首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenotypic variation of important seed traits like seed length, seed breadth, seed thickness, 100 seed weight and seed oil content were recorded in a total of 157 collected accessions of Pongamia. Out of these, fatty acid profiles of 38 accessions selected based on their high and low oil content was analyzed. Fatty acid profile revealed high variability in stearic, oleic and linoleic acid which varied from 0.42 to 10.61 %, 34.34 to 74.58 %, and 7.00 to 31.28 % respectively. Variations in palmitic and linolenic acid were small. Iodine value, saponification number and cetane number (CN) of fatty acid methyl esters (FAME) of seed oil ranges from 186.99 to 201.25, 81.13 to 108.19 and 46.16 to 56.47 respectively. Fatty acid compositions, degree of unsaturation and CN are the important parameters, which are used to determine quality of FAME were used as biodiesel. Some of the Pongamia accessions identified were higher in oil content while some accessions showed higher degree of unsaturation and a few of them had CN values higher than 55. Genetic diversity analysis with six TE-AFLP primers generated a total of 334 bands out of which 174 (52.10 %) were polymorphic. The genetic similarity ranged from 0.11 to 0.47. These findings clearly showed high level of genetic diversity and all economically desirable traits were not present in a single genotype of Pongamia. All these traits could be selected from these CPTs and transfer to a single elite variety through selection and breeding programme and could be utilized for large scale multiplication and plantation to produce high quantity and quality biodiesel in future.  相似文献   

2.
Edible oil seed crops, such as rapeseed, sunflower, soyabean and safflower and non-edible seed oil plantation crops Jatropha and Pongamia have proved to be internationally viable commercial sources of vegetable oils for biodiesel production. Considering the paucity of edible oils and unsustainability of arable land under perennial plantation of Jatropha and Pongamia in countries such as India, the prospects of seed oil producing Cleome viscosa, an annual wild short duration plant species of the Indogangetic plains, were evaluated for it to serve as a resource for biodiesel. The seeds of C. viscosa resourced from its natural populations growing in Rajasthan, Haryana and Delhi areas of Aravali range were solvent extracted to obtain the seed oil. The oil was observed to be similar in fatty acid composition to the non-edible oils of rubber, Jatropha and Pongamia plantation crops and soybean, sunflower, safflower, linseed and rapeseed edible oil plants in richness of unsaturated fatty acids. The Cleome oil shared the properties of viscosity, density, saponification and calorific values with the Jatropha and Pongamia oils, except that it was comparatively acidic. The C. viscosa biodiesel had the properties of standard biodiesel specified by ASTM and Indian Standard Bureau, except that it had low oxidation stability. It proved to be similar to Jatropha biodiesel except in cloud point, pour point, cold filter plugging point and oxidation stability. In view of the annual habit of species and biodiesel quality, it can be concluded that C. viscosa has prospects to be developed into a short-duration biodiesel crop.  相似文献   

3.
Sulphur (S) nutrition is very important for harvesting potential seed and oil yield of rapeseed. This study evaluated response of foliage applied thiourea on the performance of two canola cultivars Shiralee and Dunkeld. Sulphur was applied to soil (40 kg ha?1) or foliage (500 and 1,000 mg L?1) at rosette, bud initiation and flowering stages using elemental S or thiourea as source, respectively; no S application was taken as control. Among all the treatments, soil application of S improved the crop growth, yield and oil quality in both cultivars and was followed by foliar application of thiourea at 1,000 mg L?1 compared with no application. Soil applied S and foliar thiourea (1,000 mg L?1) delayed the flowering and maturity. Soil and foliar applied S significantly improved leaf area index, crop growth rate, net assimilation rate and chlorophyll contents. Plant height, number of branches, siliqua per plant, seed number per siliqua, 1,000-seed weight, biological and seed yield were also increased by soil applied S and foliage applied thiourea (1,000 mg L?1). Nonetheless, improvement in harvest index, seed oil, protein and glucosinolate contents was only observed from foliage applied thiourea (1,000 mg L?1). Response of cv. Shiralee to sulphur application was better than cv. Dunkeld. In conclusion, foliar applied thiourea (1,000 mg L?1) can have potential to improve growth, yield and oil quality in canola and can be economically viable and attractive alternative source.  相似文献   

