. The main constraint associated with the production of biodiesel is the cost and sustainability of the feedstock. The renewable diesel obtained from crude tall oil is more sustainable than biofuels obtained from other feedstocks. The fuel properties of renewable diesel are similar to those of fossil fuels with reduced greenhouse gas emissions. In this review, the chemical composition of common commercial plant oils, i.e., palm oil, olive oil, rapeseed oil, castor oil, and tall oil, are presented. Both their major and minor components are discussed. Their compositions and fuel properties are compared to both fossil fuels and biofuels.  相似文献   

6.
There has been rapid economic development in China in recent decades, and demand for energy has consequently been increasing rapidly. Development and utilisation of clean and renewable energy has been promoted by the Chinese government to help sustain long-term and stable development. Sugarcane is being increasingly used in several countries as feedstock for renewable energy products, and is a major and expanding crop in southern China. In this paper, we discuss the potential of sugarcane as a feedstock for bioenergy production in China. It includes a review of (1) the existing sugarcane industry in China and key bio-physical factors affecting the extent to which sugarcane-based industries could supply feedstock for renewable energy production in China, (2) the economic and policy factors which are likely to affect production of bioenergy from sugarcane in China, and (3) recommendations on actions and policies that may assist with appropriate development of bioenergy production from sugarcane in China. Existing and expected future economic conditions are unlikely to favour production of biofuel from the sugar component in cane. However, the fibre component of cane remains an under-utilised resource component. A conclusion is made that sugarcane fibre has potential to contribute towards renewable electricity production in China. However, at present, favourable incentives do not exist to encourage this production. It is suggested that policies to facilitate cost-effective production of renewable electricity by sugar mills, consistent with national objectives regarding production of renewable energy, be considered by governments. Priorities for future research are in improving biomass yields per unit area of land and technologies for low-cost conversion of lignocellulosic biomass into biofuel.  相似文献   

7.
Bioenergy Crops and Carbon Sequestration   总被引:1,自引:0,他引:1  
Greenhouse gas (GHG) emissions constitute a global problem. The need for agricultural involvement in GHG mitigation has been widely recognized since the 1990s. The concept of C sinks, C credits, and emission trading has attracted special interests in herbaceous and woody species as energy crops and source of biofuel feedstock. Bioenergy crops are defined as any plant material used to produce bioenergy. These crops have the capacity to produce large volume of biomass, high energy potential, and can be grown in marginal soils. Planting bioenergy crops in degraded soils is one of the promising agricultural options with C sequestration rates ranging from 0.6 to 3.0 Mg C ha?1 yr?1. About 60 million hectares (Mha) of land is available in the United States and 757 Mha in the world to grow bioenergy crops. With an energy offset of 1 kg of C in biomass per 0.6 kg of C in fossil fuel, there exists a vast potential of offsetting fossil fuel emission. Bioenergy crops have the potential to sequester approximately 318 Tg C yr?1 in the United States and 1631 Tg C yr?1 worldwide. Bioenergy crops consist of herbaceous bunch-type grasses and short-rotation woody perennials. Important grasses include switchgrass (Panicum virgatum L.), elephant grass (Pennissetum purpureum Schum.), tall fescue (Fetusca arundinacea L.), etc. Important among short-rotation woody perennials are poplar (Populus spp.), willow (Salix spp.), mesquite (Prosopis spp.), etc. The emissions of CO2 from using switchgrass as energy crop is 1.9 kg C Gj?1 compared with 13.8, 22.3, and 24.6 kg C Gj?1 from using gas, petroleum, and coal, respectively. Mitigation of GHG emissions cannot be achieved by C sinks alone, a substantial reduction in fossil fuel combustion will be necessary. Carbon sequestration and fossil fuel offset by bioenergy crops is an important component of a possible total societal response to a GHG emission reduction initiative.  相似文献   

8.
Dedicated energy crops and crop residues will meet herbaceous feedstock demands for the new bioeconomy in the Central and Eastern USA. Perennial warm-season grasses and corn stover are well-suited to the eastern half of the USA and provide opportunities for expanding agricultural operations in the region. A suite of warm-season grasses and associated management practices have been developed by researchers from the Agricultural Research Service of the US Department of Agriculture (USDA) and collaborators associated with USDA Regional Biomass Research Centers. Second generation biofuel feedstocks provide an opportunity to increase the production of transportation fuels from recently fixed plant carbon rather than from fossil fuels. Although there is no “one-size-fits-all” bioenergy feedstock, crop residues like corn (Zea mays L.) stover are the most readily available bioenergy feedstocks. However, on marginally productive cropland, perennial grasses provide a feedstock supply while enhancing ecosystem services. Twenty-five years of research has demonstrated that perennial grasses like switchgrass (Panicum virgatum L.) are profitable and environmentally sustainable on marginally productive cropland in the western Corn Belt and Southeastern USA.  相似文献   