4.
The economics of willow biomass crops are strongly influenced by yield, production, and harvesting costs and the delivered price for biomass. Under current management practices, willow biomass crops with yields of 12 oven-dried metric tons (odt)?ha?1 year?1 and a delivered price of $60 odt?1 have an internal rate of return (IRR) of about 5.5 %. Yields below 9 odt ha?1 year?1 have an IRR <0 %. We examined the impact of different incentive programs on the returns from willow biomass crops and the hectares or tons of willow biomass supported across a range of yields. Incentive programs examined included establishment grants (EG), annual payments (AIP), low cost startup loans, and matching payments offered by two existing programs, the Conservation Resource Program (CRP) and more recently the Biomass Crop Assistance Program (BCAP). EGs covering 75 % of the establishment costs provide high returns for growers on medium to high-productivity sites. Stand-alone AIPs with payments of $124 ha?1 year?1 paid over 5–15 years had little impact on profitability for growers but were costly for a funding agency. Low-cost loans with an interest rate of 2–4 % are one of the least expensive approaches ($1.3–6.6 odt?1) and improve profitability for medium- and high-yielding (8–16 odt ha?1 year?1) sites. A matching payment incentive providing $50 per odt delivered was the only individual incentive approach that made low-yielding sites (6 odt ha?1 year?1) profitable but was costly per odt compared to other incentives. Current CRP incentives made willow profitable across all productivity scenarios. The BCAP program generates higher profits for all productivity scenarios but comes at a higher cost. Effective financial incentives need to be well designed and monitored so that the target audience is reached and the intended policy goals are attained.  相似文献   

5.
Pot experiments were carried out in the green house at Amhara Regional Agriculture Research Institute (ARARI) Bahirdar, Ethiopia to evaluate the potential of Brassica carinata cultivars namely; Holleta-l, S-67 and Yellow Dodola in 2007 and 2008. The treatment effects of B. carinata (L.) cultivars Holleta–1, S-67 and Yellow Dodola seed meals on chickpea fusarium wilt (Fusarium oxysporum f.sp. ciceris) were studied. Six rates of seed (0, 5, 10, 15, 20 and 25 g/kg of infested soil) were used. Infested soil without B.carinata cultivars amendments as a control and susceptible check variety JG-62 also without amendments were used in all the experiments. For each seed meal experiment, the treatments were arranged in factorial randomised complete block design in three replications. Data on seedling emergence, wilt incidence, fresh weight, dry weight, pod per plant, seed per pod, hundred seed weight and yield per hectare were collected. The amendments of infested soil with B.carinata cultivars seed meal reduced the incidence of chickpea fusarium wilt and increased yield per hectare. The interaction of the seed meal Holleta-1, S-67 and Yellow Dodola at 10–25 g/kg infested soil were effective in reducing wilt incidences on chickpea. However, the interaction of Yellow Dodola with 20 and 25 g seed meal per kg infested soil were the best combination in reducing significantly wilt incidence. The three cultivars incorporated at different level of doses significantly affected the influence of Fusarium wilt on the fresh weight, dry weight, pod per plant, seed per pod, hundred seed weight and yield per hectare. The highest yield kg/ha was recorded in combination of Yellow Dodola seed meal at 20 and 25 g followed by S-67 and Holleta-1 at 25 g /kg infested soil, respectively. The interaction of Holleta-1 at 5–25 infested soil significantly reduced disease incidence up to 16.7–43.3% and increased yield per hectare with mean by (30%) over the control. Seed meal amendment S-67 significantly reduce disease incidence 26.7–46.7% and increased yield kg/ha with mean by (36.7%) from the unamended control. Yellow dodola reduces disease incidence with 26.7–63.3% and increased yield kg/ha with mean by (45%) from the unamended control. The result indicates the potential of using Brassica crop seed meal amendment as useful component of integrated chickpea wilt management.  相似文献   