9.
Bioenergy crops have a secondary benefit if they increase soil organic C (SOC) stocks through capture and allocation below-ground. The effects of four genotypes of short-rotation coppice willow (Salix spp., ‘Terra Nova’ and ‘Tora’) and Miscanthus (M.?×?giganteus (‘Giganteus’) and M. sinensis (‘Sinensis’)) on roots, SOC and total nitrogen (TN) were quantified to test whether below-ground biomass controls SOC and TN dynamics. Soil cores were collected under (‘plant’) and between plants (‘gap’) in a field experiment on a temperate agricultural silty clay loam after 4 and 6 years’ management. Root density was greater under Miscanthus for plant (up to 15.5 kg m?3) compared with gap (up to 2.7 kg m?3), whereas willow had lower densities (up to 3.7 kg m?3). Over 2 years, SOC increased below 0.2 m depth from 7.1 to 8.5 kg m?3 and was greatest under Sinensis at 0–0.1 m depth (24.8 kg m?3). Miscanthus-derived SOC, based on stable isotope analysis, was greater under plant (11.6 kg m?3) than gap (3.1 kg m?3) for Sinensis. Estimated SOC stock change rates over the 2-year period to 1-m depth were 6.4 for Terra Nova, 7.4 for Tora, 3.1 for Giganteus and 8.8 Mg ha?1 year?1 for Sinensis. Rates of change of TN were much less. That SOC matched root mass down the profile, particularly under Miscanthus, indicated that perennial root systems are an important contributor. Willow and Miscanthus offer both biomass production and C sequestration when planted in arable soil.  相似文献   

10.
11.
Functional Genomics of Drought Tolerance in Bioenergy Crops   总被引:1,自引:0,他引:1  
With predicted global changes in temperature and precipitation, drought will increasingly impose a challenge to biomass production. Most of the bioenergy crops have some degree of drought susceptibility as revealed for example through measures of low water-use efficiency (WUE). It is imperative to improve drought tolerance and WUE in bioenergy crops for sustainable biomass production in arid and semi-arid regions. Genetics and functional genomics can play critical roles in generating knowledge to inform and aid genetic improvement for drought tolerance in bioenergy crops. The molecular aspects of drought response have been extensively investigated in model plants like Arabidopsis, yet our understanding of the molecular mechanisms underlying drought tolerance in bioenergy crops is limited. Plants in general exhibit various responses to drought stress depending on species and genotype. A rational strategy for studying drought tolerance in bioenergy crops is to translate the knowledge from model plants relative to the unique features associated with individual bioenergy species and genotypes. In this review, we summarize the general knowledge concerning drought responsive pathways, with a focus on the identification of commonality and specialty in drought responsive mechanisms among alternate species and genotypes. We describe the genomic resources developed for bioenergy crops and discuss genetic and epigenetic regulation of drought responses. We also examine comparative and evolutionary genomics as a means to leverage the ever-increasing genomics resources and provide new insights beyond what is known from studies on individual species. Finally, we outline future opportunities for studying drought tolerance using the emerging technologies.  相似文献   