6.
For a hectare of oil palm plantation, about 21.63 tonnes of biomass comprising 20.43 % empty fruit bunches, 5.09 % palm kernel shells, 11.65 % oil palm trunks, 50.30 % oil palm fronds and 12.53 % palm pressed fibre is produced per year as wastes which keep raising many environmental concerns as most of them are incinerated and dumped at open sites. Oil palm wastes are found to contain phytochemicals which have anti-cancer, antioxidants and other vital biological activities. About 17–65 kg of carotenoids, 0.1–60 kg phenolic compounds, 0.6–39 kg sterols and 4.0–62 kg tocols could be extracted from these wastes which would not only boost the economy but also help improve human health and promote clean environments. This study assesses the phytochemistry of oil palm wastes and their pharmacological activities beneficial to the nutraceutical industry with the view of utilizing oil palm wastes for sustainable development.  相似文献   

7.
Transgenic corn expressing Bacillus thuringiensis Berliner (Bt corn) (Maximizer and Yieldgard hybrids, Novartis Seeds), non-Bt isolines and high-performance (check) hybrids were evaluated for European corn borer, Ostrinia nubilalis (Hübner), damage and grain yield in commercial strip plots across Ontario in 1996 and 1997. Bt corn hybrids reduced stalk tunneling damage by 88-100%. In 1996, minimal damage was found in locations where only one generation of European corn borer occurred per year. Bt corn proved its greatest potential for reducing the number and length of cavities below the primary ear in locations where two generations of European corn borer were present. A yield response to using Bt hybrids only occurred when levels of tunneling damage exceeded 6 cm in length. European corn borer infestations resulted in a 6 and 2.4% reduction in yield for 1996 and 1997, respectively, when Bt hybrids were compared with their non-Bt isolines. A linear relationship was found between tunnel length per plant in centimeters (x) and yield protection (%) obtained from using Bt corn (y) (y = 1.02 + 0.005x, r2 = 0.7217). At a premium of $34.58 Canadian (CDN) perhectare for Bt corn seed, an infestation of at least 6 cm of corn borer tunneling per plant was required to break even at a market price for corn of $2.50 per bushel CDN. During the period of study, low infestations (0-2 cm) of European corn borer occurred at 25% of the locations assessed, moderate infestations (4-6 cm) occurred at 42% of the locations, and high infestations (>6 cm) occurred at 33% of the locations. At a corn price of $3.00 per bushel CDN and seed premiums of $34.58 per hectare CDN, 5 cm of tunneling was required for a return on investment in Bt seed, comprising only 55% of the growers in the study. With infestations of more than 6 cm of tunneling occurring only 33% of the time, a return on seed investment would be realized in only one of three growing seasons. At a seed premium of $24.70 per hectare CDN per year, at least $74 per hectare CDN in the year of infestation would be required to make up for the two years of no return. In this study, a $74 per hectare CDN return at a corn price of $9.26 per hectare CDN with >16 cm of tunneling damage would have occurred only 7.3% of the time.  相似文献   