12.
The conversion efficiency (εc) of absorbed radiation into biomass (MJ of dry matter per MJ of absorbed photosynthetically active radiation) is a component of yield potential that has been estimated at less than half the theoretical maximum. Various strategies have been proposed to improve εc, but a statistical analysis to establish baseline εc levels across different crop functional types is lacking. Data from 164 published εc studies conducted in relatively unstressed growth conditions were used to determine the means, greatest contributors to variation, and genetic trends in εc across important food and biofuel crop species. εc was greatest in biofuel crops (0.049–0.066), followed by C4 food crops (0.046–0.049), C3 nonlegumes (0.036–0.041), and finally C3 legumes (0.028–0.035). Despite confining our analysis to relatively unstressed growth conditions, total incident solar radiation and average growing season temperature most often accounted for the largest portion of εc variability. Genetic improvements in εc, when present, were less than 0.7% per year, revealing the unrealized potential of improving εc as a promising contributing strategy to meet projected future agricultural demand.Substantial increases in yield are needed to feed and fuel the world’s growing human population. With an estimated population of nine billion people by the middle of this century (Lutz and Samir, 2010) and rising affluence resulting in greater consumption of grain-fed animal products (Cirera and Masset, 2010), different studies predict that, by midcentury, global crop production will need to increase 60% to 120% over 2005 levels without the expansion of agricultural land area (Tilman et al., 2011; Alexandratos and Bruinsma, 2012).Doubling yields in major food and fuel crops requires considerable effort, especially as yields are beginning to plateau in many major food crops. Yield increases necessary for doubling productivity by midcentury are estimated at 1.16% to 1.31% each year in all cereals (Hall and Richards, 2013), 1.7% per year in wheat (Triticum aestivum; Rosegrant and Agcaoili, 2010), and 2.4% (noncompounding average per year) across all major grain crops (Ray et al., 2013). However, global mean increases from the past 20 to 30 years suggest that yield gains in rice (Oryza sativa) and wheat are approximately 1% (Lopes et al., 2012; Manès et al, 2012; Ray et al., 2013) and declining in some areas of the world (Cassman et al., 2010; Fischer and Edmeades, 2010; Long and Ort, 2010; Ray et al., 2013). Global yearly increases are estimated at 1.3% in soybean (Glycine max) and 1.6% in maize (Zea mays), with similar concerns that yield trends may also be decreasing in some major growing regions (Lobell and Gourdji, 2012; Ray et al., 2013).Efforts to increase yields in the next few decades must also account for environmental and sustainability goals (Sayer et al., 2013) as well as heightened environmental stresses predicted to occur due to climate change, which are already responsible for some of the stagnation in yield increases. Anthropogenic sources of greenhouse gases have caused an approximately 1°C increase in land surface temperatures since 1900, and global mean surface temperatures are likely to increase by up to 2.4°C to 4.8°C by the end of the century (IPCC, 2013). Drought is also expected to become more frequent and intense in many regions of the world (Dai, 2011; IPCC, 2013). Of the variability present in major food crop yield gains, 30% can be explained by climate change alone (Lobell and Field, 2007), with drastic decreases in barley (Hordeum vulgare), maize, rice, sorghum (Sorghum bicolor), soybean, and wheat yields as average growing season temperatures surpass the temperature optimum for each crop (Lobell and Gourdji, 2012). Current levels of atmospheric CO2 concentration [CO2] are the highest they have been in at least 800,000 years (IPCC, 2013). Elevated [CO2] increases water use efficiency (Ainsworth and Long, 2005, Bernacchi et al., 2007, Leakey et al., 2009), but probably not to an extent that would mitigate the resulting reductions in yield caused by higher temperature and higher vapor pressure deficit (Ort and Long, 2014). Additionally, any fertilization effects on C3 yields due to elevated [CO2] would be at least in part negated by drought and temperature stress, leaving yield increases far from optimal (Long et al., 2006a; Lobell and Gourdji, 2012).  相似文献   

13.
This research focuses on investigating the use of common biofuel grasses to assess their potential as agents of long-term remediation of contaminated soils using lead as a model heavy metal ion. We present evidence demonstrating that switch grass and Timothy grass may be potentially useful for long-term phytoremediation of heavy metal contaminated soils and describe novel techniques to track and remove contaminants from inception to useful product. Enzymatic digestion and thermochemical approaches are being used to convert this lignocellulosic feedstock into useful product (sugars, ethanol, biocrude oil + biochar). Preliminary studies on enzymatic hydrolysis and fast pyrolysis of the Switchgrass materials that were grown in heavy metal contaminated soil and non-contaminated soils show that the presence of lead in the Switchgrass material feedstock does not adversely affect the outcomes of the conversion processes. These results indicate that the modest levels of contaminant uptake allow these grass species to serve as phytoremediation agents as well as feedstocks for biofuel production in areas degraded by industrial pollution.  相似文献   

14.
The production of ethanol for the energy market has traditionally been from corn and sugar cane biomass. The use of such biomass as energy feedstocks has recently been criticised as ill-fated due to competitive threat against food supplies. At the same time, ethanol production from cellulosic biomass is becoming increasingly popular. In this paper, we analyse rice husk (RH) as a cellulosic feedstock for ethanol biofuel production on the ground of its abundance. The global potential production of bioethanol from RH is estimated herein and found to be in the order of 20.9 to 24.3 GL per annum, potentially satisfying around one fifth of the global ethanol biofuel demand for a 10% gasohol fuel blend. Furthermore, we show that this is especially advantageous for Asia, in particular, India and China, where economic growth and demand for energy are exploding.  相似文献   

15.
With global increases in the production of cellulosic biomass for fuel, or “biofuel,” concerns over potential negative effects of using land for biofuel production have promoted attention to concepts of agricultural landscape design that sustainably balance tradeoffs between food, fuel, fiber, and conservation. The Energy Independence Security Act (EISA) of 2007 mandates an increase in advanced biofuels to 21 billion gallons in 2022. The southeastern region of the USA has been identified as a contributor to meeting half of this goal. We used a GIS-based approach to estimate the production and N-removal potential of three perennial biofeedstocks planted as conservation buffers (field borders associated with riparian buffers, and grassed waterways) on the Coastal Plain of Georgia, USA. Land cover, hydrology, elevation, and soils data were used to identify locations within agricultural landscapes that are most susceptible to runoff, erosion, and nutrient loss. We estimated potential annual biomass production from these areas to be: 2.5–3.5 Tg for giant miscanthus (Miscanthus?×?giganteus), 2–8.6 Tg for “Merkeron” napier grass (Pennisetum purpureum), and 1.9–7.5 Tg for “Alamo” switchgrass (Panicum virgatum). When production strategies were taken into consideration, we estimated total biomass yield of perennial grasses for the Georgia Coastal Plain at 2.2–9.4 Tg year?1. Using published rates of N removal and ethanol conversion, we calculated the amount of potential N removal by these systems as 8100–51,000 Mg year?1 and ethanol fuel production as 778–3296 Ml year?1 (206 to 871 million gal. US).  相似文献   

16.
Demand for bioenergy is increasing, but the ecological consequences of bioenergy crop production on working lands remain unresolved. Corn is currently a dominant bioenergy crop, but perennial grasslands could produce renewable bioenergy resources and enhance biodiversity. Grassland bird populations have declined in recent decades and may particularly benefit from perennial grasslands grown for bioenergy. We asked how breeding bird community assemblages, vegetation characteristics, and biomass yields varied among three types of potential bioenergy grassland fields (grass monocultures, grass-dominated fields, and forb-dominated fields), and assessed tradeoffs between grassland biomass production and bird habitat. We also compared the bird communities in grassland fields to nearby cornfields. Cornfields had few birds compared to perennial grassland fields. Ten bird Species of Greatest Conservation Need (SGCN) were observed in perennial grassland fields. Bird species richness and total bird density increased with forb cover and were greater in forb-dominated fields than grass monocultures. SGCN density declined with increasing vertical vegetation density, indicating that tall, dense grassland fields managed for maximum biomass yield would be of lesser value to imperiled grassland bird species. The proportion of grassland habitat within 1 km of study sites was positively associated with bird species richness and the density of total birds and SGCNs, suggesting that grassland bioenergy fields may be more beneficial for grassland birds if they are established near other grassland parcels. Predicted total bird density peaked below maximum biomass yields and predicted SGCN density was negatively related to biomass yields. Our results indicate that perennial grassland fields could produce bioenergy feedstocks while providing bird habitat. Bioenergy grasslands promote agricultural multifunctionality and conservation of biodiversity in working landscapes.  相似文献   

17.
Production of biofuel feedstocks in agricultural landscapes will result in land use changes that may have major implications for arthropod-mediated ecosystem services such as pollination and pest suppression. By comparing the abundance and diversity of insect pollinators and generalist natural enemies in three model biofuel crops: corn, switchgrass, and mixed prairie, we tested the hypothesis that biofuel crops comprised of more diverse plant communities would support increased levels of beneficial insects. These three biofuel crops contained a diverse bee community comprised of 75 species. Overall, bees were three to four times more abundant in switchgrass and prairie than in corn, with members of the sweat bee (Halictidae) and small carpenter bee (Ceratina spp.) groups the most abundant. Switchgrass and prairie had significantly greater bee species richness than corn during the July sampling period. The natural enemy community at these sites was dominated by lady beetles (Coccinellidae), long-legged flies (Dolichopodidae), and hover flies (Syrphidae) which varied in their response to crop type. Coccinellids were generally most abundant in prairie and switchgrass, with the exception of the pollen feeding Coleomegilla maculata that was most abundant in corn. Several rare or declining coccinellid species were detected in prairie and switchgrass sites. Dolichopodidae were more abundant in prairie and switchgrass while Syrphidae showed no significant response to crop type. Our results indicate that beneficial insects generally responded positively to the increased vegetational diversity of prairie and switchgrass sites; however, when managed as a dedicated biofuel crop, plant and arthropod diversity in switchgrass may decrease. Our findings support the hypothesis that vegetationally diverse biofuel crops support higher abundance and diversity of beneficial insects. Future policy regarding the production of biofuel feedstocks should consider the ecosystem services that different biofuel crops may support in agricultural landscapes.  相似文献   