8.
9.
This study integrates a biophysical model with a county‐specific economic analysis of breakeven prices of bioenergy crop production to assess the biophysical and economic potential of biofuel production in the Midwestern United States. The bioenergy crops considered in this study include a genotype of Miscanthus, Miscanthus×giganteus, and the Cave‐in‐Rock breed of switchgrass (Panicum virgatum). The estimated average peak biomass yield for miscanthus in the Midwestern states ranges between 7 and 48 metric tons dry matter per hectare per year ( t DM ha?1 yr?1), while that for switchgrass is between 10 and 16 t DM ha?1 yr?1. With the exception of Minnesota and Wisconsin, where miscanthus yields are likely to be low due to cold soil temperatures, the yield of miscanthus is on average more than two times higher than yield of switchgrass. We find that the breakeven price, which includes the cost of producing the crop and the opportunity cost of land, of producing miscanthus ranges from $53 t?1 DM in Missouri to $153 t?1 DM in Minnesota in the low‐cost scenario. Corresponding costs for switchgrass are $88 t?1 DM in Missouri to $144 t?1 DM in Minnesota. In the high‐cost scenario, the lowest cost for miscanthus is $85 t?1 DM and for switchgrass is $118 t?1 DM, both in Missouri. These two scenarios differ in their assumptions about ease of establishing the perennial crops, nutrient requirements and harvesting costs and losses. The differences in the breakeven prices across states and across crops are mainly driven by bioenergy and row crop yields per hectare. Our results suggest that while high yields per unit of land of bioenergy crops are critical for the competitiveness of bioenergy feedstocks, the yields of the row crops they seek to displace are also an important consideration. Even high yielding crops, such as miscanthus, are likely to be economically attractive only in some locations in the Midwest given the high yields of corn and soybean in the region.  相似文献   

10.
To study the effect of an exogenous cytokinin application on safflower yield, an experiment was conducted in 2012–2013. Two cultivars of safflower (Goldasht and Zendehrood) and five concentrations of 6-benzylaminopurine (BAP) (0, 25, 50, 75, and 100 μM) were applied at the flowering stage. Results indicated that the application of 75 μM of BAP showed increased seed and oil yield by 17.54 and 18.29 % over the control, respectively. The increase in seed yield by application of BAP was attributed to the increase in characters like number of heads per plant, number of seeds per head, and 1,000 seed weight. Applying of BAP increased oil content compared with the control. To determine the concentration of cytokinin which has the highest performance for increasing seed yield, regression analysis were estimated showing that in the Zendehrood cultivar, the application of 43 μM of BAP produced the highest seed yield, and in the Goldasht cultivar the application of 73 μM of BAP during flowering produced the highest seed yield.  相似文献   

11.
Recent interest in renewable energy sources and the need to diversify cropping systems have triggered research interest in camelina (Camelina sativa L. Crantz). Camelina is well adapted to the temperate dryland climates and can be used as an energy crop. But information on agronomic evaluation of camelina cultivars for biodiesel feedstock are limited. The objective of this study was to evaluate six spring camelina cultivars (cv. Blaine Creek, Calena, Ligena, Pronghorn, Shoshone, and Suneson) on seed yield, oil concentration, and oil yield. The study was carried out from 2013 to 2015 at three locations (Havre, Moccasin, and Pendroy, MT). Over locations and years, mean seed yield differences among cultivars were significant (P < 0.05). The mean seed yield for cultivars ranging from 1295 kg ha?1 (Suneson) to 1420 kg ha?1 (Ligena). Ligena and Calena showed a combination of good seed yield performance and stability across environments. Environmental means for seed yield differences were substantial compared with cultivar means. The location Havre produced 45 and 32% more mean seed yield than Pendroy and Moccasin, respectively. There was no significant difference among cultivars in oil concentration and oil yield. The absence of variations in oil concentration and oil yield differences among these cultivars could indicate the need for further research to improve these qualities essential for biodiesel.  相似文献   

12.

Background

Kidney Failure is epidemic in many remote communities in Canada. In-centre hemodialysis is provided within these settings in satellite hemodialysis units. The key cost drivers of this program have not been fully described. Such information is important in informing the design of programs aimed at optimizing efficiency in providing dialysis and preventative chronic kidney disease care in remote communities.

Design, Setting, Participants, and Measurements

We constructed a cost model based on data derived from 16 of Manitoba, Canada’s remote satellite units. We included all costs for operation of the unit, transportation, treatment, and capital costs. All costs were presented in 2013 Canadian dollars.

Results

The annual per-patient cost of providing hemodialysis in the satellite units ranged from $80,372 to $215,918 per patient, per year. The median per patient, per year cost was $99,888 (IQR $89,057—$122,640). Primary cost drivers were capital costs related to construction, human resource expenses, and expenses for return to tertiary care centres for health care. Costs related to transport considerably increased estimates in units that required plane or helicopter transfers.

Conclusions

Satellite hemodialysis units in remote areas are more expensive on a per-patient basis than hospital hemodialysis and satellite hemodialysis available in urban areas. In some rural, remote locations, better value for money may reside in local surveillance and prevention programs in addition support for home dialysis therapies over construction of new satellite hemodialysis units.  相似文献   

13.
Pollination is an essential step in the seed production of canola, Brassica napus L. It is achieved with the assistance of various pollen vectors, but particularly by the honey bee, Apis mellifera L. Although the importance of pollination has been shown for the production of seed crops, the need to introduce bee hives in canola fields during flowering to increase oil seed yield has not yet been proven. With the purpose of showing this, hives of A. mellifera were grouped and placed in various canola fields in the Chaudière-Appalaches and Capitale-Nationale regions (nine fields; three blocks with three treatments; 0, 1.5, and 3 hives per hectare). A cage was used to exclude pollinators and bee visitations were observed in each field. After the harvest, yield analyses were done in relation to the bee density gradient created, by using pod set, number of seeds per plant, and weight of 1000 seeds. Results showed an improvement in seed yield of 46% in the presence of three honey bee hives per hectare, compared with the absence of hives. The introduction of honey bees contributed to production and consequently, these pollinators represented a beneficial and important pollen vector for the optimal yield of canola.  相似文献   

14.
The impact of rising atmospheric CO2 on crop productivity and quality is very important for global food and nutritional security under the changing climatic scenario. A study was conducted to investigate the effect of elevated CO2 on seed oil quality and yield in a sunflower hybrid DRSH 1 and variety DRSF 113, raised inside open top chambers and exposed to elevated CO2 (550 ± 50 µl l?1). Elevated CO2 exposure significantly influenced the rate of photosynthesis, seed yield and the quality traits in both hybrid and variety. Plants grown under elevated CO2 concentration showed 61–68 % gain in biomass and 35–46 % increase in seed yield of both the genotypes, but mineral nutrient and protein concentration decreased in the seeds. The reduction in seed protein was up to 13 %, while macro and micronutrients decreased drastically (up to 43 % Na in hybrid seeds) under elevated CO2 treatment. However, oil content increased significantly in DRSF 113 (15 %). Carbohydrate seed reserves increased with similar magnitudes in both the genotypes under elevated CO2 treatment (13 %). Fatty acid composition in seed oil contained higher proportion of unsaturated fatty acids (oleic and linoleic acid) under elevated CO2 treatment, which is a desirable change in oil quality for human consumption. These findings conclude that rising atmospheric CO2 in changing future climate can enhance biomass production and seed yield in sunflower and alter their seed oil quality in terms of increased concentration of unsaturated fatty acids compared with saturated fatty acids and lower seed proteins and mineral nutrients.  相似文献   

15.
Short-rotation woody crops like shrub willow are a potential source of biomass for energy generation and bioproducts. However, since willow crops are not widely grown in North America, the economics of this crop and the impacts of key crop production and management components are not well understood. We developed a budget model, EcoWillow v1.4 (Beta), that allows users to analyze the entire production-chain for willow systems from the establishment to the delivery of wood chips to the end-user. EcoWillow was used to analyze how yield, crop management options, land rent, fuel, labor, and other costs influence the Internal Rate of Return (IRR) of willow crop systems in upstate New York. We further identified cost variables with the greatest potential for reducing production and transport costs of willow biomass. Productivity of 12 oven-dried tons (odt) ha?1 year?1 and a biomass price of $ (US dollars) 60 odt?1 results in an IRR of 5.5%. Establishment, harvesting, and transportation operations account for 71% of total costs. Increases in willow yield, rotation length, and truck capacity as well as a reduction in harvester down time, land costs, planting material costs, and planting densities can improve the profitability of the system. Results indicate that planting speed and fuel and labor costs have a minimal effect on the profitability of willow biomass crops. To improve profitability, efforts should concentrate on (1) reducing planting stock costs, (2) increasing yields, (3) optimizing harvesting operations, and (4) co-development of plantation designs with new high-yielding clones to reduce planting density.  相似文献   