18.
Energy crops are fast-growing species whose biomass yields are dedicated to the production of more immediately usable energy forms, such as liquid fuels or electricity. Biomass-based energy sources can offset, or displace, some amount of fossil-fuel use. Energy derived from biomass provides 2 to 3% of the energy used in the U.S.A.; but, with the exception of corn-(Zea mays L.)-to-ethanol, very little energy is currently derived from dedicated energy crops. In addition to the fossil-fuel offset, energy cropping might also mitigate an accentuated greenhouse gas effect by causing a net sequestration of atmospheric C into soil organic C (SOC). Energy plantations of short-rotation woody crops (SRWC) or herbaceous crops (HC) can potentially be managed to favor SOC sequestration. This review is focused primarily on the potential to mitigate atmospheric CO2 emissions by fostering SOC sequestration in energy cropping systems deployed across the landscape in the United States. We know that land use affects the dynamics of the SOC pool, but data about spatial and temporal variability in the SOC pool under SRWC and HC are scanty due to lack of well-designed, long-term studies. The conventional methods of studying SOC fluxes involve paired-plot designs and chronosequences, but isotopic techniques may also be feasible in understanding temporal changes in SOC. The rate of accumulation of SOC depends on land-use history, soil type, vegetation type, harvesting cycle, and other management practices. The SOC pool tends to be enhanced more under deep-rooted grasses, N-fixers, and deciduous species. Carbon sequestration into recalcitrant forms in the SOC pool can be enhanced with some management practices (e.g., conservation tillage, fertilization, irrigation); but those practices can carry a fossil-C cost. Reported rates of SOC sequestration range from 0 to 1.6 Mg C ha?1 yr?1 under SRWC and 0 to 3 Mg C ha?1 yr?1 under HC. Production of 5 EJ of electricity from energy crops—a perhaps reasonable scenario for the U.S.A.—would require about 60 Mha. That amount of land is potentially available for conversion to energy plantations in the U.S.A. The land so managed could mitigate C emissions (through fossil C not emitted and SOC sequestered) by about 5.4 Mg C ha?1 yr?1. On 60 Mha, that would represent 324 Tg C yr?1—a 20% reduction from current fossil-fuel CO2 emissions. Advances in productivity of fast-growing SRWC and HC species suggest that deployment of energy cropping systems could be an effective strategy to reduce climate-altering effects of anthropogenic CO2 emissions and to meet global policy commitments.  相似文献   

19.
Concentration of biofuel feedstock crop production in specific regions of the USA is dependent on the relative comparative advantage of production in a specific region based on several agronomic and economic factors. For the southeastern region of the USA, energy cane and sweet sorghum have been identified as two feedstock crops with the greatest potential for further development of production. This study utilized field trial data from yield studies in Louisiana to develop estimates of feedstock crop production costs and biofuel feedstock input costs for these two crops. Results indicated that feedstock production costs on a harvest yield basis, as well as the related dry matter basis, were heavily dependent on yield level. Economic research from this study indicated that energy cane had a slight cost advantage compared with sweet sorghum, although production of sorghum in certain periods during the growing season was very cost competitive with energy cane.  相似文献   

20.
In the recent years, microalgae have captured researchers’ attention as the alternative feedstock for various bioenergy production such as biodiesel, biohydrogen, and bioethanol. Cultivating microalgae in wastewaters to simultaneously bioremediate the nutrient-rich wastewater and maintain a high biomass yield is a more economical and environmentally friendly approach. The incorporation of algal–bacterial interaction reveals the mutual relationship of microorganisms where algae are primary producers of organic compounds from CO2, and heterotrophic bacteria are secondary consumers decomposing the organic compounds produced from algae. This review would provide an insight on the challenges and future development of algal–bacterial consortium and its contribution in promoting a sustainable route to greener industry. It is believed that microalgal-bacterial consortia will be implemented in the near-future for sub-sequential treatment of wastewater bioremediation, bioenergy production and CO2 fixation, promoting sustainability and making extraordinary advancement in life sciences sectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号