16.
本文报道了利用原始爪哇稻资源与光温敏雄性不育系培矮64S配制的27个籼爪交组合在长沙的农艺性状和杂种优势表现.从总体上来看,籼爪交组合与对照相比在每穗实粒数和理论产量上无显著差异,在其它性状上均有极显著的差异;籼爪交组合在秆高、穗长、每穗总粒数、每穗实粒数和千粒重方面有正向对照优势,在播始历期、有效分蘖数、结实率、理论产量和实际产量上存在负向对照优势.从个体上来看,籼爪交组合理论产量对照优势>40%的比例为11.1%.实际产量对照优势>40%的机率为3.7%,说明爪哇稻资源在籼爪交杂种优势利用中具有利用价值.本文还对爪哇稻资源在籼爪杂种优势利用中的一些问题进行了讨论.  相似文献   

17.
Studies were carried out to determine if supplemental B (H3BO3) and Ca (CaCl2) injected via a stem infusion technique into soybeans could stimulate yield by increasing pods on lateral branches, seed number, and overall seed yield. Boron treatments caused a significant 84.8% increase in the number of lateral pods/plant and a 17.6% increase in total seed weight/plant. This corresponded to a seed yield of 4170 kilograms per hectare in the B-treated plants compared to 3540 kilograms per hectare in the injected control plants, indicating that B deficiency may have been a factor in limiting yield of control plants. Ca treatments tended to accentuate the negative yield effects of apparent B deficiency.  相似文献   

18.

Aims

Plantation forests are often assumed to have reduced biodiversity relative to unmanaged forests. However, existing knowledge is based on studies of rotation-aged tree crops. We investigated how Eucalyptus afforestation of agricultural land affected plant species composition and biodiversity across a range of plantation ages (1–10 years). We also studied whether the soil seed bank could contribute to regeneration of existing vegetation in such plantations.

Methods

We used a chronosequence approach to evaluate plant and seed species composition and diversity in forests and soil seed banks. We also quantified the similarity of seed banks and aboveground vegetation within plantation sites of a given age. Plantation sites were also compared to a nearby, mature pine forest.

Results

Total plant species number, density and diversity in Eucalyptus grandis plantations increased for the first 3 years plantation establishment, then stabilized or decreased for the next 1–2 years and then increase significantly over the following years. Species number and density in soil seed bank increased significantly with plantation age only after an initial 6-year decrease. Shannon–Wiener index of total species diversity did not significantly differ with plantation age. The understory vegetation and soil seed bank were dominated by pioneer species in the first 3 years, but intermediate-successional and shade-tolerant species gradually invaded as plantations developed further. After 7 years, E. grandis plantation understories were composed of mainly shade-tolerant species. Nevertheless, the diversity of the diversity of intermediate-successional in soil seed banks were higher than that of shade-tolerant species in soil seed banks at this age range (7–10 year). Among species successfully germinated from soil seed banks, 48 % were not found in the aboveground plant community. Similarities between the species in the soil seed bank and the aboveground vegetation were low for both plantation and control forests and did not significantly change with plantation ages.

Conclusions

E. grandis likely produces a changing microclimate during plantation development, which in turn drives composition and diversity dynamics in understory vegetation and soil seed banks after the afforestation of agricultural land. The first 4 years after plantation establishment is associated with lower plant and soil seed bank diversity, meriting a greater focus on biodiversity stabilization and possibly longer rotation periods.  相似文献   

19.
Soybean seeds contain high levels of oil and protein, and are the important sources of vegetable oil and plant protein for human consumption and livestock feed. Increased seed yield, oil and protein contents are the main objectives of soybean breeding. The objectives of this study were to identify and validate quantitative trait loci (QTLs) associated with seed yield, oil and protein contents in two recombinant inbred line populations, and to evaluate the consistency of QTLs across different environments, studies and genetic backgrounds. Both the mapping population (SD02-4-59 × A02-381100) and validation population (SD02-911 × SD00-1501) were phenotyped for the three traits in multiple environments. Genetic analysis indicated that oil and protein contents showed high heritabilities while yield exhibited a lower heritability in both populations. Based on a linkage map constructed previously with the mapping population and using composite interval mapping and/or interval mapping analysis, 12 QTLs for seed yield, 16 QTLs for oil content and 11 QTLs for protein content were consistently detected in multiple environments and/or the average data over all environments. Of the QTLs detected in the mapping population, five QTLs for seed yield, eight QTLs for oil content and five QTLs for protein content were confirmed in the validation population by single marker analysis in at least one environment and the average data and by ANOVA over all environments. Eight of these validated QTLs were newly identified. Compared with the other studies, seven QTLs for seed yield, eight QTLs for oil content and nine QTLs for protein content further verified the previously reported QTLs. These QTLs will be useful for breeding higher yield and better quality cultivars, and help effectively and efficiently improve yield potential and nutritional quality in soybean.  相似文献   

20.
Replacing fossil fuels with an economically viable green alternative at scale has proved most challenging in the aviation sector. Recently sugarcane, the most productive crop on the planet, has been engineered to accumulate lipids. This opens the way for production of far more industrial vegetable oil per acre than previously possible. This study performs techno‐economic feasibility analysis of jet fuel production from this new cost efficient and high yield feedstock. A comprehensive process model for biorefinery producing hydrotreated jet fuel (from lipids) and ethanol (from sugars), with 1 600 000 MT yr?1 lipid‐cane processing capacity, was developed in SuperPro Designer. Considering lipid‐cane development is continuing for higher oil concentrations, analysis was performed with lipid‐cane containing 5%, 10%, 15%, and 20% lipids. Capital investments for the biorefinery ranged from 238.1 to 351.2 million USD, with jet fuel capacities of 12.6–50.5 million liters (correspondingly ethanol production of nil to 102.6 million liters). The production cost of jet fuel for different scenarios was estimated Replacing fossil fuels with an economically viable green alternative at scale has proved most challenging in the aviation sector. Recently sugarcane, the most productive crop on the planet, has been engineered to accumulate lipids. This opens the way for production of far more industrial vegetable oil per acre than previously possible. This study performs techno‐economic feasibility analysis of jet fuel production from this new cost efficient and high yield feedstock. A comprehensive process model for biorefinery producing hydrotreated jet fuel (from lipids) and ethanol (from sugars), with 1 600 000 MT yr?1 lipid‐cane processing capacity, was developed in SuperPro Designer. Considering lipid‐cane development is continuing for higher oil concentrations, analysis was performed with lipid‐cane containing 5%, 10%, 15%, and 20% lipids. Capital investments for the biorefinery ranged from 238.1 to 351.2 million USD, with jet fuel capacities of 12.6–50.5 million liters (correspondingly ethanol production of nil to 102.6 million liters). The production cost of jet fuel for different scenarios was estimated $0.73 to $1.79 per liter ($2.74 to $6.76 per gal) of jet fuel. In all cases, the cost of raw materials accounted for more than 70% of total operational cost. Biorefinery was observed self‐sustainable for steam and electricity requirement, because of in‐house steam and electricity generation from burning of bagasse. Minimum fuel selling prices with a 10% discount rate for 20% lipid case was estimated $1.40/L ($5.31/gal), which was lower than most of the reported prices of renewable jet fuel produced from other oil crops and algae. Along with lower production costs, lipid‐cane could produce as high as 16 times the jet fuel (6307 L ha?1) per unit land than that of other oil crops and do so using low‐value land unsuited to most other crops, while being highly water and nitrogen use efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